首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UDP-galactose 4-epimerase from yeast (Kluyveromyces fragilis) is a homodimer of total molecular mass 150 kDa having possibly one mole of NAD/dimer acting as a cofactor. The molecule could be dissociated and denatured by 8 M urea at pH 7.0 and could be functionally reconstituted after dilution with buffer having extraneous NAD. The unfolded and refolded equilibrium intermediates of the enzyme between 0-8 M urea have been characterized in terms of catalytic activity, NADH like characteristic coenzyme fluorescence, interaction with extrinsic fluorescence probe 1-anilino 8-naphthelene sulphonic acid (ANS), far UV circular dichroism spectra, fluorescence emission spectra of aromatic residues and subunit dissociation. While denaturation monitored by parameters associated with active site region e.g. inactivation and coenzyme fluorescence, were found to be cooperative having delta G between -8.8 to -4.4 kcals/mole, the overall denaturation process in terms of secondary and tertiary structure was however continuous without having a transition point. At 3 M urea a stable dimeric apoenzyme was formed having 65% of native secondary structure which was dissociated to monomer at 6 M urea with 12% of the said structure. The unfolding and refolding pathways involved identical structures except near the final stage of refolding where catalytic activity reappeared.  相似文献   

2.
cAMP receptor protein (CRP) regulates expression of a number of genes in Escherichia coli. The protein is a homodimer and each monomer is folded into two structural domains. The biological activation of CRP upon cAMP binding may involve the subunit realignment as well as reorientation between the domains within each subunit. In order to study the interactions between the subunits or domains, we performed stopped-flow measurements of the guanidine hydrochloride (GuHCl)-induced denaturation of CRP. The changes in CRP structure induced by GuHCl were monitored using both intrinsic Trp fluorescence as well as the fluorescence of an extrinsic probe, 8-anilino-1-Naphthalenesulfonic acid (ANS). Results of CRP denaturation using Trp fluorescence detection are consistent with a two-step model [Malecki, and Wasylewski, (1997), Eur. J. Biochem. 243, 660], where the dissociation of dimer into subunits is followed by the monomer unfolding. The denaturation of CRP monitored by ANS fluorescence reveals the existence of two additional processes. One occurs before the dissociation of CRP into subunits, whereas the second takes place after the dissociation, but prior to proper subunit unfolding. These additional processes suggest that CRP denaturation is described by a more complicated mechanism than a simple three-state equilibrium and may involve additional changes in both inter- and intrasubunit interactions. We also report the effect of cAMP on the kinetics of CRP subunit unfolding and refolding.  相似文献   

3.
Although there is general agreement that native mitochondrial malate dehydrogenase (MDH) exists as a dimer at pH 7, its aggregation state at pH 5 is less certain. The present amide hydrogen exchange study was performed to determine whether MDH remains a dimer at pH 5. To detect pH-induced changes in solvent accessibility, MDH was exposed to D(2)O at pH 5 or 7, then fragmented with pepsin into peptides that were analyzed by mass spectrometry. Even after adjustments for the effect of pH on the intrinsic rate of hydrogen exchange, large increases in deuterium levels were found at pH 5 only in peptic fragments derived from the subunit binding surface of MDH. In parallel experiments, elevated deuterium levels were also found in the same regions of MDH monomer trapped inside a mutant form of the chaperonin GROEL: This selective increase in hydrogen exchange rates, which was attributed to increased solvent accessibility of these regions, provides new evidence that MDH is a monomer at pH 5.  相似文献   

