首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Wnt pathway deregulation is a common characteristic of many cancers. Only colorectal cancer predominantly harbours mutations in APC, whereas other cancer types (hepatocellular carcinoma, solid pseudopapillary tumours of the pancreas) have activating mutations in β‐catenin (CTNNB1). We have compared the dynamics and the potency of β‐catenin mutations in vivo. Within the murine small intestine (SI), an activating mutation of β‐catenin took much longer to achieve Wnt deregulation and acquire a crypt‐progenitor cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single activating mutation of β‐catenin was unable to drive Wnt deregulation or induce the CPC phenotype. This ability of β‐catenin mutation to differentially transform the SI versus the colon correlated with higher expression of E‐cadherin and a higher number of E‐cadherin:β‐catenin complexes at the membrane. Reduction in E‐cadherin synergised with an activating mutation of β‐catenin resulting in a rapid CPC phenotype within the SI and colon. Thus, there is a threshold of β‐catenin that is required to drive transformation, and E‐cadherin can act as a buffer to sequester mutated β‐catenin.  相似文献   

2.
3.
β‐Arrestins are scaffolding proteins implicated as negative regulators of TLR4 signaling in macrophages and fibroblasts. Unexpectedly, we found that β‐arrestin‐1 (β‐arr‐1) and ‐2 knockout (KO) mice are protected from TLR4‐mediated endotoxic shock and lethality. To identify the potential mechanisms involved, we examined the plasma levels of inflammatory cytokines/chemokines in the wild‐type (WT) and β‐arr‐1 and ‐2 KO mice after lipopolysaccharide (LPS, a TLR4 ligand) injection. Consistent with lethality, LPS‐induced inflammatory cytokine levels in the plasma were markedly decreased in both β‐arr‐1 and ‐2 KO, compared to WT mice. To further explore the cellular mechanisms, we obtained splenocytes (separated into CD11b+ and CD11b? populations) from WT, β‐arr‐1, and ‐2 KO mice and examined the effect of LPS on cytokine production. Similar to the in vivo observations, LPS‐induced inflammatory cytokines were significantly blocked in both splenocyte populations from the β‐arr‐2 KO compared to the WT mice. This effect in the β‐arr‐1 KO mice, however, was restricted to the CD11b? splenocytes. Our studies further indicate that regulation of cytokine production by β‐arrestins is likely independent of MAPK and IκBα‐NFκB pathways. Our results, however, suggest that LPS‐induced chromatin modification is dependent on β‐arrestin levels and may be the underlying mechanistic basis for regulation of cytokine levels by β‐arrestins in vivo. Taken together, these results indicate that β‐arr‐1 and ‐2 mediate LPS‐induced cytokine secretion in a cell‐type specific manner and that both β‐arrestins have overlapping but non‐redundant roles in regulating inflammatory cytokine production and endotoxic shock in mice. J. Cell. Physiol. 225: 406–416, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Transgenic mice over‐expressing calcitonin gene‐related peptide (CGRP) in osteoblasts have increased bone density due to increased bone formation, thus suggesting that CGRP plays a role in bone metabolism. In this study we determined the relationship between CGRP, the canonical Wnt signaling and apoptosis in human osteoblasts (hOBs) in consideration of the well‐documented involvement of this pathway in bone cells. Primary cultures of hOBs were treated with CGRP 10?8 M. Levels of β‐catenin, which is the cytoplasmic protein mediator of canonical Wnt signaling, and mRNA were determined. CGRP increases both the expression and the levels of cytoplasmic β‐catenin by binding to its receptor, as this effect is blocked by the antagonist CGRP8–37. This facilitatory action on β‐catenin appears to be mediated by the inhibition of the enzyme GSK‐3β via protein kinase A (PKA) activation. GSK‐3β is a glycogen synthase kinase that, by phosphorylating β‐catenin, promotes its degradation by the proteosomal machinery. Moreover, the peptide is able to inhibit hOBs apoptosis stimulated by dexamethasone or by serum deprivation, possibly through the accumulation of β‐catenin, since the inhibitor of PKA activity H89 partially prevents the antiapoptotic effect of the peptide. In conclusion CGRP, released by nerve fibers, exerts its anabolic action on bone cells by stimulating canonical Wnt signaling and by inhibiting hOBs apoptosis, thus favoring local bone regeneration. J. Cell. Physiol. 225: 701–708, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP‐2 acts synergistically with β‐catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross‐talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3‐E1 cells to investigate the effect of BMP‐2 on β‐catenin signaling. We found that BMP‐2 stimulates Lrp5 expression and inhibits the expression of β‐TrCP, the F‐box E3 ligase responsible for β‐catenin degradation and subsequently increases β‐catenin protein levels in osteoblasts. In vitro deletion of the β‐catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP‐2 treatment. These findings suggest that BMP‐2 may regulate osteoblast function in part through modulation of the β‐catenin signaling. J. Cell. Biochem. 108: 896–905, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
