首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloning and sequence analysis of cartilage oligomeric matrix protein (COMP) cDNA, representing a cartilage pentameric protein, revealed a protein of 755 amino acid residues with a calculated molecular mass of 82,700 Da. Expression of the cDNA in COS cells showed that COMP is a homopolymer composed of five identical disulfide-linked subunits. COMP is homologous to the carboxyl-terminal half of thrombospondin, and the homologies include 89% and 54% of the residues in COMP and thrombospondin, respectively. The similarities are most pronounced in the carboxyl-terminal domains and in the calcium binding type 3 repeat domains in which about 60% of the amino acid residues are identical. In the type 2/epidermal growth factor repeat domains the two proteins contain 41% identical residues. The sequence of the amino-terminal 84-amino acid residues is unique for COMP. Comparison of the amino acid sequences in the type 2 and type 3 repeat domains of COMP and the thrombospondins shows that COMP is the product of a unique gene and not the result of an alternatively spliced thrombospondin gene.  相似文献   

2.
Solid‐state NMR‐based structure determination of membrane proteins and large protein complexes faces the challenge of limited spectral resolution when the proteins are uniformly 13C‐labeled. A strategy to meet this challenge is chemical ligation combined with site‐specific or segmental labeling. While chemical ligation has been adopted in NMR studies of water‐soluble proteins, it has not been demonstrated for membrane proteins. Here we show chemical ligation of the influenza M2 protein, which contains a transmembrane (TM) domain and two extra‐membrane domains. The cytoplasmic domain, which contains an amphipathic helix (AH) and a cytoplasmic tail, is important for regulating virus assembly, virus budding, and the proton channel activity. A recent study of uniformly 13C‐labeled full‐length M2 by spectral simulation suggested that the cytoplasmic tail is unstructured. To further test this hypothesis, we conducted native chemical ligation of the TM segment and part of the cytoplasmic domain. Solid‐phase peptide synthesis of the two segments allowed several residues to be labeled in each segment. The post‐AH cytoplasmic residues exhibit random‐coil chemical shifts, low bond order parameters, and a surface‐bound location, thus indicating that this domain is a dynamic random coil on the membrane surface. Interestingly, the protein spectra are similar between a model membrane and a virus‐mimetic membrane, indicating that the structure and dynamics of the post‐AH segment is insensitive to the lipid composition. This chemical ligation approach is generally applicable to medium‐sized membrane proteins to provide site‐specific structural constraints, which complement the information obtained from uniformly 13C, 15N‐labeled proteins.  相似文献   

