首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The in‐depth analysis of complex proteome samples requires fractionation of the sample into subsamples prior to LC‐MS/MS in shotgun proteomics experiments. We have established a 3D workflow for shotgun proteomics that relies on protein separation by 1D PAGE, gel fractionation, trypsin digestion, and peptide separation by in‐gel IEF, prior to RP‐HPLC‐MS/MS. Our results show that applying peptide IEF can significantly increase the number of proteins identified from PAGE subfractionation. This method delivers deeper proteome coverage and provides a large degree of flexibility in experimentally approaching highly complex mixtures by still relying on protein separation according to molecular weight in the first dimension.  相似文献   

2.
The 2‐D peptide separations employing mixed mode reversed phase anion exchange (MM (RP‐AX)) HPLC in the first dimension in conjunction with RP chromatography in the second dimension were developed and utilised for shotgun proteome analysis. Compared with strong cation exchange (SCX) typically employed for shotgun proteomic analysis, peptide separations using MM (RP‐AX) revealed improved separation efficiency and increased peptide distribution across the elution gradient. In addition, improved sample handling, with no significant reduction in the orthogonality of the peptide separations was observed. The shotgun proteomic analysis of a mammalian nuclear cell lysate revealed additional proteome coverage (2818 versus 1125 unique peptides and 602 versus 238 proteins) using the MM (RP‐AX) compared with the traditional SCX hyphenated to RP‐LC‐MS/MS. The MM analysis resulted in approximately 90% of the unique peptides identified present in only one fraction, with a heterogeneous peptide distribution across all fractions. No clustering of the predominant peptide charge states was observed during the gradient elution. The application of MM (RP‐AX) for 2‐D LC proteomic studies was also extended in the analysis of iTRAQ‐labelled HeLa and cyanobacterial proteomes using nano‐flow chromatography interfaced to the MS/MS. We demonstrate MM (RP‐AX) HPLC as an alternative approach for shotgun proteomic studies that offers significant advantages over traditional SCX peptide separations.  相似文献   

3.
Chinese hamster ovary (CHO) cells are the major mammalian host for producing various therapeutic proteins. Among CHO cells, the dihydrofolate reductase‐deficient CHO DG44 cell line has been used as a popular mammalian host because of the availability of a well‐characterized genetic selection and amplification system. However, this cell line has not been studied at the proteome level. Here, the first detailed proteome analysis of the CHO DG44 cell line is described. A protein reference map of the CHO DG44 cell line was established by analyzing whole cellular proteins using 2‐DE with various immobilized pH gradients (pHs 3–10, 5–8, and 3–6) in the first dimension and a 12% acrylamide gel in the second dimension. The map is composed of over 1400 silver‐stained protein spots. Among them, 179 protein spots, which represent proteins associated with various biological processes and cellular compartments, were identified based on MALDI‐TOF‐MS and MS/MS. This proteome database should be valuable for better understanding of CHO cell physiology and protein expression patterns which may lead to efficient therapeutic protein production.  相似文献   

4.
MS/MS is the technology of choice for analyzing complex protein mixtures. However, due to the intrinsic complexity and dynamic range present in higher eukaryotic proteomes, prefractionation is an important step to maximize the number of proteins identified. Off‐gel IEF (OG‐IEF) and high pH RP (Hp‐RP) column chromatography have both been successfully utilized as a first‐dimension peptide separation technique in shotgun proteomic experiments. Here, a direct comparison of the two methodologies was performed on ex vivo peripheral blood mononuclear cell lysate. In 12‐fraction replicate analysis, Hp‐RP resulted in more peptides and proteins identified than OG‐IEF fractionation. Distributions of peptide pIs and hydropathy did not reveal any appreciable bias in either technique. Resolution, defined here as the ability to limit a specific peptide to one particular fraction, was significantly better for Hp‐RP. This leads to a more uniform distribution of total and unique peptides for Hp‐RP across all fractions collected. These results suggest that fractionation by Hp‐RP over OG‐IEF is the better choice for typical complex proteome analysis.  相似文献   

