首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Injury to the peripheral nervous system can lead to spontaneous pain, hyperalgesia and allodynia. Previous studies have shown sprouting of Aβ-fibres into lamina II of the spinal cord dorsal horn after nerve injury and the formation of new synapses by these sprouts. β-Catenin and menin as synaptogenic factors are critically involved in synapse formation. However, the roles of β-catenin and menin in neuropathic pain are still unclear. Using Western blot analysis we investigated the changes of β-catenin and menin in the spinal dorsal horn after unilateral spared nerve injury (SNI). We demonstrated an increase in both β-catenin and menin protein levels in the ipsilateral spinal dorsal horn at days 1 and 3 following spared nerve injury (P < 0.05). These increases were associated with changes in paw withdrawal threshold to mechanical stimuli and weight bearing deficit suggestive of pain behavior and spontaneous ongoing pain respectively. However, the injury-associated increases in β-catenins and menins levels returned to control levels at day 14. In conclusion, these results indicate that peripheral nerve injury induces upregulation of β-catenins and menins in the dorsal horn of the spinal cord, which may contribute to the development of chronic neuropathic pain. Antagonists of these molecules may serve as new therapeutic agents.  相似文献   

2.
Lipocalin 2 (LCN2), which is also known as 24p3 and neutrophil gelatinase-associated lipocalin (NGAL), binds small, hydrophobic ligands and interacts with cell surface receptor 24p3R to regulate diverse cellular processes. In the present study, we examined the role of LCN2 in the pathogenesis of neuropathic pain using a mouse model of spared nerve injury (SNI). Lcn2 mRNA levels were significantly increased in the dorsal horn of the spinal cord after SNI, and LCN2 protein was mainly localized in neurons of the dorsal and ventral horns. LCN2 receptor 24p3R was expressed in spinal neurons and microglia after SNI. Lcn2-deficient mice exhibited significantly less mechanical pain hypersensitivity during the early phase after SNI, and an intrathecal injection of recombinant LCN2 protein elicited mechanical pain hypersensitivity in naive animals. Lcn2 deficiency, however, did not affect acute nociceptive pain. Lcn2-deficient mice showed significantly less microglial activation and proalgesic chemokine (CCL2 and CXCL1) production in the spinal cord after SNI than wild-type mice, and recombinant LCN2 protein induced the expression of these chemokines in cultured neurons. Furthermore, the expression of LCN2 and its receptor was detected in neutrophils and macrophages in the sciatic nerve following SNI, suggesting the potential role of peripheral LCN2 in neuropathic pain. Taken together, our results indicate that LCN2 plays a critical role in the development of pain hypersensitivity following peripheral nerve injury and suggest that LCN2 mediates neuropathic pain by inducing chemokine expression and subsequent microglial activation.  相似文献   

3.
Previous studies demonstrated that peripheral nerve injury induced excessive neuronal response and glial activation in the spinal cord dorsal horn, and such change has been proposed to reflect the development and maintenance of neuropathic pain states. The aim of this study was to examine neuronal excitability and glial activation in the spinal dorsal horn after peripheral nerve injury. We examined noxious heat stimulation-induced c-Fos protein-like immunoreactivity (Fos-LI) neuron profiles in fourth-to-sixth lumbar (L4–L6) level spinal dorsal horn neurons after fifth lumbar spinal nerve ligation (L5 SNL). Immunofluorescence labeling of OX-42 and GFAP was also performed in histological sections of the spinal cord. A significant increase in the number of Fos-LI neuron profiles in the spinal dorsal horn at the L4 level was found at 3 days after SNL, but returned to a level similar to that in sham-operated controls by 14 days after injury. As expected, a decrease in the number of Fos-LI neuron profiles in the spinal dorsal horn at the L5 level was found at 3 days after SNL. However, these profiles had reappeared in large numbers by 14 and 21 days after injury. Immunofluorescence labeling of OX-42 and GFAP indicated sequential activation of microglia and astrocytes in the spinal dorsal horn. We conclude that nerve injury causes differential changes in neuronal excitability in the spinal dorsal horn, which may coincide with glial activation. These changes may play a substantial role in the pathogenesis of neuropathic pain after peripheral nerve injury.  相似文献   