It has recently been reported that the exposure of human spermatozoa to an extremely low frequency (ELF) electromagnetic field (EMF) with a square waveform of 5 mT amplitude and frequency of 50 Hz improves sperm motility. The functional relationship between the energy metabolism and the enhancement of human sperm motility induced by ELF‐EMF was investigated. Sperm exposure to ELF‐EMF resulted in a progressive and significant increase of mitochondrial membrane potential and levels of ATP, ADP and NAD+ that was associated with a progressive and significant increase in the sperm kinematic parameters. No significant effects were detected on other parameters such as ATP/ADP ratio and energy charge. When carbamoyl cyanide m‐chlorophenylhydrazone (CICCP) was applied to inhibit the oxidative phosphorylation in the mitochondria, the values of energy parameters and motility in the sperm incubated in the presence of glucose and exposed to ELF‐EMF did not change, thus indicating that the glycolysis was not involved in mediating ELF‐EMF stimulatory effect on motility. By contrast, when pyruvate and lactate were provided instead of glucose, the energy status and motility increased significantly in ELF‐EMF‐treated sperm. Under these culture conditions, the inhibition of glycolitic metabolism by 2‐deoxy‐D ‐glucose (DOG) again resulted in increased values of energy and kinematic parameters, indicating that gluconeogenesis was not involved in producing glucose for use in glycolysis. We concluded that the key role in mediating the stimulatory effects exerted by ELF‐EMF on human sperm motility is played by mitochondrial oxidative phosphorylation rather than glycolysis. Bioelectromagnetics 32:15–27, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
Emerging evidence has shown that GSK3β plays a pivotal role in regulating the specification of axons and dendrites. Our previous study has shown a novel GSK3β interaction protein (GSKIP) able to negatively regulate GSK3β in Wnt signaling pathway. To further characterize how GSKIP functions in neurons, human neuroblastoma SH‐SY5Y cells treated with retinoic acid (RA) to differentiate to neuron‐like cells was used as a model. Overexpression of GSKIP prevents neurite outgrowth in SH‐SY5Y cells. GSKIP may affect GSK3β activity on neurite outgrowth by inhibiting the specific phosphorylation of tau (ser396). GSKIP also increases β‐catenin in the nucleus and raises the level of cyclin D1 to promote cell‐cycle progression in SH‐SY5Y cells. Additionally, overexpression of GSKIP downregulates N‐cadherin expression, resulting in decreased recruitment of β‐catenin. Moreover, depletion of β‐catenin by small interfering RNA, neurite outgrowth is blocked in SH‐SY5Y cells. Altogether, we propose a model to show that GSKIP regulates the functional interplay of the GSK3β/β‐catenin, β‐catenin/cyclin D1, and β‐catenin/N‐cadherin pool during RA signaling in SH‐SY5Y cells. J. Cell. Biochem. 108: 1325–1336, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
11.
[Tyr6]‐γ2‐MSH(6–12) with a short effecting time of about 20 min is one of the most potent rMrgC receptor agonists. To possibly increase its potency and metabolic stability, a series of analogues were prepared by replacing the Tyr6 residue with the non‐canonical amino acids 3‐(1‐naphtyl)‐L ‐alanine, 4‐fluoro‐L ‐phenylalanine, 4‐methoxy‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine. Dose‐dependent nociceptive assays performed in conscious rats by intrathecal injection of the MSH peptides showed [Tyr6]‐γ2‐MSH(6–12) hyperalgesic effects at low doses (5–20 nmol) and analgesia at high doses (100–200 nmol). This analgesic activity is fully reversed by the kyotorphin receptor‐specific antagonist Leu–Arg. For the two analogues containing in position 6, 4‐fluoro‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine, a hyperalgesic activity was not observed, while the 3‐(1‐naphtyl)‐L ‐alanine analogue at 10 nmol dose was found to induce hyperalgesia at a potency very similar to γ2‐MSH(6–12), but with longer duration of the effect. Finally, the 4‐methoxy‐L ‐phenylalanine analogue (0.5 nmol) showed greatly improved hyperalgesic activity and prolonged effects compared to the parent [Tyr6]‐γ2‐MSH(6–12) compound. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
13.
14.