3.
The chemical synthesis of proteins has facilitated functional studies of proteins due to the site‐specific incorporation of post‐translational modifications, labels, and non‐proteinogenic amino acids. Moreover, native chemical ligation provides facile access to proteins by chemical means. However, the application of the native chemical ligation reaction in the synthesis of parallel formats such as protein arrays has been complicated because of the often cumbersome and time‐consuming synthesis of the required peptide thioesters. An Fmoc‐based peptide thioester synthesis with self‐purification on the sulfonamide ‘safety‐catch’ linker widens this bottleneck because HPLC purification can be avoided. The method is based on an on‐resin cyclization–thiolysis reaction sequence. A macrocyclization via the N‐terminus of the full‐length peptide followed by a thiolytic C‐terminal ring opening allows selective detachment of the truncation products and the full‐length peptide. A brief overview of the chemical aspects of this method is provided including the optimization steps and the automation process. Furthermore, the application of the cyclization–thiolysis approach combined with the native chemical ligation reaction in the parallel synthesis of a library of 16 SH3‐domain variants of SHO1 in yeast is described, demonstrating the value of this new technique for the chemical synthesis of protein arrays. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
‘Chemical ligation’ – the regioselective and chemoselective covalent condensation of unprotected peptide segments – has enabled the synthesis of polypeptide chains of more than 200 amino acids. An efficient total chemical synthesis of the insulin molecule has been devised on the basis of a key ester‐linked intermediate that is chemically converted to fully active human insulin. Enzyme molecules of defined covalent structure and with full enzymatic activity have been prepared and characterized by high‐resolution X‐ray crystallography. A ‘glycoprotein mimetic’ of defined chemical structure and with a mass of 50,825 Da, has been prepared and shown to have full biological activity and improved pharmacokinetic properties. d ‐Protein molecules that are the mirror images of proteins found in the natural world have been prepared by total chemical synthesis. Racemic protein mixtures, consisting of the d ‐enantiomers and l ‐enantiomers of a protein molecule, form highly ordered centrosymmetric crystals with great ease; this has enabled the determination of the crystal structures of recalcitrant protein molecules. A protein with a novel linear‐loop covalent topology of the peptide chain has been designed and synthesized and its structure determined by facile crystallization as the quasi‐racemate with the d ‐form of the native protein molecule. We have developed an optimized total chemical synthesis of biologically active vascular endothelial growth factor‐A; total synthesis of the mirror‐image protein will be used to systematically develop d ‐protein antagonists of this important growth factor. The total chemical synthesis of proteins is now a practical reality and enables access to a new world of protein molecules. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
ADAMTS13, a metalloprotease, cleaves von Willebrand factor (VWF) in plasma to generate smaller, less thrombogenic fragments. The interaction of von Willebrand factor with specific ADAMTS13 domains was characterized with a binding assay employing von Willebrand factor immobilized on a plastic surface. ADAMTS13 binding was saturable and reversible. Equilibrium binding occurred within 2 h and the half-time for dissociation was approximately 4 h. Binding to von Willebrand factor was similar with either recombinant ADAMTS13 or normal plasma ADAMTS13; plasma from a patient who lacked ADAMTS13 activity showed no binding. The stoichiometry of binding was one ADAMTS13 per two von Willebrand factor monomers, and the K(d) was 14 nm. The ADAMTS13 metalloprotease and disintegrin domains did not bind VWF detectably. ADAMTS13 truncated after the first thrombospondin type 1 repeat bound VWF with a K(d) of 206 nm, whereas ADAMTS13 truncated after the spacer domain had a K(d) of 23 nm, which is comparable with that of full-length ADAMTS13. Truncation after the eighth thrombospondin type 1 repeat reduced the binding affinity by approximately 3-fold and truncation after the seventh thrombospondin type 1 repeat in addition to the CUB domains increased the affinity for von Willebrand factor by approximately 2-fold. Therefore, the spacer domain is required for ADAMTS13 binding to von Willebrand factor. The first thrombospondin repeat also affects binding, and the C-terminal thrombospondin type 1 and CUB domains of ADAMTS13 may modulate this interaction.  相似文献   

6.
Mindin (spondin‐2) is an extracellular matrix protein of unknown structure that is required for efficient T‐cell priming by dendritic cells. Additionally, mindin functions as a pattern recognition molecule for initiating innate immune responses. These dual functions are mediated by interactions with integrins and microbial pathogens, respectively. Mindin comprises an N‐terminal F‐spondin (FS) domain and C‐terminal thrombospondin type 1 repeat (TSR). We determined the structure of the FS domain at 1.8‐Å resolution. The structure revealed an eight‐stranded antiparallel β‐sandwich motif resembling that of membrane‐targeting C2 domains, including a bound calcium ion. We demonstrated that the FS domain mediates integrin binding and identified the binding site by mutagenesis. The mindin FS domain therefore represents a new integrin ligand. We further showed that mindin recognizes lipopolysaccharide (LPS) through its TSR domain, and obtained evidence that C‐mannosylation of the TSR influences LPS binding. Through these dual interactions, the FS and TSR domains of mindin promote activation of both adaptive and innate immune responses.  相似文献   