4.
5.
Mitochondria play an important role in pathophysiology of inflammatory and neuropathic pain but the mechanism is unclear. So far no comprehensive study exists that evaluates the changes of mitochondrial dynamics following the pain. In this study, we detected the mitochondrial distribution and subcellular morphology by using intrathecal injection of mitochondrial marker, Mitotracker Red® CM-H2XRox (Mito-Red) and confocal microscopic analysis in models of formalin-induced acute inflammatory pain, Complete Freund's Adjuvant (CFA)-induced persistent pain and spared nerve injury (SNI)-induced neuropathic pain. The results demonstrated that subcutaneous formalin injection did not affect the number of Mito-Red cells within the spinal dorsal horn at both acute and tonic phases, but significantly increased the number of cluster type mitochondria in superficial spinal dorsal horn (laminas I–II) at tonic phase. Differently, the number of Mito-Red cells significantly increased in superficial and deep spinal dorsal horn (laminas III–V) following persistent CFA and SNI neuropathic pain. Moreover, both CFA and SNI remarkably increased the number of cluster type mitochondria and decreased the number of granule type mitochondria, in both superficial and deep spinal dorsal horn. So we concluded that abnormal mitochondrial distribution contributes to neuropathic and some forms of inflammatory pain.  相似文献   

6.
Feng  Xiang-Lan  Deng  Hong-Bo  Wang  Zheng-Gang  Wu  Yun  Ke  Jian-Juan  Feng  Xiao-Bo 《Neurochemical research》2019,44(2):450-464

Histone acetylation levels can be upregulated by treating cells with histone deacetylase inhibitors (HDACIs), which can induce autophagy. Autophagy flux in the spinal cord of rats following the left fifth lumber spinal nerve ligation (SNL) is involved in the progression of neuropathic pain. Suberoylanilide hydroxamic acid (SAHA), one of the HDACIs can interfere with the epigenetic process of histone acetylation, which has been shown to ease neuropathic pain. Recent research suggest that SAHA can stimulate autophagy via the mammalian target of rapamycin (mTOR) pathway in some types of cancer cells. However, little is known about the role of SAHA and autophagy in neuropathic pain after nerve injury. In the present study, we aim to investigate autophagy flux and the role of the mTOR pathway on spinal cells autophagy activation in neuropathic pain induced by SNL in rats that received SAHA treatment. Autophagy-related proteins and mTOR or its active form were assessed by using western blot, immunohistochemistry, double immunofluorescence staining and transmission electron microscopy (TEM). We found that SAHA decreased the paw mechanical withdrawal threshold (PMWT) of the lower compared with SNL. Autophagy flux was mainly disrupted in the astrocytes and neuronal cells of the spinal cord dorsal horn on postsurgical day 28 and was reversed by daily intrathecal injection of SAHA (n?=?100 nmol/day or n?=?200 nmol/day). SAHA also decreased mTOR and phosphorylated mTOR (p-mTOR) expression, especially p-mTOR expression in astrocytes and neuronal cells of the spinal dorsal horn. These results suggest that SAHA attenuates neuropathic pain and contributes to autophagy flux in astrocytes and neuronal cells of the spinal dorsal horn via the mTOR signaling pathway.

  相似文献   

7.

Background

Little is known about whether peripheral nerve injury during the early postnatal period modulates synaptic efficacy in the immature superficial dorsal horn (SDH) of the spinal cord, or whether the neonatal SDH network is sensitive to the proinflammatory cytokine TNFα under neuropathic conditions. Thus we examined the effects of TNFα on synaptic transmission and intrinsic membrane excitability in developing rat SDH neurons in the absence or presence of sciatic nerve damage.

