首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a novel protein chip made of a diamond-like, carbon-coated stainless steel plate (DLC plate), the surface of which is chemically modified with N-hydroxysuccinimide ester. To produce a high-density protein chip using the DLC plate, proteins separated by SDS gel electrophoresis or two-dimensional electrophoresis were electroblotted onto the DLC plate and immobilized covalently. A high blotting efficiency (25-70%) for transferring proteins from the gels onto the DLC plates was achieved by improvement of the electrophoresis device and electroblotting techniques. With the use of the DLC plate, we developed novel techniques to identify proteins immobilized on the chip and to detect protein-protein interactions on the chip by mass spectrometric analysis. We also developed a technique to identify post-translationally modified proteins, such as glycoproteins, on the protein chip.  相似文献   

2.
Recombinant protein expression and purification remains a central need for biotechnology. Herein, the authors report a streamlined protein and peptide purification strategy using short self‐assembling peptides and a C‐terminal cleavage intein. In this strategy, the fusion protein is first expressed as an aggregate induced by the self‐assembling peptide. Upon simple separation, the target protein or peptide with an authentic N‐terminus is then released in the solution by intein‐mediated cleavage. Different combinations of four self‐assembling peptides (ELK16, L6KD, FK and FR) with three inteins (Sce VMA, Mtu ΔI‐CM and Ssp DnaB) were explored. One protein and two peptides were used as model polypeptides to test the strategy. The intein Mtu ΔI‐CM, which has pH‐shift inducible cleavage, was found to work well with three self‐assembling peptides (L6KD, FR, FK). Using this intein gave a yield of protein or peptide comparable with that from other more established strategies, such as the Trx‐strategy, but in a simpler and more economical way. This strategy provides a simple and efficient method by which to prepare proteins and peptides with an authentic N‐terminus, which is especially effective for peptides of 30‐100 amino acids in length that are typically unstable and susceptible to degradation in Escherichia coli.  相似文献   

3.
In‐gel digestion followed by LC/MS/MS is widely used for the identification of trace amounts of proteins and for the site‐specific glycosylation analysis of glycoproteins in cells and tissues. A major limitation of this technique is the difficulty in acquiring reliable mass spectra for peptides present in minute quantities and glycopeptides with high heterogeneity and poor hydrophobicity. It is considered that the SDS used in electrophoresis can interact with proteins noncovalently and impede the ionization of peptides/glycopeptides. In this study, we report an improved in‐gel digestion method to acquire reliable mass spectra of a trace amount of peptides/glycopeptides. A key innovation of our improved method is the use of guanidine hydrochloride, which forms complexes with the residual SDS molecules in the sample. The precipitation and removal of SDS by addition of the guanidine hydrochloride was successful in improving the S/N of peptides/glycopeptides in mass spectra and acquiring a more comprehensive MS/MS data set for the various glycoforms of each glycopeptide.  相似文献   

4.
Many biologically relevant glycoproteins need to be separated on 1D‐ or 2D‐gels prior to analysis and are available in picomole amounts. Therefore, it is important to have optimized methods to unravel the glycome that combine in‐gel digestions with MALDI‐TOF‐MS. In this technical report, we investigated how the detection of in‐gel released N‐glycans could be improved by MALDI‐TOF‐MS. First, an AnchorChip target was tested and compared to ground steel target using several reference oligosaccharides. The highest signals were obtained with an AnchorChip target and D‐arabinosazone as the matrix; a LOD of 1.3 to 10 fmol was attained. Then, the effect of octyl‐β‐glucopyranoside, a nonionic detergent, was studied during in‐gel peptide‐N4‐(acetyl‐ß‐glucosaminyl) asparagine amidase F digestion of standard glycoproteins and during glycan extraction. Octyl‐β‐glucopyranoside increased the intensity and the amount of detected neutral as well as acidic N‐glycans. A LOD of under 7 pmol glycoprotein could be achieved.  相似文献   

5.
In this study, a new hydrazide derivative (UGF202) was synthesized and introduced as a highly sensitive and selective fluorescent probe to pre‐stain glycoproteins in 1D and 2D SDS‐PAGE. As low as 0.5–1 ng glycoproteins (transferrin, α1‐acid glycoprotein, avidin) could be selectively detected, which is comparable to that of Pro‐Q Emerald 300 stain, one of the most sensitive and commonly used glycoprotein staining kit. In addition, the specificity of the newly developed method was confirmed by the study of de‐glycosylation, glycoproteins affinity enrichment and LC‐MS/MS, respectively. According to the results, it is concluded that UGF202 pre‐stain can provide an alternative for the visualization of gel‐separated glycoproteins.  相似文献   