Objective

β‐catenin is one of the most critical oncogenes associated with many kinds of human cancers, especially in the human CRC. Innate immunity recognizes tumour derived damage‐associated molecular patterns (DAMPs) and primes the anti‐tumour adaptive responses. While the function of β‐catenin in CRC tumourigenesis is well established, its impact on innate immune evasion is largely unknown. The aim of this study is to characterize the role of β‐catenin in inhibiting RIG‐I‐like receptor (RLR)‐mediated IFN‐β signalling in colorectal cancer.

Materials and Methods

Immunohistochemical staining and western blotting were conducted to study the expression of β‐catenin, IRF3 and phospho‐IRF3 (p‐IRF3) in CRC samples and cell lines. Plaque assay determining virus replication was performed to assess the regulation of β‐catenin on IFN‐β signalling. The inhibition of β‐catenin on RLR‐mediated IFN‐β signalling was further studied by real‐time analyses and reporter assays in the context of lentiviral‐mediated β‐catenin stably knocking down. Lastly, co‐immunoprecipitation and nuclear fractionation assay were conducted to monitor the interaction between β‐catenin and IRF3.

Results

We found that high expression of β‐catenin positively correlated with the expression of IRF3 in CRC cells. Overexpression of β‐catenin increased the viral replication. Conversely knocking down of β‐catenin inhibited viral replication. Furthermore, our data demonstrated that β‐catenin could inhibit the expression of IFN‐β and interferon‐stimulated gene 56 (ISG56). Mechanistically, we found that β‐catenin interacted with IRF3 and blocked its nuclear translocation.

Conclusion

Our study reveals an unprecedented role of β‐catenin in enabling innate immune evasion in CRC.
  相似文献   

15.
16.
A key step of Wnt signaling activation is the recruitment of β‐catenin to the Wnt target‐gene promoter in the nucleus, but its mechanisms are largely unknown. Here, we identified FoxM1 as a novel target of Wnt signaling, which is essential for β‐catenin/TCF4 transactivation. GSK3 phosphorylates FoxM1 on serine 474 which induces FoxM1 ubiquitination mediated by FBXW7. Wnt signaling activation inhibits FoxM1 phosphorylation by GSK3–Axin complex and leads to interaction between FoxM1 and deubiquitinating enzyme USP5, thereby deubiquitination and stabilization of FoxM1. FoxM1 accumulation in the nucleus promotes recruitment of β‐catenin to Wnt target‐gene promoter and activates the Wnt signaling pathway by protecting the β‐catenin/TCF4 complex from ICAT inhibition. Subsequently, the USP5–FoxM1 axis abolishes the inhibitory effect of ICAT and is required for Wnt‐mediated tumor cell proliferation. Therefore, Wnt‐induced deubiquitination of FoxM1 represents a novel and critical mechanism for controlling canonical Wnt signaling and cell proliferation.  相似文献   

