共查询到20条相似文献,搜索用时 0 毫秒
1.
Intestinal ischemia/reperfusion (I/R) injury is a critical condition associated with high morbidity and mortality. Studies show that ischemic preconditioning (IPC) can protect the intestine from I/R injury. However, the underlying molecular mechanisms of this event have not been fully elucidated. In the present study, 2-DE combined with MALDI-MS was employed to analyze intestinal mucosa proteomes of rat subjected to I/R injury in the absence or presence of IPC pretreatment. The protein content of 16 proteins in the intestinal mucosa changed more than 1.5-fold following intestinal I/R. These proteins were, respectively, involved in the cellular processes of energy metabolism, anti-oxidation and anti-apoptosis. One of these proteins, aldose reductase (AR), removes reactive oxygen species. In support of the 2-DE results, the mRNA and protein expressions of AR were significantly downregulated upon I/R injury and enhanced by IPC as confirmed by RT-PCR and western blot analysis. Further study showed that AR-selective inhibitor epalrestat totally turned over the protective effect of IPC, indicating that IPC confers protection against intestinal I/R injury primarily by increasing intestinal AR expression. The finding that AR may play a key in intestinal ischemic protection might offer evidences to foster the development of new therapies against intestinal I/R injury. 相似文献
2.
Synergistic protective effect of ischemic preconditioning and allopurinol on ischemia/reperfusion injury in rat liver 总被引:4,自引:0,他引:4
This study examined the effects of ischemic preconditioning (IPC), allopurinol (Allo) or a combination of both on the extent of mitochondrial injury caused by hepatic ischemia/reperfusion (I/R). I/R increased the serum aminotransferase activity and the level of mitochondrial lipid peroxidation, whereas it decreased the mitochondrial glutathione level. Either IPC or Allo alone attenuated these changes with Allo+IPC having a synergistic effect. Allo increased the serum nitrite and nitrate level after brief ischemia. The significant peroxide production observed after 10 min of reperfusion after sustained ischemia was markedly attenuated by Allo+IPC. The mitochondria isolated after I/R were swollen, which was reduced by Allo+IPC. At the end of ischemia, the hepatic ATP level was lower and there was significant xanthine accumulation, which was attenuated by Allo+IPC. These results suggest that IPC and Allo act synergistically to protect cells against mitochondrial injury and preserve the hepatic energy metabolism during hepatic I/R. 相似文献
3.
The role of C-reactive protein in ischemia/reperfusion injury and preconditioning in a rat model of myocardial infarction 总被引:10,自引:0,他引:10
For the first time the involvement of C-Reactive protein (CRP) in early (acute) and delayed ischemic (IPC) and pharmacological (chemical) preconditioning (CPC) in an in vivo model of rat myocardial infarction was presented. Acute IPC was produced by three 5 minute occlusion (ischemia) periods interspersed with 5 minute reperfusion, followed by 30 minute occlusion of the left coronary artery and 2 hour reperfusion injury. Acute CPC was produced by a k-opioid receptor agonist U50488H (5 mg/kg) applied i.v. 15 minutes before 30 minute ischemia/ 2 hour reperfusion. Delayed preconditioning was produced by 30 minute ischemia/ 2 hour reperfusion, induced 24 hour after either ischemic or pharmacological preconditioning. The myocardial ischemia/reperfusion injury was evaluated on the basis of total and cardiac creatine kinase isoenzyme activity, functional recovery of the heart (ECG), infarct size (% IS/RA) and mortality at the end of the experiments. The results obtained showed that: k-opioid receptor agonist U50488H mimics both the acute and delayed IPC in the above experimental protocol; Both acute IPC and most probably CPC act by opening of K(ATP) channels (the effects were blocked by nonspecific ATP-sensitive K channel blocker glybenclamide), and via activation of protein kinase C (a selective protein kinase C inhibitor chelerythrine blocked the efects); C-reactive protein (CRP) was significantly elevated by 54% in non-preconditioned acute ischemia/reperfusion injury. The elevation was more pronounced (82% increase) 24 hour after non-preconditioned ischemia/reperfusion injury. It reflected very well the increase in cardiac isoenzymes, infarct size and mortality of the rats, and can be used as a marker of the severity of myocardial injury in this model; The increase of CRP was prevented by both IPC and CPC in early, and especially in late preconditioning. This confirms the involvement of CRP as a marker in cardiac ischemic/reperfusion injury. It was concluded that in addition to the established involvement of adenosine, bradykinin, opioid and other receptors, a suppression of myocardial CRP/complement production might be involved in the biological mechanism of preconditioning. This could be a promising perspective in clinical interventions against ischemia/reperfusion injuries of the heart. 相似文献
4.
