首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High inhibits and low stimulates bone resorption, which mediates part of the effect of chronic acidosis or acid feeding on bone. Soluble adenylyl cyclase (sAC) is a bicarbonate sensor that can potentially mediate the effect of bicarbonate on osteoclasts. Osteoclasts were incubated in 0, 12, and 24 mM at pH 7.4 for 7–8 days and assayed for tartrate‐resistant acid phosphatase (TRAP) and vacuolar‐ATPase expression, and H+ accumulation. Total number and area of TRAP (+) multinucleated osteoclasts was decreased by in a dose‐dependent manner. V‐ATPase expression and H+ accumulation normalized to cell cross‐sectional area or protein were not significantly changed. The ‐induced inhibition of osteoclast growth and differentiation was blocked by either 2‐hydroxyestradiol, an inhibitor of sAC or sAC knockdown by sAC specific siRNA. The model of inhibiting osteoclast via sAC was further supported by the fact that the dose‐response on osteoclasts is flat when cells were saturated with 8‐bromo‐cAMP, a permeant cAMP analog downstream from sAC thus simulating sAC activation. To confirm our in vitro findings in intact bone, we developed a 1‐week mouse calvaria culture system where osteoclasts were shown to be viable. Bone volume density (BV/TV) determined by micro‐computed tomography (µCT), was higher in 24 mM compared to 12 mM treated calvaria. This effect on BV/TV was blocked by 2‐hydroxyestradiol. In summary, sAC mediates the inhibition of osteoclast function by , by acting as a sensor. J. Cell. Physiol. 220: 332–340, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Fast growth of industrial microorganisms, such as Corynebacterium glutamicum, is a direct amplifier for the productivity of any growth coupled or decoupled production process. Recently, it has been shown that C. glutamicum when grown in a novel picoliter bioreactor (PLBR) exhibits a 50% higher growth rate compared to a 1 L batch cultivation [Grünberger et al. (2012) Lab Chip]. We here compare growth of C. glutamicum with glucose as substrate at different scales covering batch cultivations in the liter range down to single cell cultivations in the picoliter range. The maximum growth rate of standard batch cultures as estimated from different biomass quantification methods is ${\hat {\mu }} = 0.42\pm 0.03\,{\rm h}^{- 1} $ even for microtiter scale cultivations. In contrast, growth in a microfluidic perfusion system enabling analysis of single cells reproducibly reveals a higher growth rate of ${\hat {\mu }} = 0.62\pm 0.02\,{\rm h}^{- 1} $ . When in the same perfusion system cell‐free supernatant from exponentially grown shake flask cultures is used the growth rate of single cells is reduced to ${\hat {\mu }} = 0.47\pm 0.02\,{\rm h}^{- 1} $ . Likewise, when fresh medium is additionally supplied with 5 mM acetate, a growth rate of ${\hat {\mu }} = 0.51\pm 0.01\,{\rm h}^{- 1} $ is determined. These results prove that higher growth rates of C. glutamicum than known from typical batch cultivations are possible, and that growth is definitely impaired by very low concentrations of byproducts such as acetate. Biotechnol. Bioeng. 2013; 110: 220–228. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
A phycocyanin (PC) and three allophycocyanin (AP) components (designated PC, AP1, AP2, and AP3) were prepared from Myxosarcina concinna Printz phycobilisomes by the native gradient PAGE performed in a neutral buffer system combined with the ion exchange column chromatography on DEAE‐DE52 cellulose. PC contained one β subunit () and two α ones ( and ), and it carried two rod linkers ( and ) and one rod‐core linker (). AP1 and AP3 were characterized as peripheral core APs, whereas AP2 was an inner‐core one. AP2 and AP3 were demonstrated to function as the terminal emitters. Each of the three APs contained two β subunits ( and ), two α subunits ( and ) and an inner‐core linker (). AP2 and AP3 had another subunit of the allophycocyanin B (AP‐B) type () belonging to the β subunit group, and AP1 and AP3 carried their individual specific core linkers ( and ), respectively. No AP component was shown to associate with the core‐membrane linker LCM. The functions of the linker polypeptides in the phycobilisome (PBS) construction are discussed.  相似文献   

4.