4.
Recently, we presented a convenient method combining a deuterium‐hydrogen exchange and electrospray mass spectrometry for studying high‐pressure denaturation of proteins (Stefanowicz et al., Biosci Rep 2009; 30:91–99). Here, we present results of pressure‐induced denaturation studies of an amyloidogenic protein—the wild‐type human cystatin C (hCC) and its single‐point mutants, in which Val57 residue from the hinge region was substituted by Asn, Asp or Pro, respectively. The place of mutation and the substituting residues were chosen mainly on a basis of theoretical calculations. Observation of H/D isotopic exchange proceeding during pressure induced unfolding and subsequent refolding allowed us to detect differences in the proteins stability and folding dynamics. On the basis of the obtained results we can conclude that proline residue at the hinge region makes cystatin C structure more flexible and dynamic, what probably facilitates the dimerization process of this hCC variant. Polar asparagine does not influence stability of hCC conformation significantly, whereas charged aspartic acid in 57 position makes the protein structure slightly more prone to unfolding. Our experiments also point out pressure denaturation as a valuable supplementary method in denaturation studies of mutated proteins. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The analysis of a recombinant pheromone-binding protein from the silkworm moth, Bombyx mori, by native gel electrophoresis with Coomassie staining showed one single band with a molecular mass consistent with a monomer. A slow migrating band, detected in the recombinant and native samples by a polyclonal antibody, was indistinguishable from the monomer in the mass spectrum fragmentation pattern and chromatographic behavior. Flow injection analyses of the protein by mass spectrometry in the negative mode showed fragments of a dimer. The dimeric form was also supported by estimation of the molecular mass by gel filtration at basic pH. A cross-linked dimer coeluted with the noncovalent dimer on a gel filtration column. The molecular mass of the protein changed in a pH-dependent way with a dramatic transition from dimer to monomer between pH 6 and 4.5. A low pH induced not only dissociation of the dimer, but also a conformational change in the protein. In marked contrast to denaturation with guanidinium chloride, the emission maxima of tryptophan was not significantly changed at low pH. BmPBP is thus a dimer at slightly acid, neutral, and basic pH, which dissociates and then undergoes conformational change at low pH.  相似文献   

6.
cAMP receptor protein (CRP) regulates expression of a number of genes in Escherichia coli. The protein is a homodimer and each monomer is folded into two structural domains. The biological activation of CRP upon cAMP binding may involve the subunit realignment as well as reorientation between the domains within each subunit. In order to study the interactions between the subunits or domains, we performed stopped-flow measurements of the guanidine hydrochloride (GuHCl)-induced denaturation of CRP. The changes in CRP structure induced by GuHCl were monitored using both intrinsic Trp fluorescence as well as the fluorescence of an extrinsic probe, 8-anilino-1-Naphthalenesulfonic acid (ANS). Results of CRP denaturation using Trp fluorescence detection are consistent with a two-step model [Malecki, and Wasylewski, (1997), Eur. J. Biochem. 243, 660], where the dissociation of dimer into subunits is followed by the monomer unfolding. The denaturation of CRP monitored by ANS fluorescence reveals the existence of two additional processes. One occurs before the dissociation of CRP into subunits, whereas the second takes place after the dissociation, but prior to proper subunit unfolding. These additional processes suggest that CRP denaturation is described by a more complicated mechanism than a simple three-state equilibrium and may involve additional changes in both inter- and intrasubunit interactions. We also report the effect of cAMP on the kinetics of CRP subunit unfolding and refolding.  相似文献   

7.
Lactic dehydrogenase from pig heart can be reversibly dissociated at hydrostatic pressures above 1000 bar. The breakdown of the native quaternary structure occurs at lower pressures compared to the isoenzyme from pig, skeletal muscle. As shown by hybridization experiments of the two isoenzymes the final product of dissociation is the homogeneous monomer. Fluorescence emission spectra of the monomeric enzyme at elevated pressure are characterized by a decrease in fluorescence intensity without any red shift, indicating that no significant unfolding occurs upon high-pressure dissociation. The spectral changes are comparable to those observed after acid dissociation. The amount and rate of deactivation depend on pressure and on the conditions of the solvent. The presence of various anions (Cl?, SO2?4. HPO42?) has no effect on the stability of ihe enzyme towards pressure. High-pressure denaturation (as monitored by intrinsic protein fluorescence), and deactivalion (measured immediately after decompression) run parallel; the pressure dependence of their first-order rate constants is characterized by an activation volume ΔVDc = ?140 = 10 cm3/mol. As taken from the yield of reconstitution, dissociation, denaturation and deactivation are found to be fully reversible provided the pressure does not exceed a limiting value (p = 1000 bar in Tris. pH 7.6: 24 h incubation at 20°C). After extended incubation beyond the limiting, pressure of 1000 bar. “irreversible high-pressure denaturation” occurs which is accompanied bv partial aggregation after decompression. The coenzyme, NAD+ stabilizes the native tetramer shifting the dissociation equilibrium to higher pressures. The overall dissociation-association reaction can be quantitatively described by a consecutive dissociation/unfolding mechanism N?4 M'?4 M (where N is the native tetramer. and M' and M two different conformations of the monomer). The reaction volume of the dissociation reaction N?4 M' is found to be ΔVDiss = ?360 = 30 cm3/mol: as indicated by the pressure dependence of the yield of reconstitution, the reaction volume of the equilibrium M'?MXXX is also negative.  相似文献   