目的:观察肢体缺血/再灌注(LI/R)时肺损伤的变化并探讨缺血预处理(IPC)对其保护作用。方法:复制家兔LI/R损伤模型,观察肢体缺血4 h再灌注4 h肺损伤的变化以及采用肢体IPC干预后对肺损伤的影响。从右颈外静脉和左颈总动脉采血,分别代表入肺血和出肺血,检测入、出肺血及肺组织超氧化物歧化酶(SOD)的活性、脂质过氧化物的代谢产物丙二醛(MDA)和一氧化氮(NO)的含量;同时测定肺组织总一氧化氮合酶(tNOS)和诱导型一氧化氮合酶(iNOS)的活性以及肢体IPC对上述指标的影响。结果:与对照组和缺血前比较,LI/R组松夹再灌注4 h入、出肺血及肺组织SOD活性明显降低,MDA和NO含量增高(P〈0.05,P〈0.01);肺组织tNOS和iNOS活性亦升高,与对照组比较,有统计学意义(P〈0.01)。在缺血前给予IPC组,SOD活性升高,而MDA、NO含量降低,tNOS、iNOS活性也降低(P〈0.01)。相关分析显示MDA与SOD间存在明显负相关(P〈0.01),而MDA与NO及iNOS呈显著正相关(P〈0.01)。结论:LI/R时并发的急性肺损伤与组织氧化代谢紊乱有关,IPC通过改善LI/R时肺组织氧化与抗氧化之间的平衡,进而增强肺组织的抗氧化能力,对LI/R肺损伤具有保护作用。 相似文献
5.
目的:研究肢体缺血预处理对大鼠肝缺血/再灌注损伤是否具有保护作用。方法:雄性SD大鼠32只,随机分为对照组(S组);缺血/再灌注组(I/R组);经典缺血预处理组(IPC组);肢体缺血预处理组(远端缺血预处理组,RPC组)。S组仅行开腹,不作其他处理;IPC组以肝缺血5min作预处理;RPC组以双后肢缺血5min,反复3次作预处理,2个预处理组及I/R组均行肝缺血1h再灌注3h。取血用于血清谷丙转氨酶(ALT)与血清谷草转氨酶(AST)检测。切取肝组织用于测定湿干比(W/D)、中性粒细胞(PMN)计数及观察显微、超微结构的变化。结果:与I/R组比较,IPC组,RPC组ALT,AST,W/D值,及PMN计数均明显降低(P〈0.01),肝脏的显微及超微结构损伤减轻。结论:肢体缺血预处理对大鼠肝脏I/R损伤有明显的保护作用,强度与经典缺血预处理相当,其机制可能与抑制肝脏炎症反应、减轻肝脏水肿、改善肝组织微循环有关。 相似文献
6.
目的:探讨缺血预处理对肢体缺血/再灌注时肾损伤的保护作用。方法:复制家兔肢体缺血/再灌注(I/R)损伤模型,观察肢体缺血4h再灌注4h后以及应用缺血预处理干预对肾损伤的影响。分别从右颈外静脉、肾动脉和肾静脉取血,代表外周血以及入、出肾血,观察外周血超氧化物歧化酶(SOD)、丙二醛(MDA)及尿素氮(BUN);同时测定入肾血和出肾血NO、SOD、MDA和肾组织SOD、MDA、诱导型一氧化氮合酶(iNOS)以及缺血预处理对上述指标的影响。结果:与对照组比较,缺血再灌组松夹后4h外周血、入、出肾血及肾组织SOD活性明显降低,MDA含量增高(P〈0.01);外周血BUN以及入、出肾血NO和肾组织iNOS含量升高(P〈0.01);在缺血前给予缺血预处理组.SOD活性升高,而MDA、BUN、NO、iNOS含量降低(P〈0.01)。相关分析显示MDA与SOD间存在明显负相关(P〈0.01).而MDA与NO、BUN间呈显著正相关(P〈0.01)。结论:肢体缺血/再灌注时伴有肾脏氧自由基代谢紊乱,缺血预处理可以增强肾组织的抗氧化能力,对肢体缺血再灌注肾损伤具有保护作用。 相似文献
7.