5.
Liquid chromatography MALDI MS/MS for membrane proteome analysis   总被引:3,自引:0,他引:3  
Membrane proteins play critical roles in many biological functions and are often the molecular targets for drug discovery. However, their analysis presents a special challenge largely due to their highly hydrophobic nature. We present a surfactant-aided shotgun proteomics approach for membrane proteome analysis. In this approach, membrane proteins were solubilized and digested in the presence of SDS followed by newly developed auto-offline liquid chromatography/matrix-assisted laser desorption ionization (LC/MALDI) tandem MS analysis. Because of high tolerance of MALDI to SDS, one-dimensional (1D) LC separation can be combined with MALDI for direct analysis of protein digests containing SDS, without the need for extensive sample cleanup. In addition, the heated droplet interface used in LC/MALDI can work with high flow LC separations, allowing a relatively large amount of protein digest to be used for 1D LC/MALDI which facilitates the detection of low abundance proteins. The proteome identification results obtained by LC/MALDI are compared to the gel electrophoresis/MS method as well as the shotgun proteomics method using 2D LC/electrospray ionization MS. It is demonstrated that, while LC/MALDI provides more extensive proteome coverage compared to the other two methods, these three methods are complementary to each other and a combination of these methods should provide a more comprehensive membrane proteome analysis.  相似文献   

6.
Phosphorylation is a reversible posttranslational protein modification which plays a pivotal role in intracellular signaling. Despite extensive efforts, phosphorylation site mapping of proteomes is still incomplete motivating the exploration of alternative methods that complement existing workflows. In this study, we compared tandem mass spectrometry (MS/MS) on matrix assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) and nano‐electrospray ionization (nESI) Orbitrap instruments with respect to their ability to identify phosphopeptides from complex proteome digests. Phosphopeptides were enriched from tryptic digests of cell lines using Fe‐IMAC column chromatography and subjected to LC‐MS/MS analysis. We found that the two analytical workflows exhibited considerable orthogonality. For instance, MALDI‐TOF MS/MS favored the identification of phosphopeptides encompassing clear motif signatures for acidic residue directed kinases. The extent of orthogonality of the two LC‐MS/MS systems was comparable to that of using alternative proteases such as Asp‐N, Arg‐C, chymotrypsin, Glu‐C and Lys‐C on just one LC‐MS/MS instrument. Notably, MALDI‐TOF MS/MS identified an unexpectedly high number and percentage of phosphotyrosine sites (~20% of all sites), possibly as a direct consequence of more efficient ionization. The data clearly show that LC‐MALDI MS/MS can be a useful complement to LC‐nESI MS/MS for phosphoproteome mapping and particularly so for acidic and phosphotyrosine containing peptides.  相似文献   

7.
The quality of MALDI‐TOF mass spectrometric analysis is highly dependent on the matrix and its deposition strategy. Although different matrix‐deposition methods have specific advantages, one major problem in the field of proteomics, particularly with respect to quantitation, is reproducibility between users or laboratories. Compounding this is the varying crystal homogeneity of matrices depending on the deposition strategy used. Here, we describe a novel optimised matrix‐deposition strategy for LC‐MALDI‐TOF/TOF MS using an automated instrument that produces a nebulised matrix “mist” under controlled atmospheric conditions. Comparisons of this with previously reported strategies showed the method to be advantageous for the atypical matrix, 2,5‐DHB, and improved phosphopeptide ionisation when compared with deposition strategies for CHCA. This optimised DHB matrix‐deposition strategy with LC‐MALDI‐TOF/TOF MS, termed EZYprep LC, was subsequently optimised for phosphoproteome analysis and compared to LC‐ESI‐IT‐MS and a previously reported approach for phosphotyrosine identification and characterisation. These methods were used to map phosphorylation on epidermal growth factor‐stimulated epidermal growth factor receptor to gauge the sensitivity of the proposed method. EZYprep DHB LC‐MALDI‐TOF/TOF MS was able to identify more phosphopeptides and characterise more phosphorylation sites than the other two proteomic strategies, thus proving to be a sensitive approach for phosphoproteome analysis.  相似文献   

8.
The peptide‐based quantitation accuracy and precision of LC‐ESI (QSTAR Elite) and LC‐MALDI (4800 MALDI TOF/TOF) were compared by analyzing identical Escherichia coli tryptic digests containing iTRAQ‐labeled peptides of defined abundances (1:1, 2.5:1, 5:1, and 10:1). Only 51.4% of QSTAR spectra were used for quantitation by ProteinPilot Software versus 66.7% of LC‐MALDI spectra. The average protein sequence coverages for LC‐ESI and LC‐MALDI were 24.0 and 18.2% (14.9 and 8.4 peptides per protein), respectively. The iTRAQ‐based expression ratios determined by ProteinPilot from the 57 467 ESI‐MS/MS and 26 085 MALDI‐MS/MS spectra were analyzed for measurement accuracy and reproducibility. When the relative abundances of peptides within a sample were increased from 1:1 to 10:1, the mean ratios calculated on both instruments differed by only 0.7–6.7% between platforms. In the 10:1 experiment, up to 64.7% of iTRAQ ratios from LC‐ESI MS/MS spectra failed S/N thresholds and were excluded from quantitation, while only 0.1% of the equivalent LC‐MALDI iTRAQ ratios were rejected. Re‐analysis of an archived LC‐MALDI sample set stored for 5 months generated 3715 MS/MS spectra for quantitation, compared with 3845 acquired originally, and the average ratios differed by only 3.1%. Overall, MS/MS‐based peptide quantitation performance of offline LC‐MALDI was comparable with on‐line LC‐ESI, which required threefold less time. However, offline LC‐MALDI allows the re‐analysis of archived HPLC‐separated samples.  相似文献   