Results

The spared nerve injury (SNI) model of peripheral neuropathy at postnatal day (P)6 failed to significantly alter miniature excitatory (mEPSCs) or inhibitory (mIPSCs) postsynaptic currents in SDH neurons at P9-11. However, SNI did alter the sensitivity of excitatory synapses in the immature SDH to TNFα. While TNFα failed to influence mEPSCs or mIPSCs in slices from sham-operated controls, it significantly increased mEPSC frequency and amplitude following SNI without modulating synaptic inhibition onto the same neurons. This was accompanied by a significant decrease in the paired-pulse ratio of evoked EPSCs, suggesting TNFα increases the probability of glutamate release in the SDH under neuropathic conditions. Similarly, while SNI alone did not alter action potential (AP) threshold or rheobase in SDH neurons at this age, TNFα significantly decreased AP threshold and rheobase in the SNI group but not in sham-operated littermates. However, unlike the adult, the expression of TNFα in the immature dorsal horn was not significantly elevated during the first week following the SNI.

Conclusion

Developing SDH neurons become susceptible to regulation by TNFα following peripheral nerve injury in the neonate. This may include both a greater efficacy of glutamatergic synapses as well as an increase in the intrinsic excitability of immature dorsal horn neurons. However, neonatal sciatic nerve damage alone did not significantly modulate synaptic transmission or neuronal excitability in the SDH, which could reflect a relatively weak expression of TNFα in the injured spinal cord at early ages. The above data suggest that although the sensitivity of the SDH network to proinflammatory cytokines after nerve injury is present from the first days of life, the profile of spinal cytokine expression under neuropathic conditions may be highly age-dependent.  相似文献   

8.
Large‐conductance Ca2+‐activated K+ (BKCa, MaxiK) channels are important for the regulation of neuronal excitability. Peripheral nerve injury causes plasticity of primary afferent neurons and spinal dorsal horn neurons, leading to central sensitization and neuropathic pain. However, little is known about changes in the BKCa channels in the dorsal root ganglion (DRG) and spinal dorsal horn and their role in the control of nociception in neuropathic pain. Here we show that L5 and L6 spinal nerve ligation in rats resulted in a substantial reduction in both the mRNA and protein levels of BKCa channels in the DRG but not in the spinal cord. Nerve injury primarily reduced the BKCa channel immunoreactivity in small‐ and medium‐sized DRG neurons. Furthermore, although the BKCa channel immunoreactivity was decreased in the lateral dorsal horn, there was an increase in the BKCa channel immunoreactivity present on dorsal horn neurons near the dorsal root entry zone. Blocking the BKCa channel with iberiotoxin at the spinal level significantly reduced the mechanical nociceptive withdrawal threshold in control and nerve‐injured rats. Intrathecal injection of the BKCa channel opener [1,3‐dihydro‐1‐[2‐hydroxy‐5‐(trifluoromethyl)phenyl]‐5‐(trifluoromethyl)‐2H‐benzimidazol‐2‐one] dose dependently reversed allodynia and hyperalgesia in nerve‐ligated rats but it had no significant effect on nociception in control rats. Our study provides novel information that nerve injury suppresses BKCa channel expression in the DRG and induces a redistribution of BKCa channels in the spinal dorsal horn. BKCa channels are increasingly involved in the control of sensory input in neuropathic pain and may represent a new target for neuropathic pain treatment.  相似文献   

