首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen H  Xu X  Yao N  Deng C  Yang P  Zhang X 《Proteomics》2008,8(14):2778-2784
In this study, novel C8-functionalized magnetic polymer microspheres were prepared by coating single submicron-sized magnetite particle with silica and subsequent modification with chloro (dimethyl) octylsilane. The resulting C8-functionalized magnetic silica (C8-f-M-S) microspheres exhibit well-defined magnetite-core-silica-shell structure and possess high content of magnetite, which endow them with high dispersibility and strong magnetic response. With their magnetic property, the synthesized C8-f-M-S microspheres provide a convenient and efficient way for enrichment of low-abundance peptides from tryptic protein digest and human serum. The enriched peptides/proteins were subjected for MALDI-TOF MS analysis and the enrichment efficiency was documented. In a word, the facile synthesis and efficient enrichment process of the novel C8-f-M-S microspheres make them promising candidates for isolation of peptides even in complex biological samples such as serum, plasma, and urine.  相似文献   

2.
In this work, core‐shell magnetic metal organic framework (MOF) microspheres were successfully synthesized by coating magnetite particles with mercaptoacetic acid and subsequent reactions with ethanol solutions of Cu(OAc)2 and benzene‐1,3,5‐tricarboxylic acid (designated as H3btc) alternately. The resulting Fe3O4@[Cu3(btc)2] possess strong magnetic responsiveness. We applied the novel nanocomposites in the enrichment of low‐concentration standard peptides, peptides in MYO and BSA tryptic digests and in human urine in combination with MALDI‐TOF MS analysis for the first time. In addition, the Cu3(btc)2 MOF shells exhibit strong affinity to peptides, thus providing a rapid and convenient approach to the concentration of low‐abundance peptides. Notably, peptides at an extremely low concentration of 10 pM could be detected by MALDI‐TOF MS after enrichment with the magnetic MOF composites. In brief, the facile synthesis and efficient enrichment process of the Fe3O4@[Cu3(btc)2] microspheres make them promising candidates for the isolation of peptides in even complex biological environments.  相似文献   

3.
Liu S  Li Y  Deng C  Mao Y  Zhang X  Yang P 《Proteomics》2011,11(23):4503-4513
In this paper, magnetic mesoporous silica microspheres with C8-modified interior pore-walls were prepared through a facile one-pot sol-gel coating strategy, and were successfully applied for selective enrichment of endogenous peptides in mouse brain for peptidome analysis. Through the one-pot sol-gel approach with surfactant (CTAB) as a template, tetraethyl orthosilicate (TEOS) and n-ctyltriethoxysilane (C8TEOS) as the precursors, C8-modified magnetic mesoporous microspheres (C8-Fe(3)O(4)@mSiO(2)) consisting magnetic core and mesoporous silica shell with C8-groups exposed in the mesopore channels were synthesized. The obtained microspheres possess highly open mesopores of 3.4 nm, high surface area (162.5 m(2)/g), large pore volume (0.17 cm(3)/g), excellent magnetic responsivity (56.3 emu/g) and good dispersibility in aqueous solution. Based on the abundant surface silanol groups, functional C8 groups and the strong magnetic responsivity of the core-shell C8-Fe(3) O(4) @mSiO(2) microspheres, efficient and fast enrichment of peptides was achieved. Additionally, the C8-Fe(3)O(4)@mSiO(2) microspheres exhibit excellent performance in selective enrichment of endogenous peptides from complex samples that are consist of peptides, large proteins and other compounds, including human serum and mouse brain followed by automated nano-LC-ESI-MS/MS analysis. These results indicate C8-Fe(3)O(4)@mSiO(2) microspheres would be a potential candidate for endogenous peptides enrichment and biomarkers discovery in peptidome analysis.  相似文献   