1. Lakes in the Rotorua region of New Zealand are affected by eutrophication from urbanisation and agricultural land use. Some lake tributaries contain geothermally influenced waters, and it is currently unknown whether geothermal tributaries are active sites of nutrient cycling or represent point sources of nutrients to the lakes. 2. Using government data sets, we characterised the physicochemical conditions of geothermal and non‐geothermal streams. We then measured ecosystem metabolism and reach‐scale uptake of nitrate (), ammonium () and phosphate () in summer 2010 (n = 8 streams). Finally, we used government data to compare annual nutrient flux from geothermal and non‐geothermal surface water inputs to Lake Rotoiti. 3. As expected, geothermal streams had higher temperature, conductivity and nutrient concentrations and lower pH. However, primary production, community respiration and uptake rates in geothermal streams were not different from those in their non‐geothermal counterparts. Uptake rates of were higher in geothermal streams, and uptake was below detection in geothermal streams, probably due to the saturation by naturally high concentrations. 4. A comparison of Lake Rotoiti inputs suggested that geothermal streams are not significant sources of and , while geothermal inputs of represent an average of 46% of total flux from Lake Rotoiti tributaries. 5. Despite their high temperature and low pH, geothermal streams are active sites of photosynthesis, respiration and and cycling, indicating dynamic biofilm communities. 6. Management options for geothermal streams, if any, should focus on retention (e.g. uptake or coupled nitrification and denitrification) but could prove challenging given the persistent, naturally occurring high flux.  相似文献   

5.
A hydroponic experiment with simulated water stress induced by polyethylene glycol (PEG) was conducted in greenhouse to study the effects of different nitrogen (N) forms (; and the mixture of and ) on water stress tolerance and water use efficiency (WUE and WUET) of different rice cultivars. Two rice cultivars (cv. ‘Shanyou 63’ hybrid indica and ‘Yangdao 6’ indica, China) were grown under non‐water‐ or water‐stressed condition [10% (w/v) PEG, molecular weight 6000] with different N forms for 3 weeks. Under non‐water stress, the biomass of Shanyou 63 was 50.0% and 64.3% and of Yangdao 6 was 6.9% and 87.8% higher under the supply of mixture of and than either under the sole supply of or , respectively; under water stress, the biomass of both rice cultivars decreased in all three nitrogen forms compared with non‐water stress; however, the inhibitory effect of water stress on biomass varied between and nutrition; the reduction of dry matter was significantly higher in than in nutrition. Compared with non‐water stress, under water stressed condition, WUE of both two rice cultivars significantly decreased in supply; WUE did not vary in and the mixture supply. It is concluded that (a) the resistance of water stress of rice seedlings is related to nitrogen form; (b) under water stress, could maintain a higher WUE compared with ; (c) hybrid indica rice seedlings have a higher water stress tolerance than indica rice seedlings.  相似文献   

6.
The limited treatment option for recurrent prostate cancer and the eventual resistance to conventional chemotherapy drugs has fueled continued interest in finding new anti‐neoplastic agents of natural product origin. We previously reported anti‐proliferative activity of deoxypodophyllotoxin (DPT) on human prostate cancer cells. Using the PC‐3 cell model of human prostate cancer, the present study reveals that DPT induced apoptosis via a caspase‐3‐dependent pathway that is activated due to dysregulated mitochondrial function. DPT‐treated cells showed accumulation of the reactive oxygen species (ROS), intracellular Ca surge, increased mitochondrial membrane potential (MMP, ΔΨm), Bax protein translocation to mitochondria and cytochrome c release to the cytoplasm. This resulted in caspase‐3 activation, which in turn induced apoptosis. The antioxidant N‐acetylcysteine (NAC) reduced ROS accumulation, MMP and Ca surge, on the other hand the Ca2+ chelator BAPTA inhibited the Ca overload and MMP without affecting the increase of ROS, indicating that the generation of ROS occurred prior to Ca2+ flux. This suggested that both ROS and Ca signaling play roles in the increased MMP via Ca‐dependent and/or ‐independent mechanisms, since ΔΨm elevation was reversed by NAC and BAPTA. This study provides the first evidence for the involvement of both ROS‐ and Ca‐activated signals in the disruption of mitochondrial homeostasis and the precedence of ROS production over the failure of Ca2+ flux homeostasis. J. Cell. Biochem. 114: 1124–1134, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