17.
18.
Parathyroid hormone (PTH) exerts an anabolic action on bone but the mechanisms are incompletely understood. We showed previously that PTH interacts with the canonical Wnt‐β‐catenin signaling pathway via the transforming growth factor (TGF)‐β signaling molecule, Smad3, to modulate osteoblast differentiation and apoptosis. Here, we examined which actions of Smad3 are TGF‐β‐independent in stimulating the osteoblast phenotype and PTH‐induced Wnt‐β‐catenin signaling. For this, the TGF‐β receptor type 1 [activin receptor‐like kinase (ALK5)] inhibitor (SB431542), and a Smad3 mutant in which the site normally phosphorylated by ALK5 is mutated from SSVS to AAVA, was used. PTH induced total β‐catenin and reduced phosphorylated β‐catenin levels at 1, 6, and 24 h in mouse osteoblastic MC3T3‐E1 cells. Transient transfection of Smad3AAVA inhibited the PTH induction of total β‐catenin and reduction of phosphorylated β‐catenin levels at 6 and 24 h, but not at 1 h, indicating that the early effects occur independently of TGF‐β receptor signaling. On the other hand, MC3T3‐E1 cell clones in which Smad3AAVA was stably expressed demonstrated elevated β‐catenin levels, although alkaline phosphatase (ALP) activity and mineralization were unaltered. In contrast, MC3T3‐E1 cell clones in which wild‐type Smad3 was stably expressed exhibited increased ALP activity and mineralization that were decreased by the ALK5 inhibitor, SB431542, although the β‐catenin levels induced in these cells were not modulated. In conclusion, the present study indicates that PTH induces osteoblast β‐catenin levels via Smad3 independently of, and dependently on, TGF‐β in the early and later induction phases, respectively. J. Cell. Biochem. 108: 285–294, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
ADP‐dependent glucokinase (ADPGK) is an alternative novel glucose phosphorylating enzyme in a modified glycolysis pathway of hyperthermophilic Archaea. In contrast to classical ATP‐dependent hexokinases, ADPGK utilizes ADP as a phosphoryl group donor. Here, we present a crystal structure of archaeal ADPGK from Methanocaldococcus jannaschii in complex with an inhibitor, 5‐iodotubercidin, d ‐glucose, inorganic phosphate, and a magnesium ion. Detailed analysis of the architecture of the active site allowed for confirmation of the previously proposed phosphorylation mechanism and the crucial role of the invariant arginine residue (Arg197). The crystal structure shows how the phosphate ion, while mimicking a β‐phosphate group, is positioned in the proximity of the glucose moiety by arginine and the magnesium ion, thus providing novel insights into the mechanism of catalysis. In addition, we demonstrate that 5‐iodotubercidin inhibits human ADPGK‐dependent T cell activation‐induced reactive oxygen species (ROS) release and downstream gene expression, and as such it may serve as a model compound for further screening for hADPGK‐specific inhibitors.  相似文献   

20.
Cranial neural crest cells (CNCCs) give rise to cranial mesenchyme (CM) that differentiates into the forebrain meningeal progenitors in the basolateral and apical regions of the head. This occurs in close proximity to the other CNCC‐CM‐derivatives, such as calvarial bone and dermal progenitors. We found active Wnt signaling transduction in the forebrain meningeal progenitors in basolateral and apical populations and in the non‐meningeal CM preceding meningeal differentiation. Here, we dissect the source of Wnt ligand secretion and requirement of Wnt/β‐catenin signaling for the lineage selection and early differentiation of the forebrain meninges. We find persistent canonical Wnt/β‐catenin signal transduction in the meningeal progenitors in the absence of Wnt ligand secretion in the CM or surface ectoderm, suggesting additional sources of Wnts. Conditional mutants for Wntless and β‐catenin in the CM showed that Wnt ligand secretion and Wnt/β‐catenin signaling were dispensable for specification and proliferation of early meningeal progenitors. In the absence of β‐catenin in the CM, we found diminished laminin matrix and meningeal hypoplasia, indicating a structural and trophic role of mesenchymal β‐catenin signaling. This study shows that β‐catenin signaling is required in the CM for maintenance and organization of the differentiated meningeal layers in the basolateral and apical populations of embryonic meninges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号