4.
In this work, magnetic graphene double‐sided mesoporous nanocomposites (mag‐graphene@mSiO2) were synthesized by coating a layer of mesoporous silica materials on each side of magnetic grapheme. The surfactant (CTAB) mediated sol‐gel coating was performed using tetraethyl orthosilicate as the silica source. The as‐made magnetic graphene double‐sided mesoporous silica composites were treated with high‐temperature calcination to remove the hydroxyl on the surface. The novel double‐sided materials possess high surface area (167.8 cm2/g) and large pore volume (0.2 cm3/g). The highly open pore structure presents uniform pore size (3.2 nm) and structural stability. The hydrophobic interior pore walls could ensure an efficient adsorption of target molecules through hydrophobic–hydrophobic interaction. At the same time, the magnetic Fe3O4 particles on both sides of the materials could simplify the process of enrichment, which plays an important role in the treatment of complex biological samples. The magnetic graphene double‐sided nanocomposites were successfully applied to size‐selective and specific enrichment of peptides in standard peptide mixtures, protein digest solutions, and human urine samples. Finally, the novel material was applied to selective enrichment of endogenous peptides in mouse brain tissue. The enriched endogenous peptides were then analyzed by LC‐MS/MS, and 409 endogenous peptides were detected and identified. The results demonstrate that the as‐made mag‐graphene@mSiO2 have powerful potential for peptidome research.  相似文献   

5.
Chen H  Liu S  Li Y  Deng C  Zhang X  Yang P 《Proteomics》2011,11(5):890-897
The oleic acid‐functionalized magnetite nanoparticles (OA‐Fe3O4) with mean diameter of about 15 nm were synthesized through a low‐cost, one‐pot method and were designed as hydrophobic probes to realize the convenient, efficient and fast concentration of low‐concentration peptides followed by MALDI‐TOF‐MS analysis. The capability of OA‐Fe3O4 nanoparticles in concentration of low‐abundance peptides from simple and complex solutions were evaluated by comparing them with a sort of C8‐modified magnetic microspheres. Samples of standard peptide solution, protein digest solution and human serum were introduced in the evaluating process, and the OA‐Fe3O4 nanoparticles exhibited good surface affinity toward low‐concentration peptides  相似文献   

6.
In this work, we report the development of a novel enrichment protocol for peptides by using the microspheres composed of Fe3O4@nSiO2 Core and perpendicularly aligned mesoporous SiO2 shell (designated Fe3O4@nSiO2@mSiO2). The Fe3O4@nSiO2@mSiO2 microspheres possess useful magnetic responsivity which makes the process of enrichment fast and convenient. The highly ordered nanoscale pores (2 nm) and high‐surface areas of the microspheres were demonstrated to have good size‐exclusion effect for the adsorption of peptides. An increase of S/N ratio over 100 times could be achieved by using the microspheres to enrich a standard peptide, and the application of the microspheres to enrich universal peptides was performed by using myoglobin tryptic digest solution. The enrichment efficiency of re‐used Fe3O4@nSiO2@mSiO2 microspheres was also studied. Large‐scale enrichment of endogenous peptides in rat brain extract was achieved by the microspheres. Automated nano‐LC‐ESI‐MS/MS was applied to analyze the sample after enrichment, and 60 unique peptides were identified in total. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel Fe3O4@nSiO2@mSiO2 microspheres makes it a promising candidate for selectively isolation and enrichment of endogenous peptides from complex biological samples.  相似文献   

7.
Man Zhao  Chunhui Deng 《Proteomics》2016,16(7):1051-1058
In this work, for the first time, perfluorinated magnetic mesoporous microspheres were designed and synthesized for the highly specific enrichment of fluorous‐derivatized phosphopeptides through the unique fluorine–fluorine interactions. The perfluorinated magnetic mesoporous microspheres were prepared through a surfactant‐mediated one‐pot approach and successfully applied to the selective extraction of fluorous‐derivatized phosphopeptides from β‐casein tryptic digest, protein mixtures, and human serum. Thanks to the hydrophilic silanol groups exposed on the surface, perfluorinated groups modified in the pore channels and the magnetic cores, the flourous‐functionalized magnetic microspheres exhibited excellent dispersibility, specificity toward fluorous‐derivatized phosphopeptides while facilitated separation procedures. The novel composites achieved a high selectivity of 1:1000 toward nonphosphorylated peptides and proved to be practicable in the enrichment of endogenous phosphopeptides in the human serum sample.  相似文献   

