首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During this investigation, N,N′‐bis‐azidomethylamines, N,N′‐bis‐cyanomethylamine, new alkoxymethylamine and chiral derivatives, which are considered to be a new generation of multifunctional compounds, were synthesized, functional properties were investigated, and anticholinergic and antidiabetic properties of those compounds were studied through the laboratory tests, and it was approved that they contain physiologically active compounds rather than analogues. Novel N‐bis‐cyanomethylamine and alkoxymethylamine derivatives were effective inhibitors of the α‐glycosidase, cytosolic carbonic anhydrase I and II isoforms, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) with Ki values in the range of 0.15–13.31 nM for α‐glycosidase, 2.77–15.30 nM for human carbonic anhydrase isoenzymes I (hCA I), 3.12–21.90 nM for human carbonic anhydrase isoenzymes II (hCA II), 23.33–73.23 nM for AChE, and 3.84–48.41 nM for BChE, respectively. Indeed, the inhibition of these metabolic enzymes has been considered as a promising factor for pharmacologic intervention in a diversity of disturbances.  相似文献   

2.
Introduction – Bioautographic assays using TLC play an important role in the search for active compounds from plants. A TLC assay has previously been established for the detection of β‐glucosidase inhibitors but not for α‐glucosidase. Nonetheless, α‐glucosidase inhibition is an important target for therapeutic agents against of type 2 diabetes and anti‐viral infections. Objective – To develop a TLC bioautographic method to detect α‐ and β‐glucosidase inhibitors in plant extracts. Methodology – The enzymes α‐ and β‐d ‐glucosidase were dissolved in sodium acetate buffer. After migration of the samples, the TLC plate was sprayed with enzyme solution and incubated at room temperature for 60 min in the case of α‐d ‐glucosidase, and 37°C for 20 min in the case of β‐d ‐glucosidase. For detection of the active enzyme, solutions of 2‐naphthyl‐α‐D‐glucopyranoside or 2‐naphthyl‐β‐D‐glucopyranoside and Fast Blue Salt were mixed at a ratio of 1 : 1 (for α‐d ‐glucosidase) or 1 : 4 (for β‐d ‐glucosidase) and sprayed onto the plate to give a purple background colouration after 2–5 min. Results – Enzyme inhibitors were visualised as white spots on the TLC plates. Conduritol B epoxide inhibited α‐d ‐glucosidase and β‐d ‐glucosidase down to 0.1 µg. Methanol extracts of Tussilago farfara and Urtica dioica after migration on TLC gave enzymatic inhibition when applied in amounts of 100 µg for α‐glucosidase and 50 µg for β‐glucosidase. Conclusion – The screening test was able to detect inhibition of α‐ and β‐glucosidases by pure reference substances and by compounds present in complex matrices, such as plant extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Refining the chemical structure of functionalized pyrrolidine-based inhibitors of Golgi alpha-mannosidase II (GMII) to optimize binding affinity provided a lead molecule that demonstrated nanomolar competitive inhibition of alpha-mannosidases II and an optimal fit in the active site of Drosophila GMII by X-ray crystallography. Esters of this lead compound also inhibited the growth of human glioblastoma and brain-derived endothelial cells more than the growth of non-tumoral human fibroblasts, suggesting their potential for anti-cancer therapy.  相似文献   

4.
In this paper, synephrine and phenylephrine compounds showed excellent inhibitory effects against human carbonic anhydrase (hCA) isoforms I and II, α‐amylase, α‐glycosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Synephrine and phenylephrine had Ki values of 199.02 ± 16.01 and 65.01 ± 5.00 μM against hCA I and 336.02 ± 74.01 and 92.04  ±  18.03 μM against hCA II, respectively. On the other hand, their Ki values were found to be 169.10  ±  80.03 and 88.03  ±  5.01 nM against AChE and 177.06  ±  6.01 and 78.03  ±  3.05 nM against BChE, respectively. α‐Amylase and α‐glycosidase enzymes were easily inhibited by these compounds. α‐Glycosidase inhibitors, generally defined to as starch blockers, are anti‐diabetic drugs that help to decrease post comestible blood glucose levels.  相似文献   