6.
7.
Sample preparation, typically by in‐solution or in‐gel approaches, has a strong influence on the accuracy and robustness of quantitative proteomics workflows. The major benefit of in‐gel procedures is their compatibility with detergents (such as SDS) for protein solubilization. However, SDS‐PAGE is a time‐consuming approach. Tube‐gel (TG) preparation circumvents this drawback as it involves directly trapping the sample in a polyacrylamide gel matrix without electrophoresis. We report here the first global label‐free quantitative comparison between TG, stacking gel (SG), and basic liquid digestion (LD). A series of UPS1 standard mixtures (at 0.5, 1, 2.5, 5, 10, and 25 fmol) were spiked in a complex yeast lysate background. TG preparation allowed more yeast proteins to be identified than did the SG and LD approaches, with mean numbers of 1979, 1788, and 1323 proteins identified, respectively. Furthermore, the TG method proved equivalent to SG and superior to LD in terms of the repeatability of the subsequent experiments, with mean CV for yeast protein label‐free quantifications of 7, 9, and 10%. Finally, known variant UPS1 proteins were successfully detected in the TG‐prepared sample within a complex background with high sensitivity. All the data from this study are accessible on ProteomeXchange (PXD003841).  相似文献   

8.
The sensitivity of Western blotting analysis after Phos‐tag SDS‐PAGE is occasionally inferior to that after normal (Phos‐tag‐free) SDS‐PAGE under similar experimental conditions, possibly as a result of inefficient electrotransfer from the Phos‐tag gel to the blotting membrane. We therefore present tips on improving the efficiency of electrotransfer of proteins in semidry and wet‐tank blotting. When model samples containing several standard phosphoproteins were subjected to semidry blotting, their electrotransfer efficiencies after Phos‐tag SDS‐PAGE were markedly inferior to those of their dephosphorylated counterparts in the same gel. This was ameliorated by immersing the electrophoresed Phos‐tag gel in a transfer buffer containing 1 mM EDTA for 30 min before electroblotting. Similarly, phosphoproteomes in crude cell extracts were inefficiently transferred by semidry blotting, but the efficiencies of their electrotransfer were improved by pretreatment with EDTA. In contrast, the efficiencies of wet‐tank blotting of the same samples were not dependent on the degree of phosphorylation, and the efficiencies of electrotransfer of all proteins from Phos‐tag gels were similar to those from normal gels. In some cases involving the use of a Phos‐tag gel, addition of 0.1% w/v of SDS to the transfer buffer significantly improved the electrotransfer.  相似文献   

9.
Human coagulation factor X is a central component of the blood coagulation cascade that converts, under its activated form, prothrombin into thrombin. Generation of thrombin is the final step of the clotting cascade that leads to the clot by polymerization of fibrinogen molecules into a fibrin network. Today, research of new by‐passing agents of the coagulation may contribute to an increased interest for human factor X, which may, in consequence, lead to the need of a more exhaustive picture of its structural features. Several post‐translational modifications of human factor X such as γ‐carboxylation/β‐hydroxylation of the N‐terminal light chain and N‐/O‐glycosylation of the activation peptide have been described. But, so far as we know, no comprehensive studies of its post‐translational modifications have been reported. In this article we report an exhaustive structural analysis of human factor X by mass spectrometry using successive protein and peptide mapping. Surprisingly, human factor X was found to be mostly O‐glucosylated on its light chain at Ser106 position, Ser9 of its activation peptide is phosphorylated at about 30% and its C‐terminal heavy chain is fully O‐glycosylated at Thr249 by a mucin‐type O‐glycan (HexNAc‐Hex‐NeuAc). The knowledge of these post‐translational modifications is mandatory for the development of recombinant molecules.  相似文献   