8.
Barbar E  Kleinman B  Imhoff D  Li M  Hays TS  Hare M 《Biochemistry》2001,40(6):1596-1605
Cytoplasmic dynein is a multisubunit ATPase that transforms chemical energy into motion along microtubules. LC8, a 10 kDa light chain subunit of the dynein complex, is highly conserved with 94% sequence identity between Drosophila and human. The precise function of this protein is unknown, but its ubiquitous expression and conservation suggest a critical role in the function of the dynein motor complex. We have overexpressed LC8 from Drosophila melanogaster and characterized its dimerization and folding using analytical ultracentrifugation, size-exclusion chromatography, circular dichroism, and fluorescence spectroscopy. Sedimentation equilibrium measurements of LC8 at pH 7 reveal a reversible monomer-dimer equilibrium with a dissociation constant of 12 microM at 4 degrees C. At lower pH, LC8 dissociates to a monomer, with a transition midpoint at pH 4.8. Far-UV CD and fluorescence spectra demonstrate that pH-dissociated LC8 retains native secondary and tertiary structures, while the diminished near-UV CD signal shows loss of quaternary structure. The observation that dimeric LC8 dissociates at low pH can be explained by titration of a histidine pair in the dimer interface. Equilibrium denaturation experiments with a protein concentration range spanning almost 2 orders of magnitude indicate that unfolding of LC8 dimer is a two-stage process, in which global unfolding is preceded by dissociation to a folded monomer. The nativelike tertiary structure of the monomer suggests a role for the monomer-dimer equilibrium of LC8 in dynein function.  相似文献   

9.
The influence of urea on the allosteric phosphofructokinase from Escherichia coli has been studied by measuring the changes in enzymatic activity, protein fluorescence, circular dichroism, and retention in size-exclusion chromatography. Tetrameric, dimeric, and monomeric forms of the protein can be discriminated by their elution from a high-performance liquid chromatography gel filtration column. Three successive steps can be detected during the urea-induced denaturation of phosphofructokinase: (i) the dissociation of the native tetramer into dimers which abolishes the activity; (ii) the dissociation of dimers into monomers which exposes the unique tryptophan, Trp-311, to the aqueous solvent; (iii) the unfolding of the monomers which disrupts most of the secondary structure. This pathway involves the ordered dissociation of the interfaces between subunits and supports a previous hypothesis (Deville-Bonne et al., 1989). Phosphofructokinase can be quantitatively renatured from urea solutions, provided that precautions are taken to avoid the aggregation of one insoluble monomeric state. The renaturation of phosphofructokinase from urea implies three steps: an initial folding reaction within the monomeric state is followed by two successive association steps. The faster association step restores the native fluorescence, and the slower regenerates the active enzyme. The renaturation and denaturation of phosphofructokinase correspond to the complex pathway: tetramer in equilibrium dimer in equilibrium folded monomer in equilibrium unfolded monomer. It is found that the subunit interface which forms the regulatory site is more stable and associates 40 times more rapidly than the subunit interface which forms the active site.  相似文献   

10.
Escherichia coli phosphofructokinase-2 (Pfk-2) is an obligate homodimer that follows a highly cooperative three-state folding mechanism N2 ↔ 2I ↔ 2U. The strong coupling between dissociation and unfolding is a consequence of the structural features of its interface: a bimolecular domain formed by intertwining of the small domain of each subunit into a flattened β-barrel. Although isolated monomers of E. coli Pfk-2 have been observed by modification of the environment (changes in temperature, addition of chaotropic agents), no isolated subunits in native conditions have been obtained. Based on in silico estimations of the change in free energy and the local energetic frustration upon binding, we engineered a single-point mutant to destabilize the interface of Pfk-2. This mutant, L93A, is an inactive monomer at protein concentrations below 30 μM, as determined by analytical ultracentrifugation, dynamic light scattering, size exclusion chromatography, small-angle x-ray scattering, and enzyme kinetics. Active dimer formation can be induced by increasing the protein concentration and by addition of its substrate fructose-6-phosphate. Chemical and thermal unfolding of the L93A monomer followed by circular dichroism and dynamic light scattering suggest that it unfolds noncooperatively and that the isolated subunit is partially unstructured and marginally stable. The detailed structural features of the L93A monomer and the F6P-induced dimer were ascertained by high-resolution hydrogen/deuterium exchange mass spectrometry. Our results show that the isolated subunit has overall higher solvent accessibility than the native dimer, with the exception of residues 240–309. These residues correspond to most of the β-meander module and show the same extent of deuterium uptake as the native dimer. Our results support the idea that the hydrophobic core of the isolated monomer of Pfk-2 is solvent-penetrated in native conditions and that the β-meander module is not affected by monomerizing mutations.  相似文献   