9.
Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats.  相似文献   

10.
Lysophosphatidic acid (LPA) is a bioactive lipid with activity in the nervous system mediated by G-protein-coupled receptors. Here, we examined the role of LPA signaling in the development of neuropathic pain by pharmacological and genetic approaches, including the use of mice lacking the LPA(1) receptor. Wild-type animals with nerve injury develop behavioral allodynia and hyperalgesia paralleled by demyelination in the dorsal root and increased expression of both the protein kinase C gamma-isoform within the spinal cord dorsal horn and the alpha(2)delta(1) calcium channel subunit in dorsal root ganglia. Intrathecal injection of LPA induced behavioral, morphological and biochemical changes similar to those observed after nerve ligation. In contrast, mice lacking a single LPA receptor (LPA(1), also known as EDG2) that activates the Rho-Rho kinase pathway do not develop signs of neuropathic pain after peripheral nerve injury. Inhibitors of Rho and Rho kinase also prevented these signs of neuropathic pain. These results imply that receptor-mediated LPA signaling is crucial in the initiation of neuropathic pain.  相似文献   

11.
《Phytomedicine》2015,22(12):1125-1132
BackgroundSanguis draxonis (SD) is a kind of red resin obtained from the wood of Dracaena cochinchinensis (Lour.) S. C. Chen (D. cochinchinensis). The active components of total flavonoids from SD (SDF) have analgesic effect.AimThe aim of this study is to evaluate the analgesic effects and potential mechanism of SDF on mechanical hypersensitivity induced by spared nerve injury (SNI) model of neuropathic pain in the rat.MethodsSNI model in rats was established and then the rats were treated with SDF intragastric administration for 14 days. Paw withdrawal mechanical threshold (PMWT) in response to mechanical stimulation was measured by von Frey filaments on day 1 before operation and days 1, 3, 5, 7, 9, 11, 14 after operation, respectively. After 14 days, we measured the levels of nitric oxide (NO), nitric oxide synthase (NOS), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-10 (IL-10) in the spinal dorsal horn. In addition, the expression of fibroblast growth factor receptor 3 (FGFR3), phosphorylated cyclic AMP response element-binding protein (p-CREB) and glial fibrillary acidic protein (GFAP) of the spinal dorsal horn was evaluated by western blotting and an immunofluorescence histochemical method, respectively.ResultsIntragastric administration of SDF (100, 200, 400 mg/kg) alleviated significantly SNI-induced mechanical hypersensitivity, as PMWT increased in a dose-dependent manner. Moreover, SDF not only reduced the level of NO, NOS, TNF-α and IL-1β, but also upregulated the level of IL-10 in the spinal dorsal horn of SNI rats. At the same time, SDF (100, 200, 400 mg/kg) could inhibit the expression of FGFR3, GFAP and p-CREB in the spinal dorsal horn.ConclusionSDF has potentially reduced mechanical hypersensitivity induced by SNI model of neuropathic pain which may be attributed to inhibition of astrocytic function (like release pro-inflammatory cytokines) and NO release as well as p-CREB activation in the spinal dorsal horn.  相似文献   

12.
In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transmission are thought to contribute to the hyperexcitability of these dorsal horn neurons, which can lead to maladaptive circuitry, aberrant pain processing and, ultimately, chronic neuropathic pain. Here we present a mouse model of SCI-induced neuropathic pain that exhibits a persistent pain phenotype accompanied by chronic neuronal hyperexcitability and glial activation in the spinal cord dorsal horn. We generated a unilateral cervical contusion injury at the C5 or C6 level of the adult mouse spinal cord. Following injury, an increase in the number of neurons expressing ΔFosB (a marker of chronic neuronal activation), persistent astrocyte activation and proliferation (as measured by GFAP and Ki67 expression), and a decrease in the expression of the astrocyte glutamate transporter GLT1 are observed in the ipsilateral superficial dorsal horn of cervical spinal cord. These changes have previously been associated with neuronal hyperexcitability and may contribute to altered pain transmission and chronic neuropathic pain. In our model, they are accompanied by robust at-level hyperaglesia in the ipsilateral forepaw and allodynia in both forepaws that are evident within two weeks following injury and persist for at least six weeks. Furthermore, the pain phenotype occurs in the absence of alterations in forelimb grip strength, suggesting that it represents sensory and not motor abnormalities. Given the importance of transgenic mouse technology, this clinically-relevant model provides a resource that can be used to study the molecular mechanisms contributing to neuropathic pain following SCI and to identify potential therapeutic targets for the treatment of chronic pathological pain.  相似文献   