7.
Reported here is a native chemical ligation strategy for the total chemical synthesis of the B1 domain of protein L. A synthetic construct of this 76 amino acid protein domain was prepared by the chemoselective ligation of two unprotected polypeptide fragments, one containing an N-terminal cysteine residue and one containing a C-terminal thioester moiety. The polypeptide fragments utilized in the ligation reaction were readily prepared by stepwise solid phase peptide synthesis (SPPS) methods for Boc-chemistry. The milligram quantities of protein required for conventional biophysical studies were readily accessible using the synthetic protocol described here. The folding properties of the synthetic protein L construct were also determined and found to be very similar to those of a similar wild-type protein L constructs prepared by recombinant-DNA methods. This work facilitates future unnatural amino acid mutagenesis experiments on this model protein system to further dissect the molecular basis of its folding and stability.  相似文献   

8.
Thrombospondin is an inhibitor of angiogenesis that modulates endothelial cell adhesion, proliferation, and motility. Synthetic peptides from the second type I repeat of human thrombospondin containing the consensus sequence -Trp-Ser-Pro-Trp- and a recombinant heparin binding fragment from the amino-terminus of thrombospondin mimic several of the activities of the intact protein. The peptides and heparin-binding domain promote endothelial cell adhesion, inhibit endothelial cell chemotaxis to basic fibroblast growth factor (bFGF), and inhibit mitogenesis and proliferation of aortic and corneal endothelial cells. The peptides also inhibit heparin-dependent binding of bFGF to corneal endothelial cells. The antiproliferative activities of the peptides correlate with their ability to bind to heparin and to inhibit bFGF binding to heparin. Peptides containing amino acid substitutions that eliminate heparin-binding do not alter chemotaxis or proliferation of endothelial cells. Inhibition of proliferation by the peptide is time-dependet and reversible. Thus, the antiproliferative activities of the thrombospondin peptides and recombinant heparin-binding domain result at least in part from competition with heparin-dependent growth factors for binding to endothelial cell proteoglycans. These results suggest that both the Trp-Ser-Xaa-Trp sequences in the type I repeats and the amino-terminal domain play roles in the antiproliferative activity of thrombospondin.  相似文献   

9.
10.
Bovine freeze-thaw lysed platelets were fractionated by dextran sulfate affinity chromatography and a purified protein of 23,000 Da was subsequently obtained by G-75 gel filtration of the 0.5 M NaCl fraction. This protein had an amino terminal sequence of Asn-Arg-Ile-Pro-Glu-Ser-Gly-Gly-Asp-Asn-Ser-Val-Phe-Asp-Ile-Phe-Glu-Leu- Thr-Gly-Ala-Ala-Trp-Lys-, a sequence identical to that reported for human thrombospondin. Thrombin-released platelets, fractionated in an identical manner, yielded a protein of 30,000 Da. Immunoblotting of purified bovine platelet thrombospondin and the 150,000- and 30,000-Da plasmin-generated thrombospondin fragments indicated that polyclonal antisera raised against the 23,000-Da protein cross-reacted with intact thrombospondin and the 30,000-Da fragment but not the 150,000-Da fragment. The 23,000-Da protein possessed weak heparin neutralization activity.  相似文献   