5.
In search for novel biologically active metal based compounds, an evaluation of in vitro cytotoxic, antioxidant, and antimicrobial activity of new Pt(II) complex and its Zn(II), Cu(II), and Co(III) analogues, with NNO tridentately coordinated N‐heteroaromatic Schiff base ligand (E)‐2‐[N′‐(1‐pyridin‐2‐yl‐ethylidene)hydrazino]acetate, was performed. Investigation of antioxidative properties showed that all of the compounds have strong radical scavenging potencies. The Zn(II) complex showed potent inhibition of DNA cleavage by hydroxyl radical. A cytotoxic action of investigated compounds was evaluated on cultures of human promyelocitic leukaemia (HL‐60), human glioma (U251), rat glioma (C6), and mouse melanoma (B16) cell lines. It was shown that binuclear pentacoordinated Zn(II) complex possesses a strong dose‐dependent cytotoxic activity, of the same order of magnitude as cisplatin on B16, C6, and U251 cells. Furthermore, Zn(II) complex causes oxidative stress‐induced apoptotic death of HL‐60 leukemic cells, associated with caspase activation, phosphatidylserine externalization, and DNA fragmentation.  相似文献   

6.
Cells replicating the human hepatitis B virus (HBV) express high levels of degradation‐enhancing α‐mannosidase‐like proteins (EDEMs), a family of proteins involved in the endoplasmic reticulum associated degradation, one of the pathways activated during the unfolded protein response. Owing to their α‐1,2 mannosidase activity, the EDEM1–3 proteins are able to process the N‐linked glycans of misfolded or incompletely folded proteins, providing the recognition signal for their subsequent degradation. The HBV small (S), medium (M), and large (L) surface proteins bear an N‐linked glycosylation site in the common S domain that is partially occupied in all proteins. The M protein contains an additional site in its preS2 domain, which is always functional. Here, we report that these oligosaccharides are processed by EDEMs, more efficiently by EDEM3, which induces degradation of L and S proteins, accompanied by a reduction of subviral particles production. In striking contrast, M not only is spared from degradation but its trafficking is also accelerated leading to an improved secretion. This unusual behavior of the M protein requires strictly the mannose trimming of the preS2 N‐linked glycan. Furthermore, we show that HBV secretion is significantly inhibited under strong endoplasmic reticulum stress conditions when M expression is prevented by mutagenesis of the viral genome. These observations unfold unique properties of the M protein in the HBV life cycle during unfolded protein response and point to alternative mechanisms employed by EDEMs to alleviate this stress in case of necessity by promoting glycoprotein trafficking rather than degradation.  相似文献   

7.
The maturation of N-glycans to complex type structures on cellular and secreted proteins is essential for the roles that these structures play in cell adhesion and recognition events in metazoan organisms. Critical steps in the biosynthetic pathway leading from high mannose to complex structures include the trimming of mannose residues by processing mannosidases in the endoplasmic reticulum (ER) and Golgi complex. These exo-mannosidases comprise two separate families of enzymes that are distinguished by enzymatic characteristics and sequence similarity. Members of the Class 2 mannosidase family (glycosylhydrolase family 38) include enzymes involved in trimming reactions in N-glycan maturation in the Golgi complex (Golgi mannosidase II) as well as catabolic enzymes in lysosomes and cytosol. Studies on the biological roles of complex type N-glycans have employed a variety of strategies including the treatment of cells with glycosidase inhibitors, characterization of human patients with enzymatic defects in processing enzymes, and generation of mouse models for the enzyme deficiency by selective gene disruption approaches. Corresponding studies on Golgi mannosidase II have employed swainsonine, an alkaloid natural plant product that causes "locoism", a phenocopy of the lysosomal storage disease, alpha-mannosidosis, as a result of the additional targeting of the broad-specificity lysosomal mannosidase by this compound. The human deficiency in Golgi mannosidase II is characterized by congenital dyserythropoietic anemia with splenomegaly and various additional abnormalities and complications. Mouse models for Golgi mannosidase II deficiency recapitulate many of the pathological features of the human disease and confirm that the unexpectedly mild effects of the enzyme deficiency result from a tissue-specific and glycoprotein substrate-specific alternate pathway for synthesis of complex N-glycans. In addition, the mutant mice develop symptoms of a systemic autoimmune disorder as a consequence of the altered glycosylation. This review will discuss the biochemical features of Golgi mannosidase II and the consequences of its deficiency in mammalian systems as a model for the effects of alterations in vertebrate N-glycan maturation during development.  相似文献   