13.
Neuropathic pain is a somatosensory disorder which is caused by disease or nerve injury that affects the nervous system. microRNAs (miRNAs) are proved to play crucial roles in the development of neuropathic pain. However, the role of miR-202 in neuropathic pain is still unknown. Sprague-Dawley rats were used for constructing the neuropathic pain model. The expression of miR-202 was determined by quantitative real-time polymerase chain reaction. Potential target gene for miR-202 was measured using bioinformatics methods and Western blot analysis. In this study, we used rats to establish a neuropathic pain model and measured the effect of miR-202 in neuropathic pain. We demonstrated that miR-202 expression was downregulated in the spinal dorsal horn of bilateral sciatic nerve chronic constriction injury (bCCI) rat. However, miR-202 expression was not changed in the dorsal root ganglion, hippocampus, and anterior cingulated cortex of bCCI rat. We identified that RAP1A was a direct target gene of miR-202 in the PC12 cell. RAP1A expression was upregulated in the spinal dorsal horn of bCCI rat. Overexpression of miR-202 could improve the pain threshold for bCCI rats in both hindpaws, indicating that miR-202 overexpression could lighten the pain threshold for model rats. Moreover, RAP1A overexpression increased the pain threshold effect of miR-202 overexpression treated bCCI rats, indicating that miR-202 could lighten the pain threshold through inhibiting RAP1A expression. These data suggested that miR-202 acted pivotal roles in the development of neuropathic pain partly through targeting RAP1A gene.  相似文献   

14.
Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.  相似文献   

15.
Nerve injury and inflammation can both induce neuropathic pain via the production of pro-inflammatory cytokines. In the process, G protein-coupled receptors (GPCRs) were involved in pain signal transduction. GPCR kinase (GRK) 6 is a member of the GRK family that regulates agonist-induced desensitization and signaling of GPCRs. However, its expression and function in neuropathic pain have not been reported. In this study, we performed a chronic constriction injury (CCI) model in adult male rats and investigated the dynamic change of GRK6 expression in spinal cord. GRK6 was predominantly expressed in the superficial layers of the lumbar spinal cord dorsal horn neurons and its expression was decreased bilaterally following induction of CCI. The changes of GRK6 were mainly in IB4 and P substrate positive areas in spinal cord dorsal horn. And over-expression of GRK6 in spinal cord by lentivirus intrathecal injection attenuated the pain response induced by CCI. In addition, the level of TNF-α underwent the negative pattern of GRK6 in spinal cord. And neutralized TNF-α by antibody intrathecal injection up-regulated GRK6 expression and attenuated the mechanical allodynia and heat hyperalgesia in CCI model. All the data indicated that down-regulation of neuronal GRK6 expression induced by cytokine may be a potential mechanism that contributes to increasing neuronal signaling in neuropathic pain.  相似文献   

16.
The present study was undertaken to further investigate the role of glial cells in the development of the neuropathic pain-like state induced by sciatic nerve ligation in mice. At 7 days after sciatic nerve ligation, the immunoreactivities (IRs) of the specific astrocyte marker glial fibrillary acidic protein (GFAP) and the specific microglial marker OX-42, but not the specific oligodendrocyte marker O4, were increased on the ipsilateral side of the spinal cord dorsal horn in nerve-ligated mice compared with that on the contralateral side. Furthermore, a single intrathecal injection of activated spinal cord microglia, but not astrocytes, caused thermal hyperalgesia in naive mice. Furthermore, 5-bromo-2'-deoxyuridine (BrdU)-positive cells on the ipsilateral dorsal horn of the spinal cord were significantly increased at 7 days after nerve ligation and were highly co-localized with another microglia marker, ionized calcium-binding adaptor molecule 1 (Iba1), but neither with GFAP nor a specific neural nuclei marker, NeuN, in the spinal dorsal horn of nerve-ligated mice. The present data strongly support the idea that spinal cord astrocytes and microglia are activated under the neuropathic pain-like state, and that the proliferated and activated microglia directly contribute to the development of a neuropathic pain-like state in mice.  相似文献   