9.
The filamentous fungus Aspergillus flavus is an opportunistic soil‐borne pathogen that produces aflatoxins, the most potent naturally occurring carcinogenic compounds known. This work represents the first gel‐based profiling analysis of A. flavus proteome and establishes a 2D proteome map. Using 2DE and MALDI‐TOF‐MS/MS, we identified 538 mycelial proteins of the aflatoxigenic strain NRRL 3357, the majority of which were functionally annotated as related to various cellular metabolic and biosynthetic processes. Additionally, a few enzymes from the aflatoxin synthesis pathway were also identified.  相似文献   

10.
Arthropod‐borne diseases are important causes of morbidity and mortality. The identification of vector species relies mainly on morphological features and/or molecular biology tools. The first method requires specific technical skills and may result in misidentifications, and the second method is time‐consuming and expensive. The aim of the present study is to assess the usefulness and accuracy of matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) as a supplementary tool with which to identify mosquito vector species and to invest in the creation of an international database. A total of 89 specimens belonging to 10 mosquito species were selected for the extraction of proteins from legs and for the establishment of a reference database. A blind test with 123 mosquitoes was performed to validate the MS method. Results showed that: (a) the spectra obtained in the study with a given species differed from the spectra of the same species collected in another country, which highlights the need for an international database; (b) MALDI‐TOF MS is an accurate method for the rapid identification of mosquito species that are referenced in a database; (c) MALDI‐TOF MS allows the separation of groups or complex species, and (d) laboratory specimens undergo a loss of proteins compared with those isolated in the field. In conclusion, MALDI‐TOF MS is a useful supplementary tool for mosquito identification and can help inform vector control.  相似文献   

11.
The use of nLC-ESI-MS/MS in shotgun proteomics experiments and GeLC-MS/MS analysis is well accepted and routinely available in most proteomics laboratories. However, the same cannot be said for nLC-MALDI MS/MS, which has yet to experience such widespread acceptance, despite the fact that the MALDI technology offers several critical advantages over ESI. As an illustration, in an analysis of moderately complex sample of E. coli proteins, the use MALDI in addition to ESI in GeLC-MS/MS resulted in a 16% average increase in protein identifications, while with more complex samples the number of additional protein identifications increased by an average of 45%. The size of the unique peptides identified by MALDI was, on average, 25% larger than the unique peptides identified by ESI, and they were found to be slightly more hydrophilic. The insensitivity of MALDI to the presence of ionization suppression agents was shown to be a significant advantage, suggesting it be used as a complement to ESI when ion suppression is a possibility. Furthermore, the higher resolution of the TOF/TOF instrument improved the sensitivity, accuracy, and precision of the data over that obtained using only ESI-based iTRAQ experiments using a linear ion trap. Nevertheless, accurate data can be generated with either instrument. These results demonstrate that coupling nanoLC with both ESI and MALDI ionization interfaces improves proteome coverage, reduces the deleterious effects of ionization suppression agents, and improves quantitation, particularly in complex samples.  相似文献   