11.
Akhtar MS  Ahmad A  Bhakuni V 《Biochemistry》2002,41(22):7142-7149
Glucose oxidase (GOD) from Aspergillus niger is a dimeric enzyme having high localization of negative charges on the enzyme surface and at the dimer interface. The monovalent cations induce compaction of the native conformation of GOD and enhance stability against thermal and urea denaturation [Ahmad et al. (2001) Biochemistry 40, 1947-1955]. In this paper we report the effect of the divalent cations Ca2+ and Mg2+ on the structural and stability properties of GOD. A divalent cation concentration dependent change in native conformation and subunit assembly of GOD was observed. Low concentration (up to 1 M) of CaCl2 or MgCl2 induced compaction of the native conformation of GOD, and the enzyme showed higher stability as compared to the native enzyme against urea denaturation. However, higher concentration (> or =2.0 M) of CaCl2 or MgCl2 induced dissociation of the native dimeric enzyme, resulting in stabilization of the enzyme monomer. An interesting observation was that the 3 M CaCl2-stabilized monomer of GOD retained about 70% secondary structure present in the native GOD dimer; however, there was a complete loss of cooperative interactions between these secondary structural elements present in the enzyme. Regarding the mechanism of divalent cation induced structural changes in GOD, the studies suggest that organization of water molecules by divalent cation results in stabilization of enzyme at low divalent cation concentration, whereas direct binding of these cations to the enzyme, at higher divalent cation concentration, results in dissociation and partial unfolding of the dimeric enzyme molecule.  相似文献   

12.
The kinetics of the irreversible unfolding of glutathione reductase (NAD[P]H:GSSG oxidoreductase, EC 1.6.4.2.) from cyanobacterium Spirulina maxima was studied at pH 7.0 and room temperature. Denaturation was induced by guanidinium chloride and the changes in enzyme activity, aggregation state, and tertiary structure were monitored. No full reactivation of enzyme was obtained, even after very short incubation times in the presence of denaturant. Reactivation plots were complex, showing biphasic kinetics. A very fast early event in the denaturation pathway was the dissociation of tetrameric protein into reactivatable native-like dimers, followed by its conversion into a nonreactivatable intermediary, also dimeric. In the final step of the unfolding pathway the latter was dissociated into denatured monomers. Fluorescence measurements revealed that denaturation of S. maxima glutathione reductase is a slow process. Release of the prostethic group FAD was previous to the unfolding of the enzyme. No aggregated species were detected in the unfolding pathway, dismissing the aggregation of denatured polypeptide chains as the origin of irreversibility. Instead, the transition between the two dimeric intermediates is proposed as the cause of irreversibility in the denaturation of S. maxima glutathione reductase. A value of 106.6 +/- 3 kJ mol(-1) was obtained for the activation free energy of unfolding in the absence of denaturant. No evidence for the native monomer in the unfolding pathway was obtained which suggests that the dimeric nature of glutathione reductase is essential for the maintenance of the native subunit conformation.  相似文献   

13.
The denaturation of the trp repressor from Escherichia coli has been studied by fluorescence, circular dichroism and proton magnetic resonance spectroscopy. The dependences of the fluorescence emission of the two tryptophan residues on the concentration of urea are not identical. The dependence of the quenching of tryptophan fluorescence by iodide as a function of urea concentration also rules out a two-state transition. The circular dichroism at 222 nm decreases in two phases as urea is added. Normalised curves for different residues observed by 1H NMR also do not coincide, and require the presence of at least one stable intermediate. Analysis of the dependence of the denaturation curves on the concentration of protein indicate that the first transition is a partial unfolding of the dimeric repressor, resulting in a loss of about 25% of the helical content. The second transition is the dissociation and unfolding of the partially unfolded dimer. At high concentrations of protein (500 microM) about 73% of the repressor exists as the intermediate in 4 M urea. The apparent dissociation constant is about 10(-4) M; the subunits are probably strongly stabilised by the subunit interaction. The native repressor is stable up to at least 70 degrees C, whereas the intermediate formed at 4 M urea can be denatured reversibly by heating (melting temperature approximately 60 degrees C, delta H approximately 230 kJ/mol).  相似文献   