We estimated local and metapopulation effective sizes ( and meta‐) for three coexisting salmonid species (Salmo salar, Salvelinus fontinalis, Salvelinus alpinus) inhabiting a freshwater system comprising seven interconnected lakes. First, we hypothesized that might be inversely related to within‐species population divergence as reported in an earlier study (i.e., FST: S. salar> S. fontinalis> S. alpinus). Using the approximate Bayesian computation method implemented in ONeSAMP, we found significant differences in () between species, consistent with a hierarchy of adult population sizes (). Using another method based on a measure of linkage disequilibrium (LDNE: ), we found more finite values for S. salar than for the other two salmonids, in line with the results above that indicate that S. salar exhibits the lowest among the three species. Considering subpopulations as open to migration (i.e., removing putative immigrants) led to only marginal and non‐significant changes in , suggesting that migration may be at equilibrium between genetically similar sources. Second, we hypothesized that meta‐ might be significantly smaller than the sum of local s (null model) if gene flow is asymmetric, varies among subpopulations, and is driven by common landscape features such as waterfalls. One ‘bottom‐up’ or numerical approach that explicitly incorporates variable and asymmetric migration rates showed this very pattern, while a number of analytical models provided meta‐ estimates that were not significantly different from the null model or from each other. Our study of three species inhabiting a shared environment highlights the importance and utility of differentiating species‐specific and landscape effects, not only on dispersal but also in the demography of wild populations as assessed through local s and meta‐s and their relevance in ecology, evolution and conservation.  相似文献   

8.
This issue focuses on the plant vascular system, with a comprehensive review article written by Lucas et al. (pp. 294–388). The cover drawing illustrates the phosphate‐stress signaling and response network (pp. 347–351). A Pi deficiency signal is generated in roots and transported to shoots via the xylem (blue lines). This signal is recognized by source leaves to activate the Pi stress response pathway and then to load the subsequent signals into the phloem (red lines). Phloemmobile RNAs move to roots to increase Pi uptake and alter root architecture . Different phloem‐mobile RNAs are also delivered from source leaves to developing leaves and the shoot apex where they regulate development under Pi‐stress conditions.  相似文献   

9.
Arsenite (As(III)) is the predominant arsenic (As) species in reducing environments. As(III) is less strongly adsorbed than As(V) at circumneutral pH conditions by common non‐iron metal oxides in sediments such as those of aluminum. Therefore, oxidation of As(III) to As(V) could contribute to an improved immobilization of As and thus help mitigate As contamination in groundwater. Microbial oxidation of As(III) is known to readily under aerobic conditions, however, the dissolved oxygen (O2) concentration in groundwater may be limited due to the poor solubility of O2 and its high chemical reactivity with reduced compounds. Nitrate (${\rm NO}_{3}^{{-} } $ ), can be considered as an alternative electron acceptor, which can support oxidation of As(III) to As(V) by denitrifying bacteria. In this study, two up‐flow sediment columns packed with activated alumina (AA) were utilized to demonstrate the role of denitrification on the oxidation of As(III) to As(V) and its contribution to improved As adsorption onto AA. One column was supplied with ${\rm NO}_{3}^{{-} } $ (C1) and its performance was compared with a control column lacking ${\rm NO}_{3}^{{-} } $ (C2). During most of the operation when the pH was in the circumneutral range (days 50–250), the release of arsenic was greater from C2 compared to C1. The effluent As concentrations started increasing on days 60 and 100 in C2 and C1, respectively. Complete breakthrough started on day 200 in C2; whereas in C1, complete breakthrough was never achieved. The effluent and solid phase As speciation was dominated by As(V) in C1, indicating the occurrence of As(III) oxidation due to ${\rm NO}_{3}^{{-} } $ ; whereas in C2, only As(III) was dominant. This study illustrates a bioremediation or natural attenuation process based on anoxic microbial ${\rm NO}_{3}^{{-} } $ ‐dependent oxidation of As(III) to more readily adsorbed As(V) as a means to enhance the immobilization of As on alumina oxide particles in subsurface environments. Biotechnol. Bioeng. 2010;107: 786–794. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