8.
In this study, an on‐plate‐selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless‐steel plate, then modified with 4‐mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI‐MS simply by deposition of 2,5‐dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on‐plate strategy promising for online enrichment of glycopeptides, which could be applied in high‐throughput proteome research.  相似文献   

9.
Mark L. Stolowitz 《Proteomics》2012,12(23-24):3438-3450
Over the course of the last decade, a number of investigators have come to appreciate that the surface of a MALDI target, after suitable modification, can be used for selective enrichment of peptides and proteins. More recently, surface‐modified nanoparticles (NPs) that readily co‐crystallize in MALDI matrix, are not ionized by laser desorption/ionization, and do not interfere with MS have attracted interest as alternatives to surface‐modified targets for selective enrichment of peptides and proteins. Surface‐modified targets and NPs facilitate parallel processing of samples, and when used in conjunction with MALDI mass spectrometers with kHz lasers enable development of high‐throughput proteomics platforms. Targets and NPs for reversed phase and ion exchange retention, selective enrichment of glycopeptides, selective enrichment of phosphopeptides, and immunoaffinity MS are described in conjunction with details regarding their preparation and utility. Commercial availability of the reagents and substrates required to prepare surface‐modified targets and NPs is also discussed.  相似文献   

10.
Protein C‐termini study is still a challenging task and far behind its counterpart, N‐termini study. MS based C‐terminomics study is often hampered by the low ionization efficiency of C‐terminal peptides and the lack of efficient enrichment methods. We previously optimized the C‐terminal amine‐based isotope labeling of substrates (C‐TAILS) method and identified 369 genuine protein C‐termini in Escherichia coli. A key limitation of C‐TAILS is that the prior protection of amines and carboxylic groups at protein level makes Arg‐C as the only specific enzyme in practice. Herein, we report an approach combining multi‐enzyme digestion and C‐TAILS, which significantly increases the identification rate of C‐terminal peptides and consequently improves the applicability of C‐TAILS in biological studies. We carry out a systematic study and confirm that the omission of the prior amine protection at protein level has a negligible influence and allows the application of multi‐enzyme digestion. We successfully apply five different enzyme digestions to C‐TAILS, including trypsin, Arg‐C, Lys‐C, Lys‐N, and Lysarginase. As a result, we identify a total of 722 protein C‐termini in E. coli, which is at least 66% more than the results using any single enzyme. Moreover, the favored enzyme and enzyme combination are discovered. Data are available via ProteomeXchange with identifier PXD004275.  相似文献   

11.
A quick isolation and identification of N‐blocked peptides from protein digest mixtures were achieved by diisothiocyanate or isothiocyanate‐coupled magnetic nanoparticles and MS. After protein digests were guanidinated and then mixed with diisothiocyanate or isothiocyanate‐coupled magnetic nanoparticles, unmodified N‐terminal peptides were covalently bound to magnetic nanoparticles, and can be removed from the mixture under magnetic field. Therefore, N‐blocked peptides could be isolated and analyzed by MALDI or ESI MS. This new strategy was demonstrated with model peptides, proteins, and the lysates of HepG2 cells.  相似文献   

12.
The discovery of novel biomarkers by means of advanced detection tools based on proteomic analysis technologies necessitates the development of improved diagnostic methods for application in clinical routine. On the basis of three different application examples, this review presents the limitations of conventional routine diagnostic assays and illustrates the advantages of immunoaffinity enrichment combined with MALDI‐TOF MS. Applying this approach increases the specificity of the analysis supporting a better diagnostic recognition, sensitivity, and differentiation of certain diseases. The use of MALDI‐TOF MS as detection method facilitates the identification of modified peptides and proteins providing additional information. Further, employing respective internal standard peptides allows for relative and absolute quantitation which is mandatory in the clinical context. Although MALDI‐TOF MS is not yet established for clinical routine diagnostics this technology has a high potential for improvement of clinical diagnostics and monitoring therapeutic efficacy.  相似文献   

