首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition of the large, single, mitochondrion (mt) of Trypanosoma brucei was characterized by MS (2‐D LC‐MS/MS and gel‐LC‐MS/MS) analyses. A total of 2897 proteins representing a substantial proportion of procyclic form cellular proteome were identified, which confirmed the validity of the vast majority of gene predictions. The data also showed that the genes annotated as hypothetical (species specific) were overpredicted and that virtually all genes annotated as hypothetical, unlikely are not expressed. By comparing the MS data with genome sequence, 40 genes were identified that were not previously predicted. The data are placed in a publicly available web‐based database (www.TrypsProteome.org). The total mitochondrial proteome is estimated at 1008 proteins, with 401, 196, and 283 assigned to the mt with high, moderate, and lower confidence, respectively. The remaining mitochondrial proteins were estimated by statistical methods although individual assignments could not be made. The identified proteins have predicted roles in macromolecular, metabolic, energy generating, and transport processes providing a comprehensive profile of the protein content and function of the T. brucei mt.  相似文献   

2.
Translocases of mitochondrial inner membrane (TIMs) are multiprotein complexes. The only Tim component so far characterized in kinetoplastid parasites such as Trypanosoma brucei is Tim17 (TbTim17), which is essential for cell survival and mitochondrial protein import. Here, we report that TbTim17 is present in a protein complex of about 1,100 kDa, which is much larger than the TIM complexes found in fungi and mammals. Depletion of TbTim17 in T. brucei impairs the mitochondrial import of cytochrome oxidase subunit IV, an N-terminal signal-containing protein. Pretreatment of isolated mitoplasts with the anti-TbTim17 antibody inhibited import of cytochrome oxidase subunit IV, indicating a direct involvement of the TbTim17 in the import process. Purification of the TbTim17-containing protein complex from the mitochondrial membrane of T. brucei by tandem affinity chromatography revealed that TbTim17 associates with seven unique as well as a few known T. brucei mitochondrial proteins. Depletion of three of these novel proteins, i.e. TbTim47, TbTim54, and TbTim62, significantly decreased mitochondrial protein import in vitro. In vivo targeting of a newly synthesized mitochondrial matrix protein, MRP2, was also inhibited due to depletion of TbTim17, TbTim54, and TbTim62. Co-precipitation analysis confirmed the interaction of TbTim54 and TbTim62 with TbTim17 in vivo. Overall, our data reveal that TbTim17, the single homolog of Tim17/22/23 family proteins, is present in a unique TIM complex consisting of novel proteins in T. brucei and is critical for mitochondrial protein import.  相似文献   

3.
4.
The recently developed ultrastructure expansion microscopy (U-ExM) technique allows us to increase the spatial resolution within a cell or tissue for microscopic imaging through the physical expansion of the sample. In this study, we validate the use of U-ExM in Trypanosoma brucei measuring the expansion factors of several different compartments/organelles and thus verify the isotropic expansion of the cell. We furthermore demonstrate the use of this sample preparation protocol for future studies by visualizing the nucleus and kDNA, as well as proteins of the cytoskeleton, the basal body, the mitochondrion and the endoplasmic reticulum. Lastly, we discuss the challenges and opportunities of U-ExM.  相似文献   

5.
6.
Abstract Numbers of immature Trypanosoma brucei brucei within a tsetse midgut remain remarkably constant after establishment throughout the course of an infection, irrespective of whether the infection eventually matures. These results suggest a system of self regulation of the parasite population in the insect gut based on a form of programmed cell death which would carry advantages for both the parasite and the vector.  相似文献   

7.
We have undertaken a large scale study of the proteins expressed in the procyclic form of the parasite Trypanosoma brucei, which causes African sleeping sickness, using 2-DE and MS. The complete data set encompasses over 2000 identifications, of which 770 are distinct proteins. We have discovered that multiple protein isoforms appear to be common in T. brucei, as most proteins have been matched to more than one gel spot. We have developed visualisation software to investigate the differences between isoforms, based on the information from the results of database searches with MS data. We are able to highlight instances where PTMs are the most likely cause of variant forms. In other cases, spots that appear reproducibly across replicates contain fragments of proteins, arising either as experimental artefacts or as part of protein degradation. We are also able to classify clusters of gel spots into different groups based on the pattern of peptides that have been matched from MS data. The entire data set is stored within a relational database system that allows complex queries ( http://www.gla.ac.uk/functionalgenomics). Using specific proteins as examples, we demonstrate how the visualisation software and the database query facilities can be used.  相似文献   