11.
Prions are suspected as pathogen of the fatal transmissible spongiform encephalopathies. Strategies to access homogenous prion protein (PrP) are required to fully comprehend the molecular mechanism of prion diseases. However, the polypeptide fragments from PrP show a high tendency to form aggregates, which is a gigantic obstacle of protein synthesis and purification. In this study, murine prion sequence 90 to 230 that is the core three‐dimensional structure domain was constructed from three segments murine PrP (mPrP)(90–177), mPrP(178–212), and mPrP(213–230) by combining protein expression, chemical synthesis and chemical ligation. The protein sequence 90 to 177 was obtained from expression and finally converted into the polypeptide hydrazide by chemical activation of a cysteine in the tail. The other two polypeptide fragments of the C‐terminal were obtained by chemical synthesis, which utilized the strategies of isopeptide and pseudoproline building blocks to complete the synthesis of such difficult sequences. The three segments were finally assembled by sequentially using native chemical ligation. This strategy will allow more straightforward access to homogeneously modified PrP variants. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Thrombospondin is one of a class of adhesive glycoproteins that mediate cell-to-cell and cell-to-matrix interactions. We have used two monoclonal antibodies to isolate cDNA clones of thrombospondin from a human endothelial cell cDNA library and have determined the complete nucleotide sequence of the coding region. Three regions of known amino acid sequence of human platelet thrombospondin confirm that the clones are authentic. Three types of repeating amino acid sequence are present in thrombospondin. The first is 57 amino acids long and shows homology with circumsporozoite protein from Plasmodium falciparum. The second is 50-60 amino acids long and shows homology with epidermal growth factor precursor. The third occurs as a continuous eightfold repeat of a 38-residue sequence; structural homology with parvalbumin and calmodulin indicates that these repeats constitute the multiple calcium-binding sites of thrombospondin. The amino acid sequence arg-gly-asp-ala is included in the last type 3 repeat. This sequence is probably the site for the association of thrombospondin with cells. In addition, localized homologies with procollagen, fibronectin, and von Willebrand factor are present in one region of the thrombospondin molecule.  相似文献   

13.
The platelet and extracellular matrix glycoprotein thrombospondin interacts with various types of cells as both a positive and negative modulator of cell adhesion, motility, and proliferation. These effects may be mediated by binding of thrombospondin to cell surface receptors or indirectly by binding to other extracellular matrix components. The role of peptide sequences from the type I repeats of thrombospondin in its interaction with fibronectin were investigated. Fibronectin bound specifically to the peptide Gly-Gly-Trp-Ser-His-Trp from the second type I repeat of thrombospondin but not to the corresponding peptides from the first or third repeats or flanking sequences from the second repeat. The two Trp residues and the His residue were essential for binding, and the two Gly residues enhanced the affinity of binding. Binding of the peptide and intact thrombospondin to fibronectin were inhibited by the gelatin-binding domain of fibronectin. The peptide specifically inhibited binding of fibronectin to gelatin or type I collagen and inhibited fibronectin-mediated adhesion of breast carcinoma and melanoma cells to gelatin or type I collagen substrates but not direct adhesion of the cells to fibronectin, which was inhibited by the peptide Gly-Arg-Gly-Asp-Ser. Thus, the fibronectin- binding thrombospondin peptide Gly-Gly-Trp-Ser-His-Trp is a selective inhibitor of fibronectin-mediated interactions of cells with collagen in the extracellular matrix.  相似文献   

14.
Sortagging is a versatile method for site‐specific modification of proteins as applied to a variety of in vitro reactions. Here, we explore possibilities of adapting the sortase method for use in living cells. For intracellular sortagging, we employ the Ca2+‐independent sortase A transpeptidase (SrtA) from Streptococcus pyogenes. Substrate proteins were equipped with the C‐terminal sortase‐recognition motif (LPXTG); we used proteins with an N‐terminal (oligo)glycine as nucleophiles. We show that sortase‐dependent protein ligation can be achieved in Saccharomyces cerevisiae and in mammalian HEK293T cells, both in the cytosol and in the lumen of the endoplasmic reticulum (ER). ER luminal sortagging enables secretion of the reaction products, among which circular polypeptides. Protein ligation of substrate and nucleophile occurs within 30 min of translation. The versatility of the method is shown by protein ligation of multiple substrates with green fluorescent protein‐based nucleophiles in different intracellular compartments.  相似文献   