Ca2+ signaling pathways are well studied in cardiac myocytes, but not in cardiac fibroblasts. The aim of the present study is to characterize Ca2+ signaling pathways in cultured human cardiac fibroblasts using confocal scanning microscope and RT‐PCR techniques. It was found that spontaneous intracellular Ca2+ (Ca) oscillations were present in about 29% of human cardiac fibroblasts, and the number of cells with Ca oscillations was increased to 57.3% by application of 3% fetal bovine serum. Ca oscillations were dependent on Ca2+ entry. Ca oscillations were abolished by the store‐operated Ca2+ (SOC) entry channel blocker La3+, the phospholipase C inhibitor U‐73122, and the inositol trisphosphate receptors (IP3Rs) inhibitor 2‐aminoethoxydiphenyl borate, but not by ryanodine. The IP3R agonist thimerosal enhanced Ca oscillations. Inhibition of plasma membrane Ca2+ pump (PMCA) and Na+–Ca2+ exchanger (NCX) also suppressed Ca oscillations. In addition, the frequency of Ca oscillations was reduced by nifedipine, and increased by Bay K8644 in cells with spontaneous Ca2+ oscillations. RT‐PCR revealed that mRNAs for IP3R1‐3, SERCA1‐3, CaV1.2, NCX3, PMCA1,3,4, TRPC1,3,4,6, STIM1, and Orai1‐3, were readily detectable, but not RyRs. Our results demonstrate for the first time that spontaneous Ca oscillations are present in cultured human cardiac fibroblasts and are regulated by multiple Ca2+ pathways, which are not identical to those of the well‐studied contractile cardiomyocytes. This study provides a base for future investigations into how Ca2+ signals regulate biological activity in human cardiac fibroblasts and cardiac remodeling under pathological conditions. J. Cell. Physiol. 223: 68–75, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Agrimonia pilosa Ledeb is used as the tonic for asthenia and fatigue in China. Considering that the energizing effect might be correlated with antioxidant properties, we investigated the antioxidant activities of aqueous extract (AE) from Agrimonia pilosa Ledeb by assessing radical‐scavenging and anti‐lipid‐peroxidation abilities. We found that AE shows a moderate antioxidant activity to scavenge DPPH., O , and .OH and inhibit β‐carotene bleaching with IC50 values of 13.0, 33.2, 351, and 11.9 μg/ml, respectively, while its AcOEt‐soluble fraction (ESF) and BuOH soluble fraction (BSF) exhibit remarkable efficiencies. The ESF's IC50 values of scavenging DPPH., O , and .OH, and inhibiting β‐carotene bleaching are 5.6, 5.8, 171, and 7.6 μg/ml, respectively, and those of BSF are 7.5, 8.4, 82.0, and 6.2 μg/ml, respectively. In addition, we found that there is a significant correlation between total phenol content and the antioxidant activity determined by O and .OH scavenging, and β‐carotene‐bleaching assays. Furthermore, HPLC analysis revealed the presence of quercetin, hyperoside, quercitrin, taxifoliol, luteolin‐7‐Oβ‐D ‐glucopyranoside, and rutin in Agrimonia pilosa Ledeb . Thus, we suggest that the extracts from Agrimonia pilosa Ledeb , could be considered as natural antioxidant sources and dietary nutritional supplements to prevent oxidation‐related diseases.  相似文献   

12.
A number of membrane‐permeation models require the incorporation of an unstirred or unstirrable water layer (UWL). An example occurs in PAMPA models when the effective permeation rate of lipophilic acids and bases, Pe, falls behind the expected permeation rate, Pm, at pH values providing a high concentration of unionized species in the donor phase. In such cases, the compound has an apparent pKa of a weaker acid or base. The explanation is that an UWL adjacent to the membrane provides a rate‐limiting diffusion barrier for such compounds. The thickness of the UWL is correlated with the difference between the aqueous pKa and the apparent pKa (pK ). Here, we provide an explanation for the pK term that requires no UWL. It comes from the fact that, in the process of passing into a membrane, an ionizable compound undergoes a change in pKa. At some point along its path into the membrane, the compound attains a maximum free energy, at which point it is as likely to continue into the membrane, as it is to return to the donor phase. This is the transition state for absorption. The pK is the pKa of the compound at the transition state. This is a testable hypothesis (see text). The relevance of absorption to permeation depends on the rate‐limiting step of permeation.  相似文献   

13.