缺血预处理对大鼠肺缺血/再灌注损伤的保护作用 总被引:6,自引:0,他引:6
目的 :观察缺血预处理 (IPC)对大鼠肺缺血 /再灌注 (I/R)损伤的保护作用 ,并初步探讨其作用机制。方法 :建立离体大鼠肺灌流模型 ,36只wistar大鼠随机分为对照组、I/R组和IPC组 ,处理完毕后分别测定平均肺动脉压(MPAP)、肺组织湿 /干重比、支气管肺泡灌洗液中肺表面活性物质磷脂及表面张力改变 ,肺组织标本送电镜检查。结果 :①电镜下观察IPC组肺损伤明显减轻。②肺组织湿 /干重比值IPC组为 4.41± 0 .2 4,显著低于I/R组 ,但仍高于缺血前 (P <0 .0 1) ;③IPC组大鼠缺血 1h后MPAP为 ( 1.88± 0 .2 9)kPa ,明显低于I/R组 (P <0 .0 1) ;④IPC组支气管肺泡灌洗液中总磷脂为 ( 2 33 .42± 14.0 5 ) μg/kg ,大聚体为 ( 10 5 .39± 6 .17) μg/kg ,与I/R组相比显著增高 ,但低于对照组 (P <0 .0 1) ,三组之间小聚体含量没有显著差异 ;⑤IPC组表面张力为 ( 36 .88± 3.49)mN/m ,显著低于I/R组 ,与对照组相比则无显著性差异 (P >0 .0 5 )。结论 :缺血预处理对大鼠肺I/R损伤有保护作用 ,保护机制可能与促进肺表面活性物质 (PS)磷脂分泌、改善PS组成 ,从而提高PS功能有关。 相似文献
8.
缺血预适应对大鼠肢体缺血/再灌注后肺损伤的影响 总被引:2,自引:0,他引:2
目的:观察肢体缺血预适应对大鼠肢体缺血/再灌注(I/R)后肺损伤的影响并探讨其机制。方法:将雄性Wistar大鼠随机分为4组(n=8):对照组(C),肢体缺血/再灌注组(LI/R),缺血预适应组(IPC)和L-NAME组。各组大鼠均于肢体缺血4h再灌注4h处死,分别测定其动脉血氧分压(PaO2)和二氧化碳分压(PaCO2),血浆及肺组织丙二醛(MDA)、一氧化氮(NO)、内皮素(ET)含量,计算血浆NO/ET比值;以及肺湿干比(W/D)、肺系数(LI),肺组织髓过氧化物酶(MPO)含量。结果:大鼠LI/R后4h,PaO2明显降低;W/D、LI、血浆及肺组织的MDA、NO、ET和肺组织MPO活性均明显增加,而血浆NO/ET比值明显减小。与LI/R组比较,IPC组各项损伤指标明显减轻,NO水平升高,血浆NO/ET比值明显增大。与对照组和IPC组比较,L-NAME处理组,各项损伤指标数值明显增加,NO水平降低;血浆NO/ET比值明显减小,差异均具有显著性。各组大鼠PaCO2的变化无显著性。结论:缺血预适应对肢体缺血/再灌注后肺损伤具有保护作用,其机制可能与内源性NO合成增加有关。 相似文献
9.
10.
缺血预处理及低温对幼兔心肌缺血/再灌注损伤的影响 总被引:1,自引:0,他引:1
目的:探讨缺血预处理(ischemic preconditioning,IP)及低温对幼兔心脏缺血/再灌注损伤的影响。方法:采用Langendorff离体心脏灌注模型,取3~4周龄幼兔心脏,分别给予不同次数的IP后使其在20℃低温下缺血或给予同样次数的IP后使其分别在不同低温下缺血。常温再灌注30min。记录心脏缺血/再灌注前后左心室功能指标,测定再灌注末心肌组织中ATP和丙二醛(MDA)含量,超氧化物歧化酶(SOD)及Ca^2 -ATP酶的活性。结果:再灌注末,IP2组左心室各功能指标的恢复率及心肌组织的ATP含量及Ca^2 -ATP酶的活性均显著高于Con组和IP3组;SIP1、SIP2组的左心室各功能指标的恢复率及心肌组织的ATP含量均分别显著高于SConn1组和SCon2组。其心肌组织MDA含量亦分别低于SCon1组和SCon2组。结论:IP可减轻低温缺血的幼兔心肌缺血/再灌注损伤,其效应与IP的次数和低温程度有关。 相似文献
11.
