首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the proteome of detergent-derived group B Neisseria meningitidis (MenB) outer membrane vesicles (DOMVs) with the proteome of outer membrane vesicles (m-OMVs) spontaneously released into culture supernatant by MenB delta gna33, a mutant in which the gene coding for a lytic transglycosylase homologous to the E. coli MltA was deleted. In total, 138 proteins were identified in DOMVs by 1- and 2-DE coupled with MS; 64% of these proteins belonged to the inner membrane and cytoplasmic compartments. By contrast, most of the 60 proteins of m-OMVs were classified by PSORT as outer membrane proteins. When tested for their capacity to elicit bactericidal antibodies, m-OMVs elicited a broad protective activity against a large panel of MenB strains. Therefore, the identification of mutations capable of conferring an OMV-releasing phenotype in bacteria may represent an attractive approach to study bacterial membrane composition and organization, and to design new efficacious vaccine formulations.  相似文献   

2.
The proportion of carrier-isolated Neisseria meningitidis strains sensitive to human serum (37.2%) was found to be significantly higher than that of case-isolated ones (4.1%), although the difference is too low to consider serum-resistance responsible for invasion in this microorganism. Serum-susceptibility was not related to the existence of specific outer membrane proteins, as is the case of N. gonorrhoeae. Iron restriction induced iron-regulated outer membrane proteins in each strain (but not the same proteins in all strains) but without any detectable effect on serum-susceptibility. Iron excess was also unable to induce changes in the susceptibility of N. meningitidis to human serum.  相似文献   

3.
We have identified a homologue of the adhesin AIDA-I of Escherichia coli in Neisseria meningitidis. This gene was designated nhhA (Neisseria hia homologue), as analysis of the complete coding sequence revealed that it is more closely related to the adhesins Hia and Hsf of Haemophilus influenzae. The sequence of nhhA was determined from 10 strains, and found to be highly conserved. Studies of the localisation by Western immunoblot analysis of total cell proteins and outer membrane complex preparations and by immunogold electron microscopy revealed that NhhA is located in the outer membrane. A strain survey showed that nhhA is present in 85/85 strains of N. meningitidis representative of all the major disease-associated serogroups, based on Southern blot analysis. It is expressed in the majority of strains tested by Western immunoblot.  相似文献   

4.
Carriage of non-serogroupable Neisseria meningitidis or Neisseria lactamica induces antibodies protective against meningococcal disease. Antibodies directed against outer membrane proteins are bactericidal and the serotype and subtype outer membrane protein antigens are being examined for their value as vaccine candidates for serogroup B disease. The aim of this study was to examine the effect of carriage of these two Neisseria species among children and young adults on induction of antibodies to outer membrane components from strains causing disease in Greece. Among 53 patients with meningococcal disease, IgG or IgM antibodies were detected by ELISA in 9 of 13 (69%) from whom the bacteria were isolated and 27 of 40 (67%) who were culture-negative. For military recruits (n = 604), the proportion of carriers of meningococci with IgM or IgG to outer membrane proteins was higher than non-carriers, P < 0.05 and P = 0.000000, respectively. Among school children (n = 319), the proportion with IgM or IgG to outer membrane proteins for carriers of meningococci was higher compared with non-carriers, P = 0.000000 and P = 0000043, respectively. Carriage of N. lactamica was not associated with the presence of either IgM or IgG to the outer membrane proteins in the children. The higher proportion of children (50%) with IgM to outer membrane proteins compared with recruits (10%) might reflect more recent exposure and primary immune responses to the bacteria. The lack of association between antibodies to outer membrane proteins and carriage of N. lactamica could reflect observations that the majority of N. lactamica isolates from Greece and other countries do not react with monoclonal typing reagents. Bactericidal antibodies to meningococci associated with high levels of IgG to N. lactamica were found in a previous study; these are thought to be directed to antigens other than outer membrane proteins or capsules and imply antigens such as lipo-oligosaccharide are involved in induction of antibodies cross-reactive with meningococci.  相似文献   