10.
Non‐heading Chinese cabbage (Brassica campestris L. ssp. chinensis Makino), an important vegetable crop in China, exhibits a typical sporophytic self‐incompatibility (SI) system. To better understand the mechanism of SI response and identify potential candidate proteins involved in the SI system of this vegetable crop, the proteomic approach was taken to identify differential accumulating pistil proteins. Pistils were collected at 0 h and 2 h after self‐pollination at anthesis in self‐incompatible and compatible lines of non‐heading Chinese cabbage, and total proteins were extracted and separated by two‐dimensional gel electrophoresis (2‐DE). A total of 25 protein spots that displayed differential abundance were identified by matrix‐assisted laser desorption/ionisation‐time of flight mass spectrometry (MALDI–TOF/TOF MS) and peptide mass fingerprinting (PMF). Among them, 22 protein spots were confidently established. The mRNA levels of the corresponding genes were detected by quantitative RT‐PCR. The 22 identified protein spots are involved in energy metabolism (four), protein biosynthesis (three), photosynthesis (six), stress response and defence (five), and protein degradation (four). Among these potential candidate proteins, UDP‐sugar pyrophosphorylase could be involved in sucrose degradation to influence pollen germination and growth. Glutathione S–transferases could be involved in pollen maturation, and affect pollen fertility. Senescence‐associated cysteine protease, which is related to programmed cell death, could be mainly related to self pollen recognition of non‐heading Chinese cabbage. The study will contribute to further investigations of molecular mechanism of sporophytic SI in Brassicaceae.  相似文献   

11.
Immunoblotting, after polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS‐PAGE), is a technique commonly used to detect specific proteins. SDS‐PAGE often results in the visualization of protein band(s) in addition to the one expected based on the theoretical molecular mass (TMM) of the protein of interest. To determine the likelihood of additional band(s) being nonspecific, we used liquid chromatography – mass spectrometry to identify proteins that were extracted from bands with the apparent molecular mass (MM) of 40 and 26 kD, originating from protein extracts derived from non‐malignant HEK293 and cancerous MDA‐MB231 (MB231) cells separated using SDS‐PAGE. In total, approximately 57% and 21% of the MS/MS spectra were annotated as peptides in the two cell samples, respectively. Moreover, approximately 24% and 36.2% of the identified proteins from HEK293 and MB231 cells matched their TMMs. Of the identified proteins, 8% from HEK293 and 26% from MB231 had apparent MMs that were larger than predicted, and 67% from HEK293 and 37% from MB231 exhibited smaller MM values than predicted. These revelations suggest that interpretation of the positive bands of immunoblots should be conducted with caution. This study also shows that protein identification performed by mass spectrometry on bands excised from SDS‐PAGE gels could make valuable contributions to the identification of cancer biomarkers, and to cancer‐therapy studies.  相似文献   

12.
A novel conotoxin named lt6c, an O‐superfamily conotoxin, was identified from the cDNA library of venom duct of Conus litteratus. The full‐length cDNA contains an open reading frame encoding a predicted 22‐residue signal peptide, a 22‐residue proregion and a mature peptide of 28 amino acids. The signal peptide sequence of lt6c is highly conserved in O‐superfamily conotoxins and the mature peptide consists of six cysteines arranged in the pattern of C? C? CC? C? C that is defined the O‐superfamily of conotoxins. The mature peptide fused with thioredoxin, 6‐His tag, and a Factor Xa cleavage site was successfully expressed in Escherichia coli. About 12 mg lt6c was purified from 1L culture. Under whole‐cell patch‐clamp mode, lt6c inhibited sodium currents on adult rat dorsal root ganglion neurons. Therefore, lt6c is a novel O‐superfamily conotoxin that is able to block sodium channels. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Protein O‐glycosylation is important in numerous processes including the regulation of proteolytic processing sites by O‐glycan masking in select newly synthesized proteins. To investigate O‐glycan‐mediated masking using an assay amenable to large‐scale screens, we generated a fluorescent biosensor with an O‐glycosylation site situated to mask a furin cleavage site. The sensor is activated when O‐glycosylation fails to occur because furin cleavage releases a blocking domain allowing dye binding to a fluorogen activating protein. Thus, by design, glycosylation should block furin from activating the sensor only if it occurs first, which is predicted by the conventional view of Golgi organization. Indeed, and in contrast to the recently proposed rapid partitioning model, the sensor was non‐fluorescent under normal conditions but became fluorescent when the Golgi complex was decompartmentalized. To test the utility of the sensor as a screening tool, cells expressing the sensor were exposed to a known inhibitor of O‐glycosylation extension or siRNAs targeting factors known to alter glycosylation efficiency. These conditions activated the sensor substantiating its potential in identifying new inhibitors and cellular factors related to protein O‐glycosylation. In summary, these findings confirm sequential processing in the Golgi, establish a new tool for studying the regulation of proteolytic processing by O‐glycosylation, and demonstrate the sensor's potential usefulness for future screening projects .  相似文献   

