首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein tyrosine kinase activity has been implicated as part of the signaling mechanism leading to the sperm-induced calcium transient following fertilization. In the present study, we have tested the role of the Fyn kinase in triggering the calcium transient by microinjecting domain-specific fusion proteins encoding regions of Fyn sequence as inhibitors of Fyn function in vivo. A fusion protein encoding the SH2 domain of Fyn caused an increase in the latent period between sperm-egg fusion and the beginning of the calcium transient and reduced the amplitude of the calcium signal. A fusion protein encoding the U + SH3 domains also caused a small increase in the latent period. Microscopic examination revealed that a large percentage of eggs injected with the U+SH3 or SH2 domains became polyspermic as a result of the delayed block to polyspermy. Affinity experiments demonstrated that the U+SH3 and SH2 domains of Fyn were capable of forming a stable complex with phospholipase Cgamma from the sea urchin egg. The results suggest that the Fyn kinase participates in the signaling events leading up to the calcium transient and may directly regulate phospholipase Cgamma activity at fertilization.  相似文献   

2.
Nuclear shaping is a critical event during sperm development as demonstrated by the incidence of male infertility associated with abnormal sperm ad shaping. Herein, we demonstrate that mouse and rat spermatids assemble in the subacrosomal space a cytoskeletal scaffold containing F-actin and Sak57, a keratin ortholog. The cytoskeletal plate, designated acroplaxome, anchors the developing acrosome to the nuclear envelope. The acroplaxome consists of a marginal ring containing keratin 5 10-nm-thick filaments and F-actin. The ring is closely associated with the leading edge of the acrosome and to the nuclear envelope during the elongation of the spermatid head. Anchorage of the acroplaxome to the gradually shaping nucleus is not disrupted by hypotonic treatment and brief Triton X-100 extraction. By examining spermiogenesis in the azh mutant mouse, characterized by abnormal spermatid/sperm head shaping, we have determined that a deformity of the spermatid nucleus is restricted to the acroplaxome region. These findings lead to the suggestion that the acroplaxome nucleates an F-actin-keratin-containing assembly with the purpose of stabilizing and anchoring the developing acrosome during spermatid nuclear elongation. The acroplaxome may also provide a mechanical planar scaffold modulating external clutching forces generated by a stack of Sertoli cell F-actin-containing hoops encircling the elongating spermatid nucleus.  相似文献   

3.
4.
Upon adhesion to the zona pellucida or egg extracellular matrix, sperm undergo regulated exocytosis of the acrosomal vesicle. CASK is an adaptor protein that has been implicated in coupling neuronal cell adhesion to regulated exocytosis. In neurons, this scaffolding molecule is associated with several types of transmembrane receptor complexes and connects cell adhesion molecules with ion channels, the actin cytoskeleton, and the cell's exocytotic machinery. We hypothesized CASK might also be an important link between zona pellucida binding and the sperm acrosome reaction. RT-PCR experiments indicated CASK is transcribed in mouse testis. The full size (120 kDa) CASK protein was present in testis from mouse and pig. Immunoblots of mature porcine and murine sperm revealed that the 120 kDa molecule was much less abundant than in testis but the antibody also recognized a group of smaller proteins migrating at 55-65 kDa. Immunofluorescence experiments indicated both the full length and smaller CASK immunoreactive products were found only in the acrosomal region of spermatids and mature sperm and not in other testicular cell types. CASK immunofluorescence was lost following the acrosome reaction. During epididymal maturation, the abundance of the full size CASK decreased and the CASK fragments increased. These results suggest that CASK may be proteolytically processed during epididymal maturation. Because sperm acquire the ability to bind the zona pellucida, acrosome react, and fertilize eggs during epididymal maturation, CASK processing may play a role in the acquisition of these functions.  相似文献   

5.
Fertilization involves the activation of Src-family protein kinases which play a role at multiple stages of the egg activation process. The objective of the present study was to determine the mechanism by which one of these kinases, the Fyn kinase, is activated in response to fertilization of the zebrafish egg. Inhibitor studies demonstrated that many aspects of egg activation, including Fyn activation, require phosphotyrosyl phosphatase activity. A phosphotyrosyl phosphatase was found to be tightly associated with Fyn kinase and this interaction was mapped to the SH2 domain of Fyn. Coimmunoprecipitation studies identified rPTPalpha as a phosphatase that is complexed with Fyn in the egg, raising the possibility that rPTPalpha is part of the regulatory mechanism responsible for activating Fyn at fertilization.  相似文献   