17.
Zinc enriched (ZEN) neurons and terminals are abundant in the rodent spinal cord. Zinc ions have been suggested to modulate the excitability of primary afferent fibers believed to be important in nociceptive transmission. To test the hypothesis that vesicular zinc concentration is related to neuropathic pain we applied Chung’s rodent pain model on BALB/c mice, and traced zinc transporter 3 (ZnT3) proteins and zinc ions with immunohistochemistry and autometallography (AMG), respectively. Under anesthesia the left fifth lumbar spinal nerve was ligated in male mice in order to produced neuropathic pain. The animals were then sacrificed 5 days later. The ZnT3 immunoreactivity was found to have decreased significantly in dorsal horn of fourth, fifth, and sixth lumbar segments. In parallel with the depressed ZnT3 immunoreactivity the amount of vesicular zinc decreased perceptibly in superficial gray matters of especially layer I-IV of the same segments. The transection-induced reduction of vesicular zinc in ZEN terminals of the dorsal horn was synchronic to reduced pain threshold, as measured by von Frey method. In a separate study, we observed intensive zinc selenite precipitation in somata of the smaller spinal ganglion cell, but 5 days after spinal nerve transection zinc precipitation was also found in the lager ganglion cells. The present results indicate that zinc may be involved in pain mechanism in the spinal ganglion level. These results support the hypothesis that vesicular zinc might have a modulatory role for neuropathic pain. Thus, increased pain sensitivity might be related to reduce vesicular zinc level in the dorsal spinal gray matter.  相似文献   

18.
Neuropathic pain is a debilitating pain condition that occurs after nerve damage. Such pain is considered to be a reflection of the aberrant excitability of dorsal horn neurons. Emerging lines of evidence indicate that spinal microglia play a crucial role in neuronal excitability and the pathogenesis of neuropathic pain, but the mechanisms underlying neuron-microglia communications in the dorsal horn remain to be fully elucidated. A recent study has demonstrated that platelet-derived growth factor (PDGF) expressed in dorsal horn neurons contributes to neuropathic pain after nerve injury, yet how PDGF produces pain hypersensitivity remains unknown. Here we report an involvement of spinal microglia in PDGF-induced tactile allodynia. A single intrathecal delivery of PDGF B-chain homodimer (PDGF-BB) to naive rats produced a robust and long-lasting decrease in paw withdrawal threshold in a dose-dependent manner. Following PDGF administration, the immunofluorescence for phosphorylated PDGF β-receptor (p-PDGFRβ), an activated form, was markedly increased in the spinal dorsal horn. Interestingly, almost all p-PDGFRβ-positive cells were double-labeled with an antibody for the microglia marker OX-42, but not with antibodies for other markers of neurons, astrocytes and oligodendrocytes. PDGF-stimulated microglia in vivo transformed into a modest activated state in terms of their cell number and morphology. Furthermore, PDGF-BB-induced tactile allodynia was prevented by a daily intrathecal administration of minocycline, which is known to inhibit microglia activation. Moreover, in rats with an injury to the fifth lumbar spinal nerve (an animal model of neuropathic pain), the immunofluorescence for p-PDGFRβ was markedly enhanced exclusively in microglia in the ipsilateral dorsal horn. Together, our findings suggest that spinal microglia critically contribute to PDGF-induced tactile allodynia, and it is also assumed that microglial PDGF signaling may have a role in the pathogenesis of neuropathic pain.  相似文献   