Fibroblast growth factors in myocardial ischemia / reperfusion injury and ischemic preconditioning 总被引:1,自引:1,他引:1
Cuevas P Carceller F Giménez-Gallego G 《Journal of cellular and molecular medicine》2001,5(2):132-142
Angiogenic growth factors such as fibroblast growth factors (FGFs) are currently in clinical trials for accelerating blood vessel formation in myocardial and limb ischemic conditions. However, recent experimental evidence suggests that FGFs can also participate as endogenous cardioprotective agents. In this report, the current knowledge for FGFs implication in myocardial ischemic tolerance will be summarized. Pharmacologic preconditioning with drugs as FGFs that mimic the beneficial effects of ischemic preconditioning could lead to novel therapeutic approaches for the treatment of ischemic disorders including myocardial infarction and stroke. 相似文献
12.
目的探讨NAS对肝缺血再灌注所诱导的脂质过氧化损伤产生的保护作用。方法采用夹闭肝蒂法30min、再灌注6h制作肝缺血再灌注模型,冰冻切片,HE染色,光学显微镜下观察肝细胞形态结构的变化;比色法检测损伤后血清中谷丙转氨酶(ALT)水平及肝组织中超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH—Px)的含量。结果夹闭肝蒂30min、再灌注6h后,肝小叶结构紊乱、肝血窦淤血,其间有白细胞浸润、肝细胞出现变性、坏死;血清中ALT水平升高,肝组织中s0D和GSH—Px的含量降低,MDA升高;NAS可减少缺血再灌注后血清ALT的释放,使肝组织中SOD和GSHPx的含量升高,MDA的含量降低;NAS+Luz可逆转NAS的这一作用。结论NAS对肝缺血再灌注小鼠的氧化应激损伤具有保护作用。 相似文献
13.
缺血预适应对大鼠肢体缺血/再灌注后小肠细胞凋亡的影响 总被引:2,自引:0,他引:2
目的:观察大鼠肢体缺血再灌注后小肠粘膜自由基及钙含量改变与细胞凋亡情况.以及缺血预适应对其变化的影响。方法:将雄性Wistar大鼠18只,随机分为对照(Control)组,缺血/再灌注(I/R)组和缺血预适应(IPC+I/R)组,分别测定血浆和小肠组织超氧化物歧化酶(SOD)、黄嘌呤氧化酶(XOD)、丙二醛(MDA)的含量,小肠组织钙及线粒体钙含量;小肠组织的Bel-2和Bax蛋白的表达水平;检测小肠细胞凋亡情况。结果:肢体I/R后血浆和小肠粘膜SOD减少而XOD和MDA增加;小肠组织钙及线粒体钙含量增多;Bel-2蛋白表迭和Bax表达增多,但Bel-2/Bax比值降低;凋亡细胞增多。IPC减轻了I/R后引起的XOD、MDA含量的升高,并且增加了SOD的含量;减轻了组织和线粒体钙超载;Bel-2的表达则明显升高而Bax表达较I/R组明显减少,Bel-2/Bax比值升高;凋亡细胞减少。结论:肢体IR引起小肠粘膜自由基的增多,钙超栽,凋亡细胞增多;IPC可能通过减少自由基的产生及钙超载,抑制细胞凋亡而对肢体I/R继发的小肠功能损伤起保护作用。 相似文献
14.
《Peptides》2015
Apelin is the endogenous ligand for the APJ, a member of the G protein coupled receptors family. Apelin/APJ system is widely distributed in central nervous system and peripheral tissues, especially in heart, lung and kidney. Apelin plays important physiological and pathological roles in cardiovascular system, immune system, neuroprotection, etc. This article outlines the protective effect of apelin on ischemia/reperfusion (I/R) injury. Apelin could activate multiple protective mechanisms to prevent heart, brain, liver and kidney I/R injury. Apelin/APJ system may be a promising therapeutic target for ischemic and other related diseases. 相似文献
15.