15.
Fibrillin‐1 is the major component of extracellular matrix microfibrils. Microfibrils dysfunction is responsible for the onset of various connective tissue diseases, including Marfan syndrome. Although ADAMTSL (a disintegrin and metalloproteinase with thrombospondin motifs‐like) 6β is one of the fibrillin‐1 binding proteins, the detailed mechanism underlying the involvement of ADAMTSL6β in microfibril formation remains unclear. In this study, we created deletion mutants of ADAMTSL6β and examined their interactions with fibrillin‐1 assembly. Pull‐down assay of the ADAMTSL6β deletion mutants and fibrillin‐1 protein revealed that ADAMTSL6β binds to fibrillin‐1 through the third thrombospondin type I domain. Furthermore, we observed that formation of fibrillin‐1 matrix assembly was enhanced in MG63 cells, expressing full‐length ADAMTSL6β, when compared with that of wild type MG63 cells. While MG63 cells expressing Δ TSP3‐ADAMTSL6β form showed enhanced assembly formation, Δ TSP2‐ADAMTSL6β form did not enhance that, indicating the difference between Δ TSP2‐Δ TSP3 has a critical role for fibrillin‐1 assembly. As the difference of Δ TSP2‐Δ TSP3 is the third thrombospondin type I domain, we concluded that the third thrombospondin type I domain of ADAMTSL6β influence the microfibril formation. Our data are the functional presentation of the biological role of ADAMTSL6β in the process of microfibril formation.  相似文献   

16.
Conventional ankyrins are cortical cytoskeletal proteins that form an ankyrin‐spectrin meshwork underlying the plasma membrane. We report here the unusual structure of a novel ankyrin (AO13 ankyrin, 775,369 Da, 6994 aa, pI = 4.45) that is required for proper axonal guidance in Caenorhabditis elegans. AO13 ankyrin contains the ANK repeat and spectrin‐binding domains found in other ankyrins, but differs from all others in that the acidic carboxyl region contains six blocks of serine/threonine/glutamic acid/proline rich (STEP) repeats separated by seven hydrophobic domains. The STEP repeat blocks are composed primarily of sequences related to ETTTTTTVTREHFEPED(E/D)XnVVESEEYSASGSPVPSE (E/K)DVE(H/R)VI, and the hydrophobic domains contain sequences related to PESGEESDGEGFGSKVLGFAKK[AGMVAGGVVAAPVALAAVGA]KAAYDALKKDDDEE, which includes a potential transmembrane domain (in brackets). Recombinant protein fragments of AO13 ankyrin were used to prepare polyclonal antisera against the spectrin‐binding domain (AO271 Ab), the conventional ankyrin regulatory domain (AO280 Ab), the AO13 ankyrin STEP domain (AO346 Ab), the AO13 ankyrin STEP + hydrophobic domain (AO289 Ab), and against two carboxyl terminal domain fragments (AO263 Ab and AO327 Ab). Western blot analysis with these Ab probes demonstrated multiple protein isoforms. By immunofluorescence microscopy, the antispectrin‐binding and regulatory domain (AO271 and AO280) antibodies recognized many cell types, including neurons, and stained the junctions between cells. The AO13 ankyrin‐specific (AO289 and AO346) antibodies showed a neurally restricted pattern, staining nerve processes and the periphery of neural cell bodies. These results are consistent with a role for AO13 ankyrin in neural development. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 333–349, 2002; DOI 10.1002/neu.10036  相似文献   