14.
We describe a novel technique of phosphate‐affinity SDS‐PAGE using Phos‐tag to analyze large phosphoproteins with molecular masses of more than 200 kDa. The protein phosphoisotypes were clearly separated as up‐shifted migration bands in a 3% w/v polyacrylamide gel containing 20 μM Phos‐tag and 0.5% w/v agarose. In subsequent immunoblotting, the procedure permitted the determination of the phosphoisotypes of high‐molecular‐mass proteins, such as mTOR (289 kDa), ATM kinase (350 kDa), and 53BP1 (213 kDa).  相似文献   

15.
Brevinin‐2‐related peptide (BR‐II), a novel antimicrobial peptide isolated from the skin of frog, Rana septentrionalis, shows a broad spectrum of antimicrobial activity with low haemolytic activity. It has also been shown to have antiviral activity, specifically to protect cells from infection by HIV‐1. To understand the active conformation of the BR‐II peptide in membranes, we have investigated the interaction of BR‐II with the prokaryotic and eukaryotic membrane‐mimetic micelles such as sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC), respectively. The interactions were studied using fluorescence and circular dichroism (CD) spectroscopy. Fluorescence experiments revealed that the N‐terminus tryptophan residue of BR‐II interacts with the hydrophobic core of the membrane mimicking micelles. The CD results suggest that interactions with membrane‐mimetic micelles induce an α‐helix conformation in BR‐II. We have also determined the solution structures of BR‐II in DPC and SDS micelles using NMR spectroscopy. The structural comparison of BR‐II in the presence of SDS and DPC micelles showed significant conformational changes in the residues connecting the N‐terminus and C‐terminus helices. The ability of BR‐II to bind DNA was elucidated by agarose gel retardation and fluorescence experiments. The structural differences of BR‐II in zwitterionic versus anionic membrane mimics and the DNA binding ability of BR‐II collectively contribute to the general understanding of the pharmacological specificity of this peptide towards prokaryotic and eukaryotic membranes and provide insights into its overall antimicrobial mechanism. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
SDS interferes with both bottom‐up and top‐down MS analysis, requiring removal prior to detection. Filter‐aided sample preparation (FASP) is favored for bottom‐up proteomics (BUP) while acetone precipitation is popular for top‐down proteomics (TDP). We recently demonstrated acetone precipitation in a membrane filter cartridge. Alternatively, our automated electrophoretic device, termed transmembrane electrophoresis (TME), depletes SDS for both TDP and BUP studies. Here TME is compared to these two alternative methods of SDS depletion in both BUP and TDP workflows. To do so, a modified FASP method is described applicable to the SDS purification and recovery of intact proteins, suitable for LC/MS. All three methods reliably deplete >99.8% SDS. TME provide higher sample yields (average 90%) than FASP (55%) or acetone precipitation (57%), translating into higher total protein identifications (973 vs 877 FASP or 890 acetone) and higher spectral matches (2.5 times) per protein. In a top down workflow, each SDS‐depletion method yields high‐quality MS spectra for intact proteins. These results show each of these membrane‐based strategies is capable of depleting SDS with high sample recovery and high spectra quality for both BUP and TDP studies.  相似文献   

17.
Protein sample preparation optimisation is critical for establishing reproducible high throughput proteomic analysis. In this study, two different fractionation sample preparation techniques (in‐gel digestion and in‐solution digestion) for shotgun proteomics were used to quantitatively compare proteins identified in Vitis riparia leaf samples. The total number of proteins and peptides identified were compared between filter aided sample preparation (FASP) coupled with gas phase fractionation (GPF) and SDS‐PAGE methods. There was a 24% increase in the total number of reproducibly identified proteins when FASP‐GPF was used. FASP‐GPF is more reproducible, less expensive and a better method than SDS‐PAGE for shotgun proteomics of grapevine samples as it significantly increases protein identification across biological replicates. Total peptide and protein information from the two fractionation techniques is available in PRIDE with the identifier PXD001399 ( http://proteomecentral.proteomexchange.org/dataset/PXD001399 ).  相似文献   