8.
Carbohydrate hydrolyzing α‐glucosidases are commonly found in microorganisms present in the human intestine microbiome. We have previously reported crystal structures of an α‐glucosidase from the human gut bacterium Blaubia (Ruminococcus) obeum (Ro‐αG1) and its substrate preference/specificity switch. This novel member of the GH31 family is a structural homolog of human intestinal maltase‐glucoamylase (MGAM) and sucrase–isomaltase (SI) with a highly conserved active site that is predicted to be common in Ro‐αG1 homologs among other species that colonize the human gut. In this report, we present structures of Ro‐αG1 in complex with the antidiabetic α‐glucosidase inhibitors voglibose, miglitol, and acarbose and supporting binding data. The in vitro binding of these antidiabetic drugs to Ro‐αG1 suggests the potential for unintended in vivo crossreaction of the α‐glucosidase inhibitors to bacterial α‐glucosidases that are present in gut microorganism communities. Moreover, analysis of these drug‐bound enzyme structures could benefit further antidiabetic drug development.  相似文献   

9.
Multiple isoforms of mammalian α-mannosidases are active in the pathways of N-linked glycoprotein synthesis and catabolism. They differ in specificity, function and location within the cell and can be selectively inhibited by imino sugar monosaccharide mimics. Previously, a series of structurally related novel 7-membered iminocyclitols were synthesised and found to be inhibitors of α-mannosidase using in vitro assays. The present study aimed to delineate α-mannosidases hydrolytic pathways in azepane inhibitor treated cells by the analysis of free oligosaccharides (FOS) as markers of endoplasmic reticulum (ER), Golgi, lysosomal and cytosolic α-mannosidase activities. Two compounds were identified as potent and selective cytosolic α-mannosidase inhibitors. Two related compounds were shown to be potent inhibitors of lysosomal α-mannosidase with different potencies towards α1,6 mannosidase. The specificities of these novel 7-membered imino sugars are related to differences in their structure and d-mannose-like stereochemistry. Specific ER-mannosidase inhibition by kifunensine also reveals significant non-proteasomal degradation following FOS analysis and appears to be cell line dependent. The availability of more selective inhibitors allows the pathways of N-linked oligosaccharide metabolism to be dissected.  相似文献   

10.
The maturation of N-glycans to complex type structures on cellular and secreted proteins is essential for the roles that these structures play in cell adhesion and recognition events in metazoan organisms. Critical steps in the biosynthetic pathway leading from high mannose to complex structures include the trimming of mannose residues by processing mannosidases in the endoplasmic reticulum (ER) and Golgi complex. These exo-mannosidases comprise two separate families of enzymes that are distinguished by enzymatic characteristics and sequence similarity. Members of the Class 2 mannosidase family (glycosylhydrolase family 38) include enzymes involved in trimming reactions in N-glycan maturation in the Golgi complex (Golgi mannosidase II) as well as catabolic enzymes in lysosomes and cytosol. Studies on the biological roles of complex type N-glycans have employed a variety of strategies including the treatment of cells with glycosidase inhibitors, characterization of human patients with enzymatic defects in processing enzymes, and generation of mouse models for the enzyme deficiency by selective gene disruption approaches. Corresponding studies on Golgi mannosidase II have employed swainsonine, an alkaloid natural plant product that causes “locoism”, a phenocopy of the lysosomal storage disease, α-mannosidosis, as a result of the additional targeting of the broad-specificity lysosomal mannosidase by this compound. The human deficiency in Golgi mannosidase II is characterized by congenital dyserythropoietic anemia with splenomegaly and various additional abnormalities and complications. Mouse models for Golgi mannosidase II deficiency recapitulate many of the pathological features of the human disease and confirm that the unexpectedly mild effects of the enzyme deficiency result from a tissue-specific and glycoprotein substrate-specific alternate pathway for synthesis of complex N-glycans. In addition, the mutant mice develop symptoms of a systemic autoimmune disorder as a consequence of the altered glycosylation. This review will discuss the biochemical features of Golgi mannosidase II and the consequences of its deficiency in mammalian systems as a model for the effects of alterations in vertebrate N-glycan maturation during development.  相似文献   