17.
Understanding the structure and function of protein complexes and multi‐domain proteins is highly important in biology, although the in vitro characterization of these systems is often complicated by their size or the transient nature of protein/protein interactions. To assist in the characterization of such protein complexes, we have developed a modular approach to fusion protein generation that relies upon S ortase‐mediated and Na tive chemical ligation using synthetic Pe ptide linkers (SNaPe) to link two separately expressed proteins. In this approach, we utilize two separate linking steps – sortase‐mediated and native chemical ligation – together with a library of peptide linkers to generate libraries of fusion proteins. We have demonstrated the viability of SNaPe to generate libraries from fusion protein constructs taken from the biosynthetic enzymes responsible for late stage aglycone assembly during glycopeptide antibiotic biosynthesis. Crucially, SNaPe was able to generate fusion proteins that are inaccessible via direct expression of the fusion construct itself. This highlights the advantages of SNaPe to not only access fusion proteins that have been previously unavailable for biochemical and structural characterization but also to do so in a manner that enables the linker itself to be controlled as an experimental parameter of fusion protein generation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Topoisomerase (topo) II catalyzes topological changes in DNA. Although both human isozymes, topo IIα and β are phosphorylated, site‐specific phosphorylation of topo IIβ is poorly characterized. Using LC‐MS/MS analysis of topo IIβ, cleaved with trypsin, Arg C or cyanogen bromide (CNBr) plus trypsin, we detected four +80‐Da modified sites: tyr656, ser1395, thr1426 and ser1545. Phosphorylation at ser1395, thr1426 and ser1545 was established based on neutral loss of H3PO4 (?98 Da) in the CID spectra and on differences in 2‐D‐phosphopeptide maps of 32P‐labeled wild‐type (WT) and S1395A or T1426A/S1545A mutant topo IIβ. However, phosphorylation at tyr656 could not be verified by 2‐D‐phosphopeptide mapping of 32P‐labeled WT and Y656F mutant protein or by Western blotting with phosphotyrosine‐specific antibodies. Since the +80‐Da modification on tyr656 was observed exclusively during cleavage with CNBr and trypsin, this modification likely represented bromination, which occurred during CNBr cleavage. Re‐evaluation of the CID spectra identified +78/+80‐Da fragment ions in CID spectra of two peptides containing tyr656 and tyr711, confirming bromination. Interestingly, mutation of only tyr656, but not ser1395, thr1326 or ser1545, decreased topo IIβ activity, suggesting a functional role for tyr656. These results, while identifying an important tyrosine in topo IIβ, underscore the importance of careful interpretation of modifications having the same nominal mass.  相似文献   

19.
This work contributes to highlight the benefits of pseudoproline dipeptides introduction in difficult SPPS. We show how a slight modification in the positioning choice conditioned the synthesis achievement of a 54 amino acid long caveolin‐1 peptide encompassing the intramembrane domain. Furthermore, we report a side reaction correlated with the coupling steps and generating truncated fragments with a mass deviation of + 42 Da. Considering the need of structural data for membrane proteins, most of which are considered as prevalent therapeutic targets, chemical synthesis provides an interesting alternative pathway to obtain hydrophobic domains by pushing back the frontiers of conventional RP methods of purification. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
&#x; 《Cell calcium》2000,27(6):309
Cartilage oligomeric matrix protein (COMP/TSP5), a large glycoprotein found in the territorial matrix surrounding chondrocytes, is the fifth member of the thrombospondin (TSP) gene family. While the function of COMP is unknown, its importance is underscored by the finding that mutations in the highly conserved type 3 repeat domain causes two skeletal dysplasias. Pseudoachondroplasia (PSACH) and Multiple Epiphyseal Dysplasia, Fairbanks type (EDM1). The type 3 repeats are highly conserved low-affinity Ca2+binding domains that are found in all TSP genes. This study was undertaken to determine the effects of mutations on calcium binding and structure of the type 3 repeat domains. Wild-type (WT) and Δ469 recombinant COMP (rCOMP) proteins containing the entire calcium-binding domain were expressed in E. coli and purified. Equilibrium dialysis demonstrated that WT bound 10–12 Ca2+ions/molecule while Δ469 bound approximately half the Ca2+ions. Circular dichroism (CD) spectrometry had striking spectral changes for the WT in response to increasing concentrations of Ca2+. These CD spectral changes were cooperative and reversible. In contrast, a large CD spectral change was not observed at any Ca2+concentration for Δ469. Moreover, both WT and Δ469 proteins produced similar CD spectral changes when titrated with Zn2+, Cu2+and Ni2+indicating that the Δ469 mutation specifically affects only calcium binding. These results suggest that the Δ469 mutation, in the type 3 repeat region, interferes with Ca2+binding and that filling of all Ca2+binding loops may be critical for correct COMP protein conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号