18.
Increased macrophage vulnerability is associated with progression of systemic lupus erythematosus. Our previous studies have shown that cystamine, an inhibitor of transglutaminase 2 (TG2), alleviated the apoptosis of hepatocyte and brain cell in lupus‐prone mice NZB/W‐F1. In present study, we further investigated the effects of cystamine on apoptosis‐prone macrophages (APMs) in the lupus mice. Using two‐dimensional gel electrophoresis (2‐DE) analysis, we found that cystamine induced a differential protein expression pattern of APM as comparing to the PBS control. The protein spots presenting differential level between cystamine and PBS treatment were then identified by peptide‐mass fingerprinting (PMF). After bioinformatic analysis, these identified proteins were found involved in mitochondrial apoptotic pathway, oxidative stress, and mitogen‐activated protein (MAP) kinase‐mediated pathway. Further investigation revealed that cystamine significantly decreased the levels of apoptotic Bax and Apaf‐1 and the activity of caspase‐3, and increased the levels of anti‐apoptotic Bcl‐2 in APM. We also found that these apoptotic mediators were up‐regulated in a correlation with the progression of lupus severity in NZB/W‐F1, which were little affected in BALB/c mice. We also found that the reduced serum glutathione was restored by cystamine in NZB/W‐F1. Interestingly, the phosphorylation of extracellular signal‐regulated kinase 1/2 (ERK1/2) in APM and the phagocytic ability was diminished in presence of cystamine. In conclusion, our findings indicate that cystamine significantly inhibited mitochondrial pathway, induced antioxidant proteins, and diminished phosphorylation of extracellular ERK1/2, which may alleviate the apoptosis and the phagocytic ability of APM. J. Cell. Biochem. 110: 660–670, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Abstract We developed a gel-based global O-glycomics method applicable for highly complex protein mixtures entrapped in discontinuous gradient gel layers. The protocol is based on in-gel proteolysis with pronase followed by (glyco)peptide elution and off-gel reductive β-elimination. The protocol offers robust performance with sensitivity in the low picomolar range, is compatible with gel-based proteomics, and shows superior performance in global applications in comparison with workflows eliminating glycans in-gel or from electroblotted glycoproteins. By applying this method, we analyzed the O-glycome of human myoblasts and of the mouse brain O-glycoproteome. After semipreparative separation of mouse brain proteins by one-dimensional SDS gel electrophoresis, the O-glycans from proteins in different mass ranges were characterized with a focus on O-mannose-based glycans. The relative proportion of the latter, which generally represent a rare modification, increases to comparatively high levels in the mouse brain proteome in dependence of increasing protein masses.  相似文献   

20.
Anti‐CD20 murine or chimeric antibodies (Abs) have been used to treat non‐Hodgkin lymphomas (NHLs) and other diseases characterized by overactive or dysfunctional B cells. Anti‐CD20 Abs demonstrated to be effective in inducing regression of B‐cell lymphomas, although in many cases patients relapse following treatment. A promising approach to improve the outcome of mAb therapy is the use of anti‐CD20 antibodies to deliver cytokines to the tumour microenvironment. In particular, IL‐2‐based immunocytokines have shown enhanced antitumour activity in several preclinical studies. Here, we report on the engineering of an anti‐CD20‐human interleukin‐2 (hIL‐2) immunocytokine (2B8‐Fc‐hIL2) based on the C2B8 mAb (Rituximab) and the resulting ectopic expression in Nicotiana benthamiana. The scFv‐Fc‐engineered immunocytokine is fully assembled in plants with minor degradation products as assessed by SDS‐PAGE and gel filtration. Purification yields using protein‐A affinity chromatography were in the range of 15–20 mg/kg of fresh leaf weight (FW). Glycopeptide analysis confirmed the presence of a highly homogeneous plant‐type glycosylation. 2B8‐Fc‐hIL2 and the cognate 2B8‐Fc antibody, devoid of hIL‐2, were assayed by flow cytometry on Daudi cells revealing a CD20 binding activity comparable to that of Rituximab and were effective in eliciting antibody‐dependent cell‐mediated cytotoxicity of human PBMC versus Daudi cells, demonstrating their functional integrity. In 2B8‐Fc‐hIL2, IL‐2 accessibility and biological activity were verified by flow cytometry and cell proliferation assay. To our knowledge, this is the first example of a recombinant immunocytokine based on the therapeutic Rituximab antibody scaffold, whose expression in plants may be a valuable tool for NHLs treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号