11.
The thiolation reaction was carried out in a benzene solution at 80°C and p‐substituted ketones and mercaptoacetic acid in a molar ratio (1:4) of in the presence of a catalytic amount of toluene sulfonic acids. The enzyme inhibition activities of the novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives were investigated. These novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives showed good inhibitory action against acetylcholinesterase (AChE) butyrylcholinesterase (BChE), and human carbonic anhydrase I and II isoforms (hCA I and II). AChE inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. Many clinically established drugs are carbonic anhydrase inhibitors, and it is highly anticipated that many more will eventually find their way into the market. The novel synthesized compounds inhibited AChE and BChE with Ki values in the range of 0.64–1.47 nM and 9.11–48.12 nM, respectively. On the other hand, hCA I and II were effectively inhibited by these compounds, with Ki values between 63.27–132.34 and of 29.63–127.31 nM, respectively.  相似文献   

12.
True bugs (Hemiptera) are an important pest complex not controlled by Bt‐transgenic crops. An alternative source of resistance includes inhibitors of digestive enzymes, such as protease or amylase inhibitors. αAI‐1, an α‐amylase inhibitor from the common bean, inhibits gut‐associated α‐amylases of bruchid pests of grain legumes. Here we quantify the in vitro activity of α‐amylases of 12 hemipteran species from different taxonomic and functional groups and the in vitro inhibition of those α‐amylases by αAI‐1. α‐Amylase activity was detected in all species tested. However, susceptibility to αAI‐1 varied among the different groups. α‐Amylases of species in the Lygaeidae, Miridae and Nabidae were highly susceptible, whereas those in the Auchenorrhyncha (Cicadellidae, Membracidae) had a moderate susceptibility, and those in the Pentatomidae seemed to be tolerant to αAI‐1. The species with αAI‐1 susceptible α‐amylases represented families which include both important pest species but also predatory species. These findings suggest that αAI‐1‐expressing crops have potential to control true bugs in vivo.  相似文献   

13.
In this work, the inhibitory activity of Voriconazole was measured against some metabolic enzymes, including human carbonic anhydrase (hCA) I and II isoenzymes, acetylcholinesterase (AChE), and α‐glycosidase; the results were compared with standard compounds including acetazolamide, tacrine, and acarbose. Half maximal inhibition concentration (IC50) values were obtained from the enzyme activity (%)‐[Voriconazole] graphs, whereas Ki values were calculated from the Lineweaver‐Burk graphs. According to the results, the IC50 value of Voriconazole was 40.77 nM for α‐glycosidase, while the mean inhibition constant (Ki) value was 17.47 ± 1.51 nM for α‐glycosidase. The results make an important contribution to drug design and have pharmacological applications. In addition, the Voriconazole compound demonstrated excellent inhibitory effects against AChE and hCA isoforms I and II. Voriconazole had Ki values of 29.13 ± 3.57 nM against hCA I, 15.92 ± 1.90 nM against hCA II, and 10.50 ± 2.46 nM against AChE.  相似文献   