5.
We have previously developed a mouse model based on transient bacteraemia in normal B10.M mice to evaluate the protective efficacy of outer membrane vesicle vaccines against serogroup B meningococci. To obtain a course of infection similar to that observed in man, we have in this work modified the mouse model by administration of human holo-transferrin upon bacterial challenge. Co-challenge with holo-transferrin induced increasing bacteraemia and subsequent death in normal non-immune mice, but not in vaccinated animals. The model system is dependent on challenge with meningococci expressing the transferrin receptor which is obtained by culturing the bacteria under iron restriction. The modified model system for protection against meningococcal infection presented here makes it possible to measure outer membrane vesicle vaccine induced protection by using bacteraemia as well as survival as parameters.  相似文献   

6.
Two mouse sera against outer membrane proteins from a pathogenic Neisseria meningitidis strain and a commensal N. lactamica strain and two human sera from patients recovering from meningococcal meningitis were used to identify antigens common to pathogenic and commensal Neisseria species. Two major antigens of 55 kDa and 32 kDa, present in all N. meningitidis and N. lactamica strains tested, were demonstrable with all the sera used; the 55-kDa protein was iron-regulated. Demonstration of other common antigens was dependent on the serum used: a 65-kDa antigen was visualised with the human and the mouse anti-N. lactamica sera; a 37-kDa antigen identified as the meningococcal ferric binding protein (FbpA) was only detected with the mouse sera, and two antigens of 83 kDa and 15 kDa were only shown with the mouse anti-N. meningitidis serum. The results demonstrate the existence of several outer membrane antigens common to N. lactamica and N. meningitidis strains, in agreement with the hypothesis that natural immunity against meningitis is partially acquired through colonisation by commensal species, and open new perspectives for the design of vaccine formulations and the development of strategies for vaccination against meningitis.  相似文献   

7.
Two type B15 P1.16 strains of Neisseria meningitidis were examined by immunogold electron microscopy for accessibility of two outer membrane protein (OMPs) to monoclonal antibodies. Both strains exhibited cell-to-cell variation of one epitope of the Class 3 OMP (P3.15) and one of the Class 1 OMPs (P1.16) when grown in vitro. One strain, a nasopharyngeal isolate revealed this variation to be growth-phase independent and double labelling of both epitopes showed independent variation. CSF containing N. meningitidis was stored in liquid nitrogen without laboratory processing at the time of isolation of the second strain. Direct analysis of the organisms showed no cell-to-cell variation and immunoglobulin G on the surface. However, while there were similar labelling densities of the Class 1 epitope in vivo compared with either strain grown in vitro, there was a lower labelling density of the Class 3 epitope in vivo that was not caused by freeze-thawing. This reduction may be due to decreased expression of this epitope in vivo which casts doubts on the use of the Class 2/3 OMP as a vaccine candidate.  相似文献   

8.
Mouse sera against outer membrane proteins from Moraxella catarrhalis, Neisseria meningitidis and Neisseria lactamica, and human sera from both healthy individuals and patients convalescing from meningococcal meningitis were used to identify cross-reactive antigens. Mouse anti-N. meningitidis and anti-N. lactamica sera recognized 77, 62 and 32 kDa outer membrane antigens in M. catarrhalis strains; on the contrary, the meningococcal porin PorB (38-42 kDa) was recognized by one of the two anti-M. catarrhalis sera. Human sera from both healthy individuals and patients convalescing from meningococcal meningitis also showed cross-reactive antibodies against these proteins. The existence of cross-reactive antigens in M. catarrhalis and N. meningitidis (as well as in N. lactamica) could favor the development of natural immunization against both pathogens.  相似文献   