8.
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.  相似文献   

9.
Colasante C  Ellis M  Ruppert T  Voncken F 《Proteomics》2006,6(11):3275-3293
Peroxisomes are present in nearly every eukaryotic cell and compartmentalize a wide range of important metabolic processes. Glycosomes of Kinetoplastid parasites are peroxisome-like organelles, characterized by the presence of the glycolytic pathway. The two replicating stages of Trypanosoma brucei brucei, the mammalian bloodstream form (BSF) and the insect (procyclic) form (PCF), undergo considerable adaptations in metabolism when switching between the two different hosts. These adaptations involve also substantial changes in the proteome of the glycosome. Comparative (non-quantitative) analysis of BSF and PCF glycosomes by nano LC-ESI-Q-TOF-MS resulted in the validation of known functional aspects of glycosomes and the identification of novel glycosomal constituents.  相似文献   

10.
Trypanosoma brucei (T. brucei) is responsible for the fatal human disease called African trypanosomiasis, or sleeping sickness. The causative parasite, Trypanosoma, encodes soluble versions of inorganic pyrophosphatases (PPase), also called vacuolar soluble proteins (VSPs), which are localized to its acidocalcisomes. The latter are acidic membrane-enclosed organelles rich in polyphosphate chains and divalent cations whose significance in these parasites remains unclear. We here report the crystal structure of T. brucei brucei acidocalcisomal PPases in a ternary complex with Mg2+ and imidodiphosphate. The crystal structure reveals a novel structural architecture distinct from known class I PPases in its tetrameric oligomeric state in which a fused EF hand domain arranges around the catalytic PPase domain. This unprecedented assembly evident from TbbVSP1 crystal structure is further confirmed by SAXS and TEM data. SAXS data suggest structural flexibility in EF hand domains indicative of conformational plasticity within TbbVSP1.  相似文献   

11.
12.
The three-dimensional structure of thioredoxin from Trypanosoma brucei brucei has been determined at 1.4 A resolution. The overall structure is more similar to that of human thioredoxin than to any other thioredoxin structure. The most striking difference to other thioredoxins is the absence of a buried carboxylate behind the active site cysteines. Instead of the common Asp, there is a Trp that binds an ordered water molecule probably involved in the protonation/deprotonation of the more buried cysteine during catalysis. The conserved Trp in the WCGPC sequence motif has an exposed position that can interact with target proteins.  相似文献   

13.
Variant surface glycoprotein (VSG) of Trypanosoma brucei brucei AnTat 1.1 was released by means of the procedure described by Baltz et al. ([1976], Ann. Immunol. [Inst. Pasteur] 127C, 761-774). The concanavalin-A chromatography yielded 3 VSG fractions according to the addition, in the elution buffer, of alpha-methyl-D-mannopyranoside, beta-mercaptoethanol, and sodium dodecyl sulfate. These VSG fractions showed heterogeneous behaviour on reverse-phase high performance liquid chromatography. The 3 VSG fractions as well as the myristylated VSG of AnTat 1.1 essentially consist of dimer VSG forms linked through a disulfide bridge, as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis, under reducing and nonreducing conditions.  相似文献   

14.
Summary— Trypanosoma brucei brucei, a protozoan parasite of wild and domestic animals in Africa, is related to the pathogenic agent of human sleeping sickness. Four H1 histone proteins were isolated from nuclei of procyclic culture forms and cleaved with proteases. Amino acid sequence analysis of purified fragments indicated the presence of variants which displayed sequence identities as compared to the C-terminal domain of human H1. Substitutions of amino acids and posttranslational modifications of the histones in iT b brucei H1 may influence protein conformation and histone-histone as well as histone-DNA interactions in the chromatin of the parasite. Digestion of soluble chromatin with immobilized trypsin at low and high ionic strengths indicated an internal localization of H1 in the condensed chromatin. The influence of histone H1 of T b brucei on the compaction pattern of the chromatin was investigated by dissociation and reconstitution experiments. Electron microscopy revealed that trypanosome H1 was able to induce condensation of the chromatin of the parasite and of rat liver into dense tangles. After dephosphorylation of H1, 30 nm fibers were induced in rat liver chromatin, while the resulting fibers were distinctly thinner in T b brucei. It can be concluded that the absence of 30 nm fibers in T b brucei chromatin cannot be explained by the divergent variants and posttranslational phosphorylations of H1 only but rather by the influence of both, the divergent core histones, previously described, and H1 properties.  相似文献   

15.
In this work we describe the ability of living cells of Trypanosoma brucei brucei to hydrolyze extracellular ATP. In these intact parasites there was a low level of ATP hydrolysis in the absence of any divalent metal (4.72+/-0.51 nmol Pi x 10(-7) cells x h(-1)). The ATP hydrolysis was stimulated by MgCl(2) and the Mg-dependent ecto-ATPase activity was 27.15+/-2.91 nmol Pi x 10(-7) cells x h(-1). This stimulatory activity was also observed when MgCl(2) was replaced by MnCl(2). CaCl(2) and ZnCl(2) were also able to stimulate the ATPase activity, although less than MgCl(2). The apparent K(m) for ATP was 0.61 mM. This ecto-ATPase activity was insensitive to inhibitors of other ATPase and phosphatase activities. To confirm that this Mg-dependent ATPase activity is an ecto-ATPase activity, we used an impermeable inhibitor, DIDS (4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid), as well as suramin, an antagonist of P(2) purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg(2+)-dependent ATPase activity in a dose-dependent manner. Living cells sequentially hydrolyzed the ATP molecule generating ADP, AMP and adenosine, and supplementation of the culture medium with ATP was able to sustain the proliferation of T. brucei brucei as well as adenosine supplementation. Furthermore, the E-NTPDase activity of T. brucei brucei is modulated by the availability of purines in the medium. These results indicate that this surface enzyme may play a role in the salvage of purines from the extracellular medium in T. brucei brucei.  相似文献   