Excited‐state intramolecular proton transfer (ESIPT) and dual luminescence behaviour of 3‐hydroxyflavone (3‐HF) have been utilized to monitor its binding to liposomal membranes prepared from egg yolk phosphatydilcholine (EYPC). Additionally, absorption spectrophotometric assay has been performed to evaluate the antioxidant activity of 3‐HF against lipid peroxidation in this membrane system. When 3‐HF molecules are partitioned into EYPC liposomes, a weak long‐wavelength absorption band with λ ~410 nm appears in addition to the principal absorption at ~λ = 345 nm. Selective excitation of the 410 nm band produces the characteristic emission (λ~460 nm) of the ground‐state anionic species, whereas excitation at the higher energy absorption band leads to dual emission with predominatly ESIPT tautomer fluorescence (λ = 528 nm). Both ESIPT tautomer and the anionic species exhibit fairly high fluorescence anisotropy (r) values (r = 0.122 and 0.180, respectively). Biexponential fluorescence decay kinetics are observed for the ESIPT tautomer as well as the ground‐state anionic forms, indicating heterogeneity in the microenvironments of the corresponding emitting species. Furthermore, we demonstrate that lipid peroxidation of EYPC liposomes is significantly inhibited upon 3‐HF binding, suggesting that 3‐HF can be potentially useful as an inhibitor of peroxidative damage of cell membranes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
There is increasing evidence showing that ammonia‐oxidizing bacteria (AOB) are major contributors to N2O emissions from wastewater treatment plants (WWTPs). Although the fundamental metabolic pathways for N2O production by AOB are now coming to light, the mechanisms responsible for N2O production by AOB in WWTP are not fully understood. Mathematical modeling provides a means for testing hypotheses related to mechanisms and triggers for N2O emissions in WWTP, and can then also become a tool to support the development of mitigation strategies. This study examined the ability of four mathematical model structures to describe two distinct mechanisms of N2O production by AOB. The production mechanisms evaluated are (1) N2O as the final product of nitrifier denitrification with NO as the terminal electron acceptor and (2) N2O as a byproduct of incomplete oxidation of hydroxylamine (NH2OH) to NO. The four models were compared based on their ability to predict N2O dynamics observed in three mixed culture studies. Short‐term batch experimental data were employed to examine model assumptions related to the effects of (1) NH concentration variations, (2) dissolved oxygen (DO) variations, (3) NO accumulations and (4) NH2OH as an externally provided substrate. The modeling results demonstrate that all these models can generally describe the NH, NO, and NO data. However, none of these models were able to reproduce all measured N2O data. The results suggest that both the denitrification and NH2OH pathways may be involved in N2O production and could be kinetically linked by a competition for intracellular reducing equivalents. A unified model capturing both mechanisms and their potential interactions needs to be developed with consideration of physiological complexity. Biotechnol. Bioeng. 2013; 110: 153–163. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
The tetracycline family antibiotics are widely used as human and veterinary treatments. The drugs are effective as antibiotics and also show antimicrobial and non‐microbial action. However, the antioxidant properties of tetracyclines have not been characterized in aprotic media. To better understand their biological functions, the in vitro superoxide anion radical () scavenging activities of tetracycline, chlortetracycline, oxytetracycline, doxycycline and methacycline were characterized, along with a very efficient scavenger, tiron, in dimethyl sulphoxide (DMSO), using ultra‐weak chemiluminescence (CL). We found that tetracycline, chlortetracycline and doxycycline efficiently inhibited CL from the ‐generating system at concentration levels of 0.02–1.0 mmol/L. Methacycline and oxytetracycline were the scavengers at concentration levels of 0.01–0.1 mmol/L, whereas when their concentration was lowered the drugs were capable of generating , leading to CL enhancement. For all the data obtained in this study, the scavenging activity for the compounds tested decreased in the following order: tetracycline > doxycycline > chlortetracycline > tiron methacycline > oxytetracycline. These results indicate that the tetracycline drugs directly alter redox chemistry in aprotic media. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