9.
The class 3 protein (PorB) is an important component of the meningococcal outer membrane. The structural gene (porB) encoding the class 3 protein has been cloned using primers suitable for the amplification of the corresponding chromosomal fragment by the polymerase chain reaction (PCR). The complete nucleotide sequence was determined and predicts a mature protein of 310 amino acids, preceded by a signal peptide of 19 residues. The predicted protein sequence of the class 3 protein exhibits essential structural homology to the gonococcal porin PIA. The class 3 protein encoding gene was expressed in Escherichia coli under the control of an inducible promoter.  相似文献   

10.
11.
Abstract The outer membrane proteins of several prominent bacterial pathogens demonstrate substantial variation in their surface antigenic epitopes. To determine if this was also true for Pseudomonas aeruginosa outer membraine protein OprF, gene sequencing of a serotype 5 isolate was performed to permit comparison with the published serotype 12 oprF gene sequence. Only 16 nucleotide substitutions in the 1053 nucleotide coding region were observed; none of these changed the amino acid sequence. A panel of 10 monoclonal antibodies (mAbs) reacted with each of 46 P. aeruginosa strains representing all 17 serotype strains, 12 clinical isolates, 15 environmental isolates and 2 laboratory isolates. Between two and eight of these mAbs also reacted with proteins from representatives of the rRNA homology group I of the Pseudomonadaceae . Nine of the ten mAbs recognized surface antigenic epitopes as determined by indirect immunofluorescence techniques and their ability to opsonize P. aeuroginosa for phagocytosis. These epitopes were partially masked by lipopolysacharide side chains as revealed using a side chain-deficient mutant. It is concluded that OprF is a highly conserved protein with several conserved surface antigenic epitopes.  相似文献   

12.
The porin proteins of Neisseria meningitidis are important components of outer membrane protein (OMP) vaccines. The class 3 porin gene, porB, of a novel serogroup B, serotype 4, 15 isolate from Chile (Ch501) was found to be VR1-4, VR2-15, VR3-15 and VR4-15 by porB variable region (VR) typing. Rabbit immunization studies using outer membrane vesicles revealed immunodominance of individual PorB (class 3) VR epitopes. The predominant anti-Ch501 PorB response was directed to the VR1 epitope. Anti-PorB VR1 mediated killing was suggested by the bactericidal activity of Ch501 anti-sera against a type 4 strain not expressing PorA or class 5 OMPs. Studies that examine the molecular epidemiology of individual porB VRs, and the immune responses to PorB epitopes, may contribute to the development of broadly protective group B meningococcal vaccines.  相似文献   

13.
In vitro folded and the denatured form of PorA P1.6 from Neisseria meningitidis strain M990 were used for immunization studies in mice. Previously, the antigen was isolated from cytoplasmic inclusion bodies, folded and purified. Its immunogenicity without adjuvant appeared to be low. The addition of the adjuvant QuilA, but not of galE lipooligosaccharide, considerably enhanced the immunogenicity. Moreover, when immunized with folded PorA P1.6 plus QuilA, a clear switch towards the IgG2a subclass of antibodies and concomitantly, the appearance of serum bactericidal activity, which is believed to be important for protective immunity, was observed. Hence, a tool for preparing vaccines against serogroup B meningococci devoid of endotoxin is available.  相似文献   

14.
Early and accurate diagnosis of Burkholderia cepacia infection is important, particularly if segregation is to prevent patient-to-patient transmission. We have examined the serum response to a B. cepacia-specific 80-kDa outer membrane protein. 21 patients colonised with B. cepacia and Pseudomonas aeruginosa for 2–51 months (mean 11 months) were age- and sex-matched with 21 patients colonised with P. aeruginosa but not B. cepacia. The 80-kDa protein was recovered by electroelution from outer membrane proteins, separated by SDS-PAGE, coated onto ELISA plates, reacted with patient sera diluted 1:200, protein A-peroxidase and chromogenic substrate. We found that 19/24 patients colonised with B. cepacia and P. aeruginosa had high values, 2/24 patients had intermediate values, and 2/24 patients had a low value. 20/21 patients colonised with P. aeruginosa alone had low values and 1/21 had an intermediate value. We found that in the longitudinal serum samples studied from four patients only one patient developed high values after the first isolation of B. cepacia suggesting that seroconversion does not occur immediately after the first sputum culture of B. cepacia. We conclude that an ELISA test using B. cepacia-specific 80-kDa outer membrane protein can distinguish B. cepacia colonised and non-colonised patients and may be useful in the early diagnosis of B. cepacia infection.  相似文献   