12.
With its predicted proteome of 1550 proteins (data set Etalon) Helicobacter pylori 26695 represents a perfect model system of medium complexity for investigating basic questions in proteomics. We analyzed urea‐solubilized proteins by 2‐DE/MS (data set 2‐DE) and by 1‐DE‐LC/MS (Supprot); proteins insoluble in 9 M urea but solubilized by SDS (Pellet); proteins precipitating in the Sephadex layer at the application side of IEF (Sephadex) by 1‐DE‐LC/MS; and proteins precipitating close to the application side within the IEF gel by LC/MS (Startline). The experimental proteomics data of H. pylori comprising 567 proteins (protein coverage: 36.6%) were stored in the Proteome Database System for Microbial Research ( http://www.mpiib‐berlin.mpg.de/2D‐PAGE/ ), which gives access to raw mass spectra (MALDI‐TOF/TOF) in T2D format, as well as to text files of peak lists. For data mining the protein mapping and comparison tool PROMPT ( http://webclu.bio.wzw.tum.de/prompt/ ) was used. The percentage of proteins with transmembrane regions, relative to all proteins detected, was 0, 0.2, 0, 0.5, 3.8 and 6.3% for 2‐DE, Supprot, Startline, Sephadex, Pellet, and Etalon, respectively. 2‐DE does not separate membrane proteins because they are insoluble in 9 M urea/70 mM DTT and 2% CHAPS. SDS solubilizes a considerable portion of the urea‐insoluble proteins and makes them accessible for separation by SDS‐PAGE and LC. The 2‐DE/MS analysis with urea‐solubilized proteins and the 1‐DE‐LC/MS analysis with the urea‐insoluble protein fraction (Pellet) are complementary procedures in the pursuit of a complete proteome analysis. Access to the PROMPT‐generated diagrams in the Proteome Database allows the mining of experimental data with respect to other functional aspects.  相似文献   

13.
Abstract

We compared the 2DE coupled to MALDI‐TOF‐MS and ESI‐MS/MS analysis (2DE‐MS) and the on‐line 2D nanoLC, followed by nanoESI‐MS/MS analysis (2DLC‐MS), for the separation and identification of proteins in high abundance protein‐depleted human plasma. Identification of proteins in the plasma by the two methods demonstrated that the majority of the identified protein set was unique to each method. Therefore, if a comprehensive coverage of the proteome identification is desired, it is ideal to apply both methods. The 2DE‐MS method is amenable to protein spot‐based quantitation, whereas the 2DLC‐MS method may provide an advantage of the high throughput application.  相似文献   

14.
The discovery of novel biomarkers by means of advanced detection tools based on proteomic analysis technologies necessitates the development of improved diagnostic methods for application in clinical routine. On the basis of three different application examples, this review presents the limitations of conventional routine diagnostic assays and illustrates the advantages of immunoaffinity enrichment combined with MALDI‐TOF MS. Applying this approach increases the specificity of the analysis supporting a better diagnostic recognition, sensitivity, and differentiation of certain diseases. The use of MALDI‐TOF MS as detection method facilitates the identification of modified peptides and proteins providing additional information. Further, employing respective internal standard peptides allows for relative and absolute quantitation which is mandatory in the clinical context. Although MALDI‐TOF MS is not yet established for clinical routine diagnostics this technology has a high potential for improvement of clinical diagnostics and monitoring therapeutic efficacy.  相似文献   

15.
Proteomic profiling by MALDI‐TOF MS presents various advantages (speed of analysis, ease of use, relatively low cost, sensitivity, tolerance against detergents and contaminants, and possibility of automation) and is being currently used in many applications (e.g. peptide/protein identification and quantification, biomarker discovery, and imaging MS). Earlier studies by many groups indicated that moderate reproducibility in relative peptide quantification is a major limitation of MALDI‐TOF MS. In the present work, we examined and demonstrate a clear effect, in cases apparently random, of sample dilution in complex samples (urine) on the relative quantification of peptides by MALDI‐TOF MS. Results indicate that in urine relative abundance of peptides cannot be assessed with confidence based on a single MALDI‐TOF MS spectrum. To account for this issue, we developed and propose a novel method of determining the relative abundance of peptides, taking into account that peptides have individual linear quantification ranges in relation to sample dilution. We developed an algorithm that calculates the range of dilutions at which each peptide responds in a linear manner and normalizes the received peptide intensity values accordingly. This concept was successfully applied to a set of urine samples from patients diagnosed with diabetes presenting normoalbuminuria (controls) and macroalbuminuria (cases).  相似文献   

16.
LC‐ESI/MS/MS‐based shotgun proteomics is currently the most commonly used approach for the identification and quantification of proteins in large‐scale studies of biomarker discovery. In the past several years, the shotgun proteomics technologies have been refined toward further enhancement of proteome coverage. In the complex series of protocols involved in shotgun proteomics, however, loss of proteolytic peptides during the lyophilization step prior to the LC/MS/MS injection has been relatively neglected despite the fact that the dissolution of the hydrophobic peptides in lyophilized samples is difficult in 0.05–0.1% TFA or formic acid, causing substantial loss of precious peptide samples. In order to prevent the loss of peptide samples during this step, we devised a new protocol using Invitrosol (IVS), a commercially available surfactant compatible with ESI‐MS; by dissolving the lyophilized peptides in IVS, we show improved recovery of hydrophobic peptides, leading to enhanced coverage of proteome. Thus, the use of IVS in the recovery step of lyophilized peptides will help the shotgun proteomics analysis by expanding the proteome coverage, which would significantly promote the discovery and development of new diagnostic markers and therapeutic targets.  相似文献   