《Cell calcium》2020
The small ubiquitin-like modifier (SUMO) conjugation (or SUMOylation) is a post-translational protein modification mechanism activated by different stress conditions that has been recently investigated in experimental models of cerebral ischemia. The expression of SUMOylation enzymes and substrates is not restricted to the nucleus, since they are present also in the cytoplasm and on plasma membrane and are involved in several physiological and pathological conditions.In the last decades, convincing evidence have supported the idea that the increased levels of SUMOylated proteins may induce tolerance to ischemic stress. In particular, it has been established that protein SUMOylation may confer neuroprotection during ischemic preconditioning.Considering the increasing evidence that SUMO can modify stability and expression of ion channels and transporters and the relevance of controlling ionic homeostasis in ischemic conditions, the present review will resume the main aspects of SUMO pathways related to the key molecules involved in maintenance of ionic homeostasis during cerebral ischemia and ischemic preconditioning, with a particular focus on the on Na+/Ca2+ exchangers. 相似文献
16.
Ischemia/reperfusion (I/R) injury is a major consequence of a cardiovascular intervention. The study of changes of the left and right ventricle proteomes from hearts subjected to I/R may be a key to revealing the pathological mechanisms underlying I/R-induced heart contractile dysfunction. Isolated rat hearts were perfused under aerobic conditions or subjected to 25 min global ischemia and 30 min reperfusion. At the end of perfusion, right and left ventricular homogenates were analyzed by 2DE. Contractile function and coronary flow were significantly reduced by I/R. 2DE followed by mass spectrometry identified ten protein spots whose levels were significantly different between aerobic left and right ventricles, eight protein spots whose levels were different between aerobic and I/R left ventricle, ten protein spots whose levels were different between aerobic and I/R right ventricle ten protein spots whose levels were different between the I/R groups. Among these protein spots were ATP synthase beta subunit, myosin light chain 2, myosin heavy chain fragments, peroxiredoxin-2, and heat shock proteins, previously associated with cardiovascular disease. These results reveal differences between proteomes of left and right ventricle both under aerobic conditions and in response to I/R that contribute to a better understanding of I/R injury. 相似文献
17.
肢体缺血预适应的肝保护作用与一氧化氮/内皮素-1系统关系的研究 总被引:1,自引:0,他引:1
目的:观察肢体缺血/再灌注(I/R)后一氧化氮/内皮素-1(NO/ET-1)失衡与肝损伤的关系以及缺血预适应(1pc)对NO/ET-1系统的调节作用。方法:实验用雄性Wistar大鼠18只,随机分为3组(n=6):对照组(control)、缺血/再灌注组(I/R)和缺血预适应组(IPC+I/R),分别测定血浆谷草转氨酶(ALT)、谷丙转氨酶(AST);血浆和肝组织一氧化氮(NO)、内皮素-1(ET-I)的含量变化,一氧化氮/内皮素-1(NO/ET-1)比值及肝组织的总一氧化氮合酶(tNOS)、诱导型一氧化氮合酶(iNOS)、结构型一氧化氮合酶(cNOS)的水平;免疫组化法检测肝组织的诱导型一氧化氮舍酶(iNOS)、内皮型一氧化氮合酶(eNOS)的表达;HE染色,在光学显微镜下观察肝组织的形态学改变。结果:发现肢体再灌注期血浆和肝组织NO、ET-1均明显增加,而NO/ET-1的比值却明显降低,同时血浆ALT、AST升高,光学显微镜下肝细胞、内皮细胞肿胀,肝细胞变性及肝窦淤血,炎性细胞浸润,肝损伤加重,肢体I/R后肝组织iNOS的表达增强,而eNOS(主要为eNOS)的表达减少,伴有总NOS活性增强。说明肢体缺血再灌注后肝组织内皮源的NO产生减少,而非内皮源的NO产生增多;IPC减轻了肢体I/R后引起的NO/ET-1失衡。结论:肢体I/R后肝组织损伤与NO/ET-1失衡有关,IPC对肢体I/R继发的肝组织损伤的保护作用可能是通过对NO/ET-1系统的调节作用而介导的,此时内皮源的NO产生增加,非内皮源的NO产生减少。 相似文献
18.