15.
The genome sequences of Neisseria meningitidis serogroup B strain MC58 and serogroup A strain Z2491 were systematically searched for open reading frames (ORFs) encoding autotransporters. Eight ORFs were identified, six of which were present in both genomes, whereas two were specific for MC58. Among the identified ORFs was the gene encoding the known autotransporter IgA1 protease. The deduced amino acid sequences of the other identified ORFs were homologous to known autotransporters and found to contain an N-terminal signal sequence and a C-terminal domain that could constitute a beta-barrel in the outer membrane. The ORFs NMB1985 and NMB0992, encoding homologs of the Hap (for Haemophilus adhesion and penetration protein) and Hia (for Haemophilus influenzae adherence protein) autotransporters of H. influenzae, were cloned from serogroup B strain H44/76 and expressed in Escherichia coli. Western blots revealed that all sera of patients (n=14) and healthy carriers (n=3) tested contained antibodies against at least one of the recombinant proteins. These results indicate that both genes are widely distributed among N. meningitidis isolates and expressed during colonization and infection.  相似文献   

16.
In response to an increase in the number of cases of invasive meningococcal disease (IMD) in northern regions of Greece, a survey was carried out to determine if there was an increase in carriage of Neisseria meningitidis, particularly in areas where there have been increases in immigrant populations from neighbouring countries. The second objective was to determine if there was an increase in the serogroup C:2a:P1.5,2 a phenotype associated with recent outbreaks or changes in antibiotic sensitivities. As carriage of Neisseria lactamica is associated with development of natural immunity to IMD, the third objective was to determine the carriage rate of N. lactamica in this population. Among 3167 individuals tested, meningococci were isolated from 334 (10.5%). Compared with our previous studies, the proportion of meningococcal carriers was significantly increased among children in secondary education (11.3%) (chi2=9.67, P<0.005) and military recruits (37.4%) (chi2=21.11, P<0.000). Only 5/334 (1.5%) isolates expressed the phenotype associated with the increase in IMD in Greece. N. lactamica was isolated from 146/3167 (4.6%) participants. It was isolated from 71/987 (7.2%) children attending primary or nursery schools; however, the highest proportion of carriers (11.3%) was found in the boarding school for young Albanian men. In the 21-59-year age range, the majority of N. lactamica isolates (22/25, 88%) were from women, probably due to closer or more prolonged contact with children in the primary school age range. Smoking was significantly associated with isolation of meningococci from men but not from women. Penicillin-insensitive strains (25/334, 7.5%) were identified in all four regions examined; the majority (14/25, 56%) were obtained from military personnel. We conclude that there was a higher proportion of carriers in the population of northern Greece; however, the increase in carriage rate was not associated with the influx of immigrants from neighbouring countries, and there was not a higher incidence of the C:2a:P1.5,2 strain responsible for increased disease activity in Greece in either the immigrant or local populations.  相似文献   

17.
Abstract Since 1988, N. meningitidis , B:4:P1.15, ET-5 complex, has been responsible for an epidemic of meningococcal disease in Greater São Paulo, Brazil. Despite current trials to develop an effective vaccine against group B meningococci, children less than 2 years old have not been protected. It has been suggested that iron-regulated proteins (IRPs) should be considered as potential antigens for meningococcal vaccines. The vaccines under study consisted of outer-membrane vesicles depleted of lipooligosaccharide from three serogroup B strains and one serogroup C strain, IRPs, meningococcal group C polysaccharide and aluminum hydroxide. Four different protein and C polysaccharide concentrations were studied. The ELISA and bactericidal results showed a higher antibody response when 2 injections of 2.0 μg doses were administered. Despite higher IgG reactivity against antigen preparations containing IRPs seen in ELISA, the bactericidal activity was not increased if the target strain was grown in iron-restricted medium. The influence of addition of alkaline-detoxified lipooligosaccharide (dLOS) on immunogenicity of the vaccine was also investigated, and the dLOS provided for a more functionally specific antibody response.  相似文献   