17.
The aim of this study was to detect cryopreservation‐induced alterations in the protein composition of rainbow trout semen using two independent methods 1DE SDS‐PAGE prefractionation combined with LC‐MS/MS and 2D difference gel electrophoresis followed by MALDI‐TOF/TOF identification. Here, we show the first comprehensive dataset of changes in rainbow trout semen proteome after cryopreservation, with a total of 73 identified proteins released from sperm to extracellular fluid, including mitochondrial, cytoskeletal, nuclear, and cytosolic proteins. Our study provides new information about proteins released from sperm, their relation to sperm structure and function, and changes of metabolism of sperm cells as a result of cryopreservation. The identified proteins represent potential markers of cryoinjures of sperm structures and markers of the disturbances of particular sperm metabolic pathways. Further studies will allow to decipher the precise function of the proteins altered during rainbow trout cryopreservation and are useful for the development of extensive diagnostic tests of sperm cryoinjures and for the successful improvement of sperm cryopreservation of this economically important species.  相似文献   

18.
Multidimensional LC-MS based shotgun proteomics experiments at the peptide level have traditionally been carried out by ion exchange in the first dimension and reversed-phase liquid chromatography in the second. Recently, it has been shown that isoelectric focusing (IEF) is an interesting alternative approach to ion exchange separation of peptides in the first dimension. Here we present an improved protocol for peptide separation by continuous free-flow electrophoresis (FFE) as the first dimension in a two-dimensional peptide separation work flow. By the use of a flat pI gradient and a mannitol and urea based separation media we were able to perform high-throughput proteome analysis with improved interfacing between FFE and RPLC-MS/MS. The developed protocol was applied to a cytosolic fraction from Schneider S2 cells from Drosophila melanogaster, resulting in the identification of more than 10,000 unique peptides with high probability. To improve the accuracy of the peptide identification following FFE-IEF we incorporated the pI information as an additional parameter into a statistical model for discrimination between correct and incorrect peptide assignments to MS/MS spectra.  相似文献   

19.
The Escherichia coli proteome was digested with trypsin and fractionated using SPE on a C18 SPE column. Seven fractions were collected and analyzed by CZE‐ESI‐MS/MS. The separation was performed in a 60‐cm‐long linear polyacrylamide‐coated capillary with a 0.1% v/v formic acid separation buffer. An electrokinetic sheath‐flow electrospray interface was used to couple the separation capillary with an Orbitrap‐Velos operating in higher‐energy collisional dissociation mode. Each CZE‐ESI‐MS/MS run lasted 50 min and total MS time was 350 min. A total of 23 706 peptide spectra matches, 4902 peptide IDs, and 871 protein group IDs were generated using MASCOT with false discovery rate less than 1% on the peptide level. The total mass spectrometer analysis time was less than 6 h, the sample identification rate (145 proteins/h) was more than two times higher than previous studies of the E. coli proteome, and the amount of sample consumed (<1 μg) was roughly fourfold less than previous studies. These results demonstrate that CZE is a useful tool for the bottom‐up analysis of prokaryote proteomes.  相似文献   

20.
The MALDI‐TOF MS has already been a main platform for phosphoproteome analysis. However, there are some weaknesses in direct analysis of endogenous phosphopeptides by MALDI‐TOF MS because of the serious suppression effect and poor ionization efficiency, which is brought by the excess of nonphosphopeptides and protein. It is essential to enrich endogenous phosphopeptides from complex biosamples efficiently prior to MALDI‐TOF MS analysis. Herein, we present a time‐saving and detailed protocol for the synthesis of titanium(iv)‐immobilized magnetic mesoporous silica nanoparticles (denoted as Fe3O4@mSiO2‐Ti4+), the subsequent enrichment process, and MALDI‐TOF MS analysis. We tested the LOD, size‐exclusive effect, reproducibility, and stability of Fe3O4@mSiO2‐Ti4+ nanoparticles. Furthermore, the ability of this protocol for identifying endogenous phosphopeptides in healthy human serum and saliva was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号