16.
SYNOPSIS. Differences in the relative and absolute cell organization between strains of the Trypanosoma brucei subgroup were studied during the transformation from slender to stumpy bloodforms. Two pleomorphic and 1 monomorphic T. b. brucei, and 1 pleomorphic T. b. rhodesiense strains were investigated. Volume densities, surface densities and surface to volume ratios showed barely significant differences between the 2 pleomorphic T. b. brucei strains; absolute parameters, however, differ markedly between all the strains investigated. Only the relative parameters of the mitochondrion show notable differences between T. b. brucei and T. b. rhodesiense examined here. During the transformation from slender to stumpy forms the enlargement of the mitochondrial volume in T. b. brucei is achieved by an increase in width of the mitochondrial tube and in T. b. rhodesiense by the formation of a more elaborate network. The ratio of the inner mitochondrial membrane surface area to the mitochondrial matrix volume showed no significant change in all 3 pleomorphic strains examined. Because of their morphometric similarity to slender forms of pleomorphic T. b. brucei strains, it can be assumed that the monomorphic trypanosomes correspond morphologically to slender trypanosomes. Neither pleomorphism nor strain specificity have a significant influence on the relative amount of “vesicles” and lipid inclusions.  相似文献   

17.
18.
SYNOPSIS. The quantitative ultrastructure of the developmental stages of Trypanosoma brucei brucei in its vector Glossina morsitans was studied by morphometric analysis. Values from ectoperitrophic midgut forms, proventricular forms, epimastigote and metacyclic forms in the salivary gland are compared with results from bloodstream forms, published previously. Significant differences in the volume densities of the trypanosome's single mitochondrion, of microbody-like organelles and in the surface densities of inner and outer mitochondrial membranes were found throughout the whole life cycle. A great increase in volume density of the mitochondrion was observed after transfer to the insect host; reduction took place during metacyclic development. Parallel to the biogenesis of the mitochondrion a reduction of microbodies was found in proventricular forms and there was a great increase in metacyclic forms concomitant with the regression of the mitochondrion. Metacyclic forms had a close quantitative morphologic similarity to bloodstream forms. The results are discussed in connection with changes in structure and in oxidative metabolism.  相似文献   

19.
Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosomacruzi and Trypanosoma brucei, as well as drug-resistantforms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic andgenotoxic properties, but has been largely used as a lead compound. Here, we comparedthe activity of 7 with its 4H-1,2,4-triazole bioisostere (8) inbloodstream forms of T. brucei and T. cruzi andevaluated their activation by T. brucei type I nitroreductase(TbNTR) enzyme. We also analysed the cytotoxic and genotoxiceffects of these compounds in whole human blood using Comet and fluoresceindiacetate/ethidium bromide assays. Although the only difference between 7 and 8 isthe substitution of sulphur (in the thiadiazole in 7) for nitrogen (in the triazolein 8), the results indicated that 8 had poorer antiparasitic activity than 7 and wasnot genotoxic, whereas 7 presented this effect. The determination of Vmax indicatedthat although 8 was metabolised more rapidly than 7, it bounds to theTbNTR with better affinity, resulting in equivalent kcat/KMvalues. Docking assays of 7 and 8 performed within the active site of a homologymodel of the TbNTR indicating that 8 had greater affinity than7.  相似文献   

20.
Abstract .In a single generation of selection, two lines of Glossina morsitans centralis were established that differed significantly in susceptibility to Trypanosoma congolense clone IL 1180. Reciprocal crosses demonstrated that susceptibility was a maternally inherited trait. Differences between the lines, to all phases of the trypanosome infection, were maintained for eight generations, whereas differences in susceptibility to midgut infections were maintained for twenty-eight generations. Thereafter, the lines did not differ in susceptibility to Trypanosoma congolense IL 1180. Susceptibility to infections with Trypanosoma congolense IL 1180 was only a weak predictor of susceptibility to T. congolense clones IL 13-E3 and K60/1, as well as clone T. brucei brucei STIB 247-L. However, the susceptible and refractory lines displayed these phenotypes when tested with Trypanosoma vivax, indicating that the factors that affect susceptibility to trypanosomes are expressed both within and outside the midgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号