14.
Stefin A folds as a monomer under strongly native conditions. We have observed that under partially denaturing conditions in the temperature range from 74 to 93 degrees C it folds into a dimer, while it is monomeric above the melting temperature of 95 degrees C. Below 74 degrees C the dimer is trapped and it does not dissociate. The dimer is a folded and structured protein as judged by CD and NMR, nevertheless it is no more functional as an inhibitor of cysteine proteases. The monomer-dimer transition proceeds at a slow rate and the activation energy of dimerization at 99 kcal/mol is comparable to the unfolding enthalpy. A large and negative dimerization enthalpy of -111(+/- 8) kcal/mol was calculated from the temperature dependence of the dissociation constant. An irreversible pretransition at 10-15 deg. below the global unfolding temperature has been observed previously by DSC and can now be assigned to the monomer-dimer transition. Backbone resonances of all the dimer residues were assigned using 15N isotopically enriched protein. The dimer is symmetric and the chemical shift differences between the monomer and dimer are localized around the tripartite hydrophobic wedge, which otherwise interacts with cysteine proteases. Hydrogen exchange protection factors of the residues affected by dimer formation are higher in the dimer than in the monomer. The monomer to dimer transition is accompanied by a rapid exchange of all of the amide protons which are protected in the dimer, indicating that the transition state is unfolded to a large extent. Our results demonstrate that the native monomeric state of stefin A is actually metastable but is favored by the kinetics of folding. The substantial energy barrier which separates the monomer from the more stable dimer traps each state under native conditions.  相似文献   

15.
Phosphofructokinase-2 is a dimeric enzyme that undergoes cold denaturation following a highly cooperative N2 2I mechanism with dimer dissociation and formation of an expanded monomeric intermediate. Here, we use intrinsic fluorescence of a tryptophan located at the dimer interface to show that dimer dissociation occurs slowly, over several hours. We then use hydrogen-deuterium exchange mass spectrometry experiments, performed by taking time points over the cold denaturation process, to measure amide exchange throughout the protein during approach to the cold denatured state. As expected, a peptide corresponding to the dimer interface became more solvent exposed over time at 3°C; unexpectedly, amide exchange increased throughout the protein over time at 3°C. The rate of increase in amide exchange over time at 3°C was the same for each region and equaled the rate of dimer dissociation measured by tryptophan fluorescence, suggesting that dimer dissociation and formation of the cold denatured intermediate occur without appreciable buildup of folded monomer. The observation that throughout the protein amide exchange increases as phosphofructokinase-2 cold denatures provides experimental evidence for theoretical predictions that cold denaturation primarily occurs by solvent penetration into the hydrophobic core of proteins in a sequence-independent manner.  相似文献   

16.
The urea-induced unfolding of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, an eight-stranded (beta/alpha)(8) TIM barrel protein, has been shown to involve two stable equilibrium intermediates, I1 and I2, well populated at approximately 3 M and 5 M urea, respectively. The characterization of the I1 intermediate by circular dichroism (CD) spectroscopy has shown that I1 retains a significant fraction of the native ellipticity; the far-UV CD signal for the I2 species closely resembles that of the fully unfolded form. To obtain detailed insight into the disruption of secondary structure in the urea-induced unfolding process, a hydrogen exchange-mass spectrometry study was performed on alphaTS. The full-length protein was destabilized in increasing concentration of urea, the amide hydrogen atoms were pulse-labeled with deuterium, the labeled samples were quenched in acid and the products were analyzed by electrospray ionization mass spectrometry. Consistent with the CD results, the I1 intermediate protects up to approximately 129 amide hydrogen atoms against exchange while the I2 intermediate offers no protection. Electrospray ionization mass spectrometry analysis of the peptic fragments derived from alphaTS labeled at 3 M urea indicates that most of the region between residues 12-130, which constitutes the first four beta strands and three alpha helices, (beta/alpha)(1-3)beta(4), is structured. The (beta/alpha)(1-3)beta(4) module appears to represent the minimum sub-core of stability of the I1 intermediate. A 4+2+2 folding model is proposed as a likely alternative to the earlier 6+2 folding mechanism for alphaTS.  相似文献   