14.
Central (hypothalamic) control of bone mass is proposed to be mediated through β2‐adrenergic receptors (β2‐ARs). While investigations in mouse bone cells suggest that epinephrine enhances both RANKL and OPG mRNA via both β‐ARs and α‐ARs, whether α‐ARs are expressed in human bone cells is controversial. The current study investigated the expression of α1‐AR and β2‐AR mRNA and protein and the functional role of adrenergic stimulation in human osteoblasts (HOBs). Expression of α1B‐ and β2‐ARs was examined by RT‐PCR, immunofluorescence microscopy and Western blot (for α1B‐ARs). Proliferation in HOBs was assessed by 3H‐thymidine incorporation and expression of RANKL and OPG was determined by quantitative RT‐PCR. RNA message for α1B‐ and β2‐ARs was expressed in HOBs and MG63 human osteosarcoma cells. α1B‐ and β2‐AR immunofluorescent localization in HOBs was shown for the first time by deconvolution microscopy. α1B‐AR protein was identified in HOBs by Western blot. Both α1‐agonists and propranolol (β‐blocker) increased HOB replication but fenoterol, a β2‐agonist, inhibited it. Fenoterol nearly doubled RANKL mRNA and this was inhibited by propranolol. The α1‐agonist cirazoline increased OPG mRNA and this increase was abolished by siRNA knockdown of α1B‐ARs in HOBs. These data indicate that both α1‐ARs and β2‐ARs are present and functional in HOBs. In addition to β2‐ARs, α1‐ARs in human bone cells may play a role in modulation of bone turnover by the sympathetic nervous system. J. Cell. Physiol. 220: 267–275, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Protein tyrosine phosphatases have a central role in the maintenance of normal cellular functionality. For example, PTP1B has been implicated in insulin-resistance, obesity, and neoplasia. Mitogen-activated protein kinase phosphatase-1 (MKP-1 or DUSP1) dephosphorylates and inactivates mitogen-activated protein kinase (MAPK) substrates, such as p38, JNK, and Erk, and has been implicated in neoplasia. The lack of readily available selective small molecule inhibitors of MKP family members has severely limited interrogation of their biological role. Inspired by a previously identified inhibitor (NSC 357756) of MKP-3, we synthesized seven NSC 357756 congeners, which were evaluated for in vitro inhibition against several protein phosphatases. Remarkably, none displayed potent inhibition against MKP-3, including the desamino NSC 357756 analog NU-154. Interestingly, NU-154 inhibited human PTP1B in vitro with an IC(50) value of 24 +/- 1 microM and showed little inhibition against Cdc25B, MKP-1, and VHR phosphatases. NU-126 [2-((E)-2-(5-cyanobenzofuran-2-yl)vinyl)-1H-indole-6-carbonitrile] inhibited MKP-1 and VHR in vitro but was less active against human MKP-3, Cdc25B, and PTP1B. The inhibition of MKP-1 by NU-126 was independent of redox processes. The benzofuran substructure represents a new potential scaffold for further analog development and provides encouragement that more selective and potent inhibitors of MKP family members may be achievable.  相似文献   

16.
For various neurodegenerative disorders like Alzheimer's and Parkinson’s diseases, selective and reversible MAO‐B inhibitors have a great therapeutic value. In our previous study, we have shown that a series of methoxylated chalcones with F functional group exhibited high binding affinity toward human monoamine oxidase‐B (hMAO‐B). In continuation of our earlier study and to extend the understanding of the structure–activity relationships, a series of five new chalcones were studied for their inhibition of hMAO. The results demonstrated that these compounds are reversible and selective hMAO‐B inhibitors with a competitive mode of inhibition. The most active compound, (2E)‐1‐(4‐hydroxyphenyl)‐3‐[4‐(trifluoromethyl)phenyl]prop‐2‐en‐1‐one, exhibited a Ki value of 0.33 ± 0.01 μm toward hMAO‐B with a selectivity index of 26.36. A molecular docking study revealed that the presence of a H‐bond network in hydroxylated chalcone with the N(5) atom of FAD is crucial for MAO‐B selectivity and potency.  相似文献   