13.
Selective and efficient preconcentration is indispensable for low concentration of phosphopeptides in phosphorylated protein‐related samples prior to MS‐based analysis. Herein, an on‐chip system coupled magnetic SPE with MALDI‐TOF MS was designed. A metal oxide affinity chromatography material, indium oxide, was coated on the surface of Fe3O4 magnetic nanoparticles to prepare the adsorbent, spatially confined with an applied magnetic field. The adsorbent exhibited high selectivity for phosphopeptides in tryptic digests of the mixture of β‐casein and BSA (1:1000) and the mixture of β‐casein, BSA, and ovalbumin (1:100:100). Thanking to the enrichment ability and specificity for phosphopeptides with the adsorbent, the on‐chip magnetic SPE‐MALDI‐TOF MS approach showed high sensitivity with a low detection limit of 4 fmol. In addition, the developed approach was used to analyze phosphopetides in non‐fat milk digests and human serum successfully.  相似文献   

14.
In this work, the composites of magnetic Fe3O4@SiO2@poly (styrene‐co‐4‐vinylbenzene‐boronic acid) microspheres with well‐defined core–shell–shell structure were facilely synthesized and applied to selectively enrich glycopeptides. Due to the relatively large amount of vinyl groups introduced by 3‐methacryloxy‐propyl‐trimethoxysilane on the core‐shell surface, the poly(styrene‐co‐4‐vinylbenzeneboronic acid) (PSV) was coated with high efficiency, resulting in a large amount of boronic acid on the outermost polymer shell of the Fe3O4@SiO2@PSV microspheres, which is of great importance to improve the enrichment efficiency for glycopeptides. The obtained Fe3O4@SiO2@PSV microspheres were successfully applied to the enrichment of glycopeptides with strong specificity and high selectivity, evaluated by capturing glycopeptides from tryptic digestion of model glycoprotein HRP diluted to 0.05 ng/μL (1.25 × 10?13 mol, 100 μL), tryptic digest of HRP and nonglycosylated BSA up to the ratio of 1:120 w/w and the real complex sample human serum with 103 unique N‐glycosylation peptides of 46 different glycoproteins enriched.  相似文献   

15.
Proteomic profiling by MALDI‐TOF MS presents various advantages (speed of analysis, ease of use, relatively low cost, sensitivity, tolerance against detergents and contaminants, and possibility of automation) and is being currently used in many applications (e.g. peptide/protein identification and quantification, biomarker discovery, and imaging MS). Earlier studies by many groups indicated that moderate reproducibility in relative peptide quantification is a major limitation of MALDI‐TOF MS. In the present work, we examined and demonstrate a clear effect, in cases apparently random, of sample dilution in complex samples (urine) on the relative quantification of peptides by MALDI‐TOF MS. Results indicate that in urine relative abundance of peptides cannot be assessed with confidence based on a single MALDI‐TOF MS spectrum. To account for this issue, we developed and propose a novel method of determining the relative abundance of peptides, taking into account that peptides have individual linear quantification ranges in relation to sample dilution. We developed an algorithm that calculates the range of dilutions at which each peptide responds in a linear manner and normalizes the received peptide intensity values accordingly. This concept was successfully applied to a set of urine samples from patients diagnosed with diabetes presenting normoalbuminuria (controls) and macroalbuminuria (cases).  相似文献   

16.
The discovery of PTMs in proteins by MS requires nearly complete sequence coverage of the detected proteolytic peptides. Unfortunately, mass spectrometric analysis of the desired sequence fragments is often impeded due to low ionization efficiency and/or signal suppression in complex samples. When several lysine residues are in close proximity tryptic peptides may be too short for mass analysis. Moreover, modified peptides often appear in low stoichiometry and need to be enriched before analysis. We present here how the use of sulfo‐NHS‐SS‐biotin derivatization of lysine side chain can help to detect PTMs in lysine‐rich proteins. This label leads to a mass shift which can be adjusted by reduction of the SS bridge and alkylation with different reagents. Low intensity peptides can be enriched by use of streptavidin beads. Using this method, the functionally relevant protein kinase A phosphorylation site in 5‐lipoxygenase was detected for the first time by MS. Additionally, methylation and acetylation could be unambiguously determined in histones.  相似文献   