目的:观察肢体缺血/再灌注(LI/R)后骨骼肌、小肠、肺功能损伤变化,并探讨缺血预适应(IPC)的保护效应及机制。方法:实验用雄性Wistar大鼠24只,随机分为3组(n=8):对照(Control)组,缺血/再灌注(I/R)组和缺血预适应(IPC+I/R)组。分别测定血浆乳酸脱氢酶(LDH)、肌酸激酶(CK)、活性氧(ROS)、丙二醛(MDA)、动脉血氧分压(PaO2)和二氧化碳分压(PaCO2),测定血浆血栓素B2(TXB2),6-酮-前列腺素F1α(6-keto-PGF1α)的含量以及TXB2/6-keto-PGF1α比值的变化;测定骨骼肌、小肠、肺组织髓过氧化物酶(MPO)含量,肺湿干比(W/D)及小肠组织DAO含量。观察骨骼肌组织的形态学变化。结果:IPC+I/R组血浆LDH、CK、ROS、MDA、TXB2/6-keto-PGF1α比值明显低于I/R组,PaO2较I/R组明显升高。IPC+I/R组肺湿干比(W/D),骨骼肌、肺、小肠组织MPO含量明显低于I/R组,而小肠DAO活性升高。骨骼肌组织病理学改变减轻。结论:缺血预适应减轻了缺血/再灌注后骨骼肌、小肠、肺功能的损伤,其机制可能与降低氧化损伤、改善TXB2/6-keto-PGF1α的平衡关系有关。 相似文献
19.
Hydrogen sulphide (H 2S) exerts a protective effect in hepatic ischemia-reperfusion (I/R) injury. However, the exact mechanism of H 2S action remains largely unknown. This study was designed to investigate the role of the PtdIns3K-AKT1 pathways and autophagy in the protective effect of H 2S against hepatic I/R injury. Primary cultured mouse hepatocytes and livers with or without NaHS (a donor of H 2S) preconditioning were exposed to anoxia/reoxygenation (A/R) and I/R, respectively. In certain groups, they were also pretreated with LY294002 (AKT1-specific inhibitor), 3-methyladenine (3MA, autophagy inhibitor) or rapamycin (autophagy enhancer), alone or simultaneously. Cell viability, expression of P-AKT1, T-AKT1, LC3 and BECN1 were examined. The severity of liver injury was measured by the levels of serum aminotransferase and inflammatory cytokine, apoptosis and histological examination. GFP-LC3 redistribution and transmission electron microscopy were used to test the activity of autophagy. H 2S preconditioning activated PtdIns3K-AKT1 signaling in hepatocytes. LY294002 could abolish the AKT1 activation and attenuate the protective effect of H 2S on hepatocytes A/R and hepatic I/R injuries. H 2S suppressed hepatic autophagy in vitro and in vivo. Further reducing autophagy by 3MA also diminished the protective effect of H 2S, while rapamycin could reverse the autophagy inhibitory effect and enhance the protective effect of H 2S against hepatocytes A/R and hepatic I/R injuries, consequently. Taken together, H 2S protects against hepatocytic A/R and hepatic I/R injuries, at least in part, through AKT1 activation but not autophagy. An autophagy agonist could be applied to potentiate this hepatoprotective effect by reversing the autophagy inhibition of H 2S. 相似文献
20.
《Autophagy》2013,9(6):954-962
Hydrogen sulphide (H2S) exerts a protective effect in hepatic ischemia-reperfusion (I/R) injury. However, the exact mechanism of H2S action remains largely unknown. This study was designed to investigate the role of the PtdIns3K-AKT1 pathways and autophagy in the protective effect of H2S against hepatic I/R injury. Primary cultured mouse hepatocytes and livers with or without NaHS (a donor of H2S) preconditioning were exposed to anoxia/reoxygenation (A/R) and I/R, respectively. In certain groups, they were also pretreated with LY294002 (AKT1-specific inhibitor), 3-methyladenine (3MA, autophagy inhibitor) or rapamycin (autophagy enhancer), alone or simultaneously. Cell viability, expression of P-AKT1, T-AKT1, LC3 and BECN1 were examined. The severity of liver injury was measured by the levels of serum aminotransferase and inflammatory cytokine, apoptosis and histological examination. GFP-LC3 redistribution and transmission electron microscopy were used to test the activity of autophagy. H2S preconditioning activated PtdIns3K-AKT1 signaling in hepatocytes. LY294002 could abolish the AKT1 activation and attenuate the protective effect of H2S on hepatocytes A/R and hepatic I/R injuries. H2S suppressed hepatic autophagy in vitro and in vivo. Further reducing autophagy by 3MA also diminished the protective effect of H2S, while rapamycin could reverse the autophagy inhibitory effect and enhance the protective effect of H2S against hepatocytes A/R and hepatic I/R injuries, consequently. Taken together, H2S protects against hepatocytic A/R and hepatic I/R injuries, at least in part, through AKT1 activation but not autophagy. An autophagy agonist could be applied to potentiate this hepatoprotective effect by reversing the autophagy inhibition of H2S. 相似文献