17.
Many studies suggest that adenosine modulates cell responses in a wide array of tissues through potent and selective regulation of cytokine production. This study examined the effects of adenosine on interleukin (IL)‐6 expression and its related signal pathways in mouse embryonic stem (ES) cells. In this study, the adenosine analogue 5′‐N‐ethylcarboxamide (NECA) increased IL‐6 protein expression level. Mouse ES cells expressed the A1, A2A, A2B, and A3 adenosine receptors (ARs), whose expression levels were increased by NECA and NECA‐induced increase of IL‐6 mRNA expression or secretion level was inhibited by the non‐specific AR inhibitor, caffeine. NECA increased Akt and protein kinase C (PKC) phosphorylation, intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) levels, which were blocked by caffeine. On the other hand, NECA‐induced IL‐6 secretion was partially inhibited by Akt inhibitor, bisindolylmaleimide I (PKC inhibitor), SQ 22536 (adenylate cyclate inhibitor) and completely blocked by the 3 inhibitor combination treatment. In addition, NECA increased mitogen activated protein kinase' (MAPK) phosphorylation, which were partially inhibited by the Akt inhibitor, bisindolylmaleimide I, and SQ 22536 and completely blocked by the 3 inhibitor combination treatment. NECA‐induced increases of IL‐6 protein expression and secretion levels were inhibited by MAPK inhibition. NECA‐induced increase of nuclear factor (NF)‐κB phosphorylation was inhibited by MAPK inhibitors. NECA also increased cAMP response element‐binding protein (CREB) phosphorylation, which was blocked by MAPK or NF‐κB inhibitors. Indeed, NECA‐induced increase of IL‐6 protein expression and secretion was blocked by NF‐κB inhibitors. In conclusion, NECA stimulated IL‐6 expression via MAPK and NF‐κB activation through Akt, Ca2+/PKC, and cAMP signaling pathways in mouse ES cells. J. Cell. Physiol. 219: 752–759, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The conversion of carbon dioxide (CO2) and bicarbonate (HCO3) to each other is very important for living metabolism. Carbonic anhydrase (CA, E.C.4.2.1.1), a metalloenzyme familly, catalyzes the interconversion of these ions (CO2 and HCO3) and are very common in living organisms. In this study, a series of novel 2‐amino‐3‐cyanopyridines supported with some functional groups was synthesized and tested as potential inhibition effects against both cytosolic human CA I and II isoenzymes (hCA I and II) using by Sepharose‐4B‐l ‐tyrosine‐sulfanilamide affinity chromatography. The structural elucidations of novel 2‐amino‐3‐cyanopyridines were achieved by NMR, IR, and elemental analyses. K i values of the novel synthesized compounds were found in range of 2.84–112.44 μM against hCA I and 2.56–31.17 μM against hCA II isoenzyme. While compound 7d showed the best inhibition activity against hCA I (K i: 2.84 μM), the compound 7b demonstrated the best inhibition profile against hCA II isoenzyme (K i: 2.56 μM).  相似文献   

19.
In humans, there are two skeletal muscle α‐actinins, encoded by ACTN2 and ACTN3, and the ACTN3 genotype is associated with human athletic performance. Remarkably, approximately 1 billion people worldwide are deficient in α‐actinin‐3 due to the common ACTN3 R577X polymorphism. The α‐actinins are an ancient family of actin‐binding proteins with structural, signalling and metabolic functions. The skeletal muscle α‐actinins diverged ~250–300 million years ago, and ACTN3 has since developed restricted expression in fast muscle fibres. Despite ACTN2 and ACTN3 retaining considerable sequence similarity, it is likely that following duplication there was a divergence in function explaining why α‐actinin‐2 cannot completely compensate for the absence of α‐actinin‐3. This paper focuses on the role of skeletal muscle α‐actinins, and how possible changes in functions between these duplicates fit in the context of gene duplication paradigms.  相似文献   

20.
A series of novel ethyl 2,7‐dimethyl‐4‐oxo‐3‐[(1‐phenyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]‐4,5‐dihydro‐3H‐pyrano[2,3‐d]pyrimidine‐6‐carboxylate derivatives 7a – 7m were efficiently synthesized employing click chemistry approach and evaluated for in vitro cytotoxic activity against four tumor cell lines: A549 (human lung adenocarcinoma cell line), HepG2 (human hematoma), MCF‐7 (human breast adenocarcinoma), and SKOV3 (human ovarian carcinoma cell line). Among the compounds tested, the compounds 7a , 7b , 7f , 7l , and 7m have shown potential and selective activity against human lung adenocarcinoma cell line (A549) with IC50 ranging from 0.69 to 6.74 μm . Molecular docking studies revealed that the compounds 7a , 7b , 7f , 7l , and 7m are potent inhibitors of human DNA topoisomerase‐II and also showed compliance with stranded parameters of drug likeness. The calculated binding constants, kb, from UV/VIS absorptional binding studies of 7a and 7l with CT‐DNA were 10.77 × 104, 6.48 × 104, respectively. Viscosity measurements revealed that the binding could be surface binding mainly due to groove binding. DNA cleavage study showed that 7a and 7l have the potential to cleave pBR322 plasmid DNA without any external agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号