17.
Li Y  Lin H  Deng C  Yang P  Zhang X 《Proteomics》2008,8(2):238-249
In this work, we present, to our knowledge, the first demonstration of the utility of iron oxide magnetic microspheres coated with gallium oxide for the highly selective enrichment of phosphopeptide prior to mass spectrometric analysis. These microspheres that we prepared not only have a shell of gallium oxide, giving them a high-trapping capacity for the phosphopeptides, but also their magnetic property enables easy isolation by positioning an external magnetic field. Tryptic digest products of phosphoproteins including beta-casein, ovalbumin, casein, as well as five protein mixtures were used as the samples to exemplify the feasibility of this approach. In very short time (only 0.5 min), phosphopeptides sufficient for characterization by MALDI-TOF-MS were selectively enriched by the Ga(2)O(3)-coated Fe(3)O(4) microspheres. The performance of the Ga(2)O(3)-coated Fe(3)O(4) microspheres were further compared with Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC resin, and TiO2 beads for enrichment of peptides originating from tryptic digestion of beta-casein and BSA with a molar ratio of 1:50, and the results proved a stronger selective ability of Ga(2)O(3)-coated Fe(3)O(4) microspheres over the other materials. Finally, the Ga(2)O(3)-coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. All results show that Ga(2)O(3)-coated Fe(3)O(4) microsphere is an effective material for selective isolation and concentration of phosphopeptides.  相似文献   

18.
Li‐rich layered materials are considered to be the promising low‐cost cathodes for lithium‐ion batteries but they suffer from poor rate capability despite of efforts toward surface coating or foreign dopings. Here, spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres are reported as a new high‐rate cathode material for Li‐ion batteries. The synthetic procedure is relatively simple, involving the formation of uniform carbonate precursor under solvothermal conditions and its subsequent transformation to an assembled microsphere that integrates a spinel‐like component with a layered component by a heat treatment. When calcined at 700 °C, the amount of transition metal Mn and Co in the Li‐Mn‐Co‐O microspheres maintained is similar to at 800 °C, while the structures of constituent particles partially transform from 2D to 3D channels. As a consequence, when tested as a cathode for lithium‐ion batteries, the spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres obtained at 700 °C show a maximum discharge capacity of 185.1 mA h g?1 at a very high current density of 1200 mA g?1 between 2.0 and 4.6 V. Such a capacity is among the highest reported to date at high charge‐discharge rates. Therefore, the present spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres represent an attractive alternative to high‐rate electrode materials for lithium‐ion batteries.  相似文献   

19.
The advanced properties of mesoporous silica have been demonstrated in applications, which include chemical sensing, filtration, catalysis, drug delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation‐induced self‐assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on mesoporous silica chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using MALDI‐TOF‐MS, we established the correlation between the harvesting specificity and the physicochemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery.  相似文献   

20.
Tandem MS (MS2) quantification using the series of N‐ and C‐terminal fragment ion pairs generated from isobaric‐labelled peptides was recently considered an accurate strategy in quantitative proteomics. However, the presence of multiplexed terminal fragment ion in MS2 spectra may reduce the efficiency of peptide identification, resulting in lower identification scores or even incorrect assignments. To address this issue, we developed a quantitative software tool, denoted isobaric tandem MS quantification (ITMSQ), to improve N‐ and C‐terminal fragment ion pairs based isobaric MS2 quantification. A spectrum splitting module was designed to separate the MS2 spectra from different samples, increasing the accuracy of both identification and quantification. ITMSQ offers a convenient interface through which parameters can be changed along with the labelling method, and the result files and all of the intermediate files can be exported. We performed an analysis of in vivo terminal amino acid labelling labelled HeLa samples and found that the numbers of quantified proteins and peptides increased by 13.64 and 27.52% after spectrum splitting, respectively. In conclusion, ITMSQ provides an accurate and reliable quantitative solutionfor N‐ and C‐terminal fragment ion pairs based isobaric MS2 quantitative methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号