ROS, continuously produced in cells, can reversibly or irreversibly oxidize proteins, lipids, and DNA. At the protein level, cysteine, methionine, tryptophan, and tyrosine residues are particularly prone to oxidation. Here, we describe the solid phase synthesis of peptides containing four different oxidation products of tryptophan residues that can be formed by oxidation in proteins in vitro and in vivo: 5‐HTP, Oia, Kyn, and NFK. First, we synthesized Oia and NFK by selective oxidation of tryptophan and then protected the ${\bf \alpha}$ ‐amino group of both amino acids, and the commercially available 5‐HTP, with Fmoc‐succinimide. High yields of Fmoc‐Kyn were obtained by acid hydrolysis of Fmoc‐NFK. All four Fmoc derivatives were successfully incorporated, at high yields, into three different peptide sequences from skeletal muscle actin, creatin kinase (M‐type), and ${\bf \beta}$ ‐enolase. The correct structure of all modified peptides was confirmed by tandem mass spectrometry. Interestingly, isobaric peptides containing 5‐HTP and Oia were always well separated in an acetonitrile gradient with TFA as the ion‐pair reagent on a C18‐phase. Such synthetic peptides should prove useful in future studies to distinguish isobaric oxidation products of tryptophan. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The local density of individuals is seldom uniform in space and time within natural populations. Yet, formal approaches to the process of isolation by distance in continuous populations have encountered analytical difficulties in describing genetic structuring with demographic heterogeneities, usually disregarding local correlations in the movement and reproduction of genes. We formulate exact recursions for probabilities of identity in continuous populations, from which we deduce definitions of effective dispersal () and effective density (De) that generalize results relating spatial genetic structure, dispersal and density in lattice models. The latter claim is checked in simulations where estimates of effective parameters obtained from demographic information are compared with estimates derived from spatial genetic patterns in a plant population evolving in a heterogeneous and dynamic habitat. The simulations further suggest that increasing spatio‐temporal correlations in local density reduce and generally decrease the product , with dispersal kurtosis influencing their sensitivity to density fluctuations. As in the lattice model, the expected relationship between the product and the genetic structure statistic ar holds under fluctuating density, irrespective of dispersal kurtosis. The product D σ2 between observed census density and the observed dispersal rate over one generation will generally be an upwardly biased (up to 400% in simulations) estimator of in populations distributed in spatially aggregated habitats.  相似文献   

19.
The relative contribution of the high‐affinity K+ transporter AtHAK5 and the inward rectifier K+ channel AtAKT1 to K+ uptake in the high‐affinity range of concentrations was studied in Arabidopsis thaliana ecotype Columbia (Col‐0). The results obtained with wild‐type lines, with T‐DNA insertion in both genes and specific uptake inhibitors, show that AtHAK5 and AtAKT1 mediate the ‐sensitive and the Ba2+‐sensitive components of uptake, respectively, and that they are the two major contributors to uptake in the high‐affinity range of Rb+ concentrations. Using Rb+ as a K+ analogue, it was shown that AtHAK5 mediates absorption at lower Rb+ concentrations than AtAKT1 and depletes external Rb+ to values around 1 μM. Factors such as the presence of K+ or during plant growth determine the relative contribution of each system. The presence of in the growth solution inhibits the induction of AtHAK5 by K+ starvation. In K+‐starved plants grown without , both systems are operative, but when is present in the growth solution, AtAKT1 is probably the only system mediating Rb+ absorption, and the capacity of the roots to deplete Rb+ is reduced.  相似文献   

20.
We tested whether the presence of plant roots would impair the uptake of ammonium (), glycine, and glutamate by microorganisms in a deciduous forest soil exposed to constant or variable moisture in a short‐term (24‐h) experiment. The uptake of 15NH4 and dual labeled amino acids by the grass Festuca gigantea L. and soil microorganisms was determined in planted and unplanted soils maintained at 60% WHC (water holding capacity) or subject to drying and rewetting. The experiment used a design by which competition was tested in soils that were primed by plant roots to the same extent in the planted and unplanted treatments. Festuca gigantea had no effect on microbial N uptake in the constant moist soil, but its presence doubled the microbial uptake in the dried and rewetted soil compared with the constant moist. The drying and rewetting reduced by half or more the uptake by F. gigantea, despite more than 60% increase in the soil concentration of . At the same time, the amino acid and ‐ N became equally valued in the plant uptake, suggesting that plants used amino acids to compensate for the lower acquisition. Our results demonstrate the flexibility in plant‐microbial use of different N sources in response to soil moisture fluctuations and emphasize the importance of including transient soil conditions in experiments on resource competition between plants and soil microorganisms. Competition between plants and microorganisms for N is demonstrated by a combination of removal of one of the potential competitors, the plant, and subsequent observations of the uptake of N in the organisms in soils that differ only in the physical presence and absence of the plant during a short assay. Those conditions are necessary to unequivocally test for competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号