17.
The number of artificial protein supramolecules has been increasing; however, control of protein oligomer formation remains challenging. Cytochrome c′ from Allochromatium vinosum (AVCP) is a homodimeric protein in its native form, where its protomer exhibits a four‐helix bundle structure containing a covalently bound five‐coordinate heme as a gas binding site. AVCP exhibits a unique reversible dimer–monomer transition according to the absence and presence of CO. Herein, domain‐swapped dimeric AVCP was constructed and utilized to form a tetramer and high‐order oligomers. The X‐ray crystal structure of oxidized tetrameric AVCP consisted of two monomer subunits and one domain‐swapped dimer subunit, which exchanged the region containing helices αA and αB between protomers. The active site structures of the domain‐swapped dimer subunit and monomer subunits in the tetramer were similar to those of the monomer subunits in the native dimer. The subunit–subunit interactions at the interfaces of the domain‐swapped dimer and monomer subunits in the tetramer were also similar to the subunit–subunit interaction in the native dimer. Reduced tetrameric AVCP dissociated to a domain‐swapped dimer and two monomers upon CO binding. Without monomers, the domain‐swapped dimers formed tetramers, hexamers, and higher‐order oligomers in the absence of CO, whereas the oligomers dissociated to domain‐swapped dimers in the presence of CO, demonstrating that the domain‐swapped dimer maintains the CO‐induced subunit dissociation behavior of native ACVP. These results suggest that protein oligomer formation may be controlled by utilizing domain swapping for a dimer–monomer transition protein.  相似文献   

18.
The urea and guanidine hydrochloride (GdnHCl)-induced denaturation of tetrameric concanavalin A (ConA) at pH 7.2 has been studied by using intrinsic fluorescence, 8-anilino-1-naphthalenesulfonate (ANS) binding, far-UV circular dichroism (CD), and size-exclusion chromatography. The equilibrium denaturation pathway of ConA, as monitored by steady state fluorescence, exhibits a three-state mechanism involving an intermediate state, which has been characterized as a structured monomer of the protein by ANS binding, far-UV CD and gel filtration size analysis. The three-state equilibrium is analyzed in terms of two distinct and separate dissociation (native tetramer<-->structured monomer) and unfolding (structured monomer<-->unfolded monomer) reaction steps, with the apparent transition midpoints (C(m)), respectively, at 1.4 and 4.5 M in urea, and at 0.8 and 2.4 M in GdnHCl. The results show that the free energy of stabilization of structured monomer relative to the unfolded state (-DeltaG(unf, aq)), is 4.4-5.5 kcal mol(-1), and that of native tetramer relative to structured monomer (-DeltaG(dis, aq)) is 7.2-7.4 kcal mol(-1), giving an overall free energy of stabilization (-DeltaG(dis&unf, aq)) of 11.6-12.9 kcal mol(-1) (monomer mass) for the native protein. However, the free energy preference at the level of quaternary tetrameric structure is found to be far greater than that at the tertiary monomeric level, which reveals that the structural stability of ConA is maintained mostly by subunit association.  相似文献   

19.
Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol−1 and 14.90 Kcal mol−1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp) is 3.42 Kcal mol−1 K−1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.  相似文献   

20.
The equilibrium denaturation of tetrameric soybean agglutinin (SBA) in urea and guanidine hydrochloride (GdnHCl) has been examined by steady-state fluorescence and size-exclusion chromatography. The denaturation of SBA reveals two distinct and separable transitions: dissociation (native tetramer↔tertiary monomer) and unfolding (tertiary monomer↔unfolded monomer). The urea denaturation curves of N-dimethyl and acetyl derivatives of SBA are also similar to unmodified lectin but the midpoints, [D]1/2, are shifted to lower denaturant concentrations. The free energy of stabilization of tertiary structure (ΔGu,aq) of SBA is estimated to be 4.5–4.6 kcal mol−1, which shows a decrease by 10–15% for both N-dimethyl SBA and acetyl-SBA. The free energy term (ΔGd, aq) for the relative stability of the quaternary structure of SBA and its derivatives shows that the decrease in stability relative to SBA occurs by <10% for N-dimethyl SBA while for acetyl-SBA, this occurs by 30%. However, the m values depicting the dependence of free energy on denaturant concentration for SBA and its derivatives are similar for dissociation as well as unfolding, which suggest similar denaturation pathways of unmodified and modified SBA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号