19.
Modulation of extracellular matrix (ECM) remodeling after peripheral nerve injury (PNI) could represent a valid therapeutic strategy to prevent maladaptive synaptic plasticity in central nervous system (CNS). Inhibition of matrix metalloproteinases (MMPs) and maintaining a neurotrophic support could represent two approaches to prevent or reduce the maladaptive plastic changes in the ventral horn of spinal cord following PNI. The purpose of our study was to analyze changes in the ventral horn produced by gliopathy determined by the suffering of motor neurons following spared nerve injury (SNI) of the sciatic nerve and how the intrathecal (i.t.) administration of GM6001 (a MMPs inhibitor) or the NGF mimetic peptide BB14 modulate these events. Immunohistochemical analysis of spinal cord sections revealed that motor neuron disease following SNI was associated with increased microglial (Iba1) and astrocytic (GFAP) response in the ventral horn of the spinal cord, indicative of reactive gliosis. These changes were paralleled by decreased glial aminoacid transporters (glutamate GLT1 and glycine GlyT1), increased levels of the neuronal glutamate transporter EAAC1, and a net increase of the Glutamate/GABA ratio, as measured by HPLC analysis. These molecular changes correlated to a significant reduction of mature NGF levels in the ventral horn. Continuous i.t. infusion of both GM6001 and BB14 reduced reactive astrogliosis, recovered the expression of neuronal and glial transporters, lowering the Glutamate/GABA ratio. Inhibition of MMPs by GM6001 significantly increased mature NGF levels, but it was absolutely ineffective in modifying the reactivity of microglia cells. Therefore, MMPs inhibition, although supplies neurotrophic support to ECM components and restores neuro-glial transporters expression, differently modulates astrocytic and microglial response after PNI.  相似文献   

20.
目的:探讨脊髓自噬功能与大鼠2型糖尿病神经病理性疼痛(DNP)的关系。方法:雄性SD大鼠(42只)高糖高脂饲养8周,腹腔单次注射链脲佐菌素(STZ)制备大鼠2型糖尿病模型。两周后检测机械缩足阈值(MWT)和热缩足潜伏期(TWL),降至基础值80%以下者为2型糖尿病神经病理性疼痛大鼠,记为DNP组(24只);未降至基础值80%以下者为2型糖尿病无神经病理性疼痛大鼠,记为DA组(18只)。另取18只大鼠为对照(control,C)组,普通饲料喂养。于确定DA与DNP分组后的第3、7和14天,测定机械缩足阈值(MWT)和热缩足潜伏期(TWL),并在行为学检测结束后各组随机取6只大鼠处死,取L4~L6脊髓膨大,采用Western blot法检测自噬特异性蛋白微管相关蛋白1(Beclin-1)、微管相关蛋白1轻链3(LC3)和P62的表达。另取6只7 d DNP组大鼠采用免疫荧光双染法检测脊髓背角P62与小胶质细胞、星形胶质细胞、神经元的共表达情况。结果:连续8周喂养高糖高脂饲料的SD大鼠的血浆胰岛素水平升高,胰岛素敏感指数下调,表明出现胰岛素抵抗;在腹腔注射STZ后,血糖升高达到2型糖尿病诊断标准(≥16.7 mmol/L);与C组、DA组比较,DNP组大鼠在第3、7和14天时MWT降低,TWL缩短,并且脊髓背角LC3-Ⅱ、Beclin-1表达上调,P62表达下降(P<0.05)。免疫荧光双染色显示,P62在脊髓背角表达,主要与神经元共存,少量与小胶质细胞共存,几乎不与星形胶质细胞共表达。结论:2型糖尿病神经病理性疼痛大鼠脊髓LC3-Ⅱ、Beclin-1和P62表达的改变提示脊髓自噬功能激活;脊髓背角中神经元自噬激活在2型糖尿病大鼠DNP的发生和发展起着关键作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号