18.
We evaluated the bactericidal antibody response to Neisseria meningitidis serogroup B in convalescent patients (n=65) from bacterial meningitis. Patients infected with B meningococci were stratified according to their vaccination status (Cuban BC vaccine) into group 1 (immunized) (n=12) and group 2 (non-immunized) (n=15). The results suggested that antibody titers > or =2 (log(2)) indicate a specific immune response to N. meningitidis. In group 1, 64% of patients had a significant antibody titer (> or =2) in their acute sera against a B:4:P1.15 strain, compared to only 21% of group 2 patients. All patients from group 1 without bactericidal antibodies in their acute sera had a significant increase (at least 2-fold increase in log(2) titers) in antibody titers in their convalescent sera, in contrast, to only 27% of patients from group 2 (P=0.06). Using mutant strains lacking OMP1 or OMP5, it was shown that OMP1 was an important antigen recognized by immunized patients but not by non-immunized patients.  相似文献   

19.
Sera from healthy human volunteers, patients convalescent from meningococcal meningitis, and mice immunized with outer membrane proteins from Neisseria meningitidis and Neisseria lactamica strains were used to analyze and identify antigens cross-reactive to both neisserial species. All classes of meningococcal proteins except class 1 (PorA) and class 5 cross-reacted with N. lactamica proteins and two other proteins of 65 and 55 kDa (an iron-regulated protein). Results obtained with the mouse sera demonstrate that cross-reactive antibodies can be elicited by either N. meningitidis or N. lactamica. These results support the suggestion that N. lactamica contributes to the development of natural immunity against N. meningitidis during the first years of life. The use of vaccines containing proteins other than PorA could interfere in colonization of mucosal surfaces by N. lactamica, hampering the natural mechanisms of immunity acquisition in humans. Only convalescent sera reacted with the 55 and 65 kDa proteins, which suggests that they might be relevant for pathogenicity.  相似文献   

20.
Neisseria meningitidis serogroup B (MC58) is a leading cause of meningitis and septicaemia, principally infects the infants and adolescents. No vaccine is available for the prevention of these infections because the serogroup B capsular polysaccharide is unable to stimulate an immune response, due to its similarity with polysialic acid. To overcome these obstacles, we proposed to develop a peptide based epitope vaccine from outer membrane protein contained in outer membrane vesicles (OMV) based on our computational analysis. In OMV a total of 236 proteins were identified, only 15 (6.4%) of which were predicted to be located in outer membrane. The major requirement is the identification and selection of T-cell epitopes that act as a vaccine target. We have selected 13 out of 15 outer membrane proteins from OMV proteins. Due to similarity of the fkpA and omp85 with the human FKBP2 and SAMM50 protein, we removed these two sequences from the analysis as their presence in the vaccine is likely to elicit an autoimmune response. ProPred and ProPred1 were used to predict promiscuous helper T Lymphocytes (HTL) and cytotoxic T Lymphocytes (CTL) epitopes and MHCPred for their binding affinity in N. meningitidis serogroup B (MC58), respectively. Binding peptides (epitopes) are distinguished from nonbinding peptides in properties such as amino acid preference on the basis of amino acid composition. By using this dataset, we compared physico-chemical and structural properties at amino acid level through amino acid composition, computed from ProtParam server. Results indicate that porA, porB, opc, rmpM, mtrE and nspA are more suitable vaccine candidates. The predicted peptides are expected to be useful in the design of multi-epitope vaccines without compromising the human population coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号