6.
Mammalian spermatozoa contain a complex population of mRNAs, some of which have been demonstrated to be translated de novo by mitochondrial‐type ribosomes using D‐chloramphenicol (CP), a specific inhibitor of mitochondrial translation. However, little is known about the functions of these mRNAs in mature sperm. In the present study, differential proteomic approaches were applied to study sperm protein profiles translated by mitochondrial‐type ribosomes using the inhibitor CP and 44 proteins were identified with lower expression in CP‐treated sperm in comparison to capacitated sperm (ratio ≥ 1.5, p<0.05). Results of Western blot and real‐time PCR suggest that four proteins were translated by mitochondrial‐type ribosomes. Bioinformatics analysis indicated that 26 of 44 proteins were involved in some critical processes correlated to sperm–egg interaction event. In addition, Mups, whose functions in reproduction have never been studied, were chosen for further study. Our results showed that Mups proteins were localized to the acrosome and flagellum of precapacitated sperm, and were also expressed in the equatorial segment of capacitated sperm. The depletion of Mups using neutralizing antibodies significantly inhibited capacitation in a dose‐dependent manner, subsequently inhibited acrosome reaction and sperm–egg fusion. In summary, mitochondrial translation during capacitation can store proteins beneficial for sperm–egg interaction.  相似文献   

7.
To investigate whether the Ig‐like domain of sperm protein Izumo or the other part of the protein could be used as an immunocontraceptive antigen, three partially overlapping cDNA fragments (PA, PB, and PC), together covering entire mouse Izumo, were cloned, expressed, and purified. PB contains the whole Ig‐like domain of mouse Izumo. The anti‐PB antibody significantly inhibited the fusion of sperm with zona‐free mouse eggs with no effect on sperm motility, while anti‐PA and anti‐PC antibodies virtually had no effect on sperm–egg fusion at the same concentration. Furthermore, in the presence of anti‐PB antibody, the anti‐sperm reactivity could be competitively inhibited by recombinant PB protein. The PB‐specific antibody staining was restricted to the acrosome region in acrosome‐reacted mouse spermatozoa by indirect immunofluorescence. Active immunization with the PB antigen sharply raised the antibody titers in mouse that were enough to cause a significant reduction in fertility compared to the PA and PC immunized groups. In conclusion, our data indicate that the Ig‐like domain of Izumo plays an important role in the fertilization process, as verified by the dose‐dependent reduction in fertilization rates in mouse IVF trials and mouse mating assay. These results indicate that the Ig‐like domain of Izumo might be a new candidate for the development of a contraceptive vaccine. Mol. Reprod. Dev. 76: 794–801, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
In mammals, the starting point of development is the fusion between sperm and egg. It is well established that sperm fuse with the egg through the equatorial/post‐acrosomal region. Apart from this observation and the requirement of two proteins (CD9 in the egg and IZUMO1 in the sperm) very little is known about this fundamental process. Actin polymerization correlates with sperm capacitation in different mammalian species and it has been proposed that F‐actin breakdown is needed during the acrosome reaction. Recently, we have presented evidence that actin polymerization inhibitors block the movement of IZUMO1 that accompany the acrosome reaction. These results suggest that actin dynamics play a role in the observed changes in IZUMO1 localization. This finding is significant because IZUMO1 localization in acrosome‐intact sperm is not compatible with the known location of the initiation of the fusion between the sperm and the egg. To further understand the actin‐mediated changes in protein localization during the acrosome reaction, the distribution of the sperm‐specific plus‐end actin capping protein CAPZA3 was analyzed. Like IZUMO1, CAPZA3 shows a dynamic pattern of localization; however, these movements follow a different temporal pattern than the changes observed with IZUMO1. In addition, the actin polymerization inhibitor latrunculin A was unable to alter CAPZA3 movement. J. Cell. Physiol. 224: 575–580, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Fertilization typically involves membrane fusion between sperm and eggs. In Drosophila, however, sperm enter eggs with membranes intact. Consequently, sperm plasma membrane breakdown (PMBD) and subsequent events of sperm activation occur in the egg cytoplasm. We previously proposed that mutations in the sneaky (snky) gene result in male sterility due to failure in PMBD. Here we support this proposal by demonstrating persistence of a plasma membrane protein around the head of snky sperm after entry into the egg. We further show that snky is expressed in testes and encodes a predicted integral membrane protein with multiple transmembrane domains, a DC-STAMP-like domain, and a variant RING finger. Using a transgene that expresses an active Snky-Green fluorescent protein fusion (Snky-GFP), we show that the protein is localized to the acrosome, a membrane-bound vesicle located at the apical tip of sperm. Snky-GFP also allowed us to follow the fate of the protein and the acrosome during fertilization. In many animals, the acrosome is a secretory vesicle with exocytosis essential for sperm penetration through the egg coats. Surprisingly, we find that the Drosophila acrosome is a paternally inherited structure. We provide evidence that the acrosome induces changes in sperm plasma membrane, exclusive of exocytosis and through the action of the acrosomal membrane protein Snky. Existence of testis-expressed Snky-like genes in many animals, including humans, suggests conserved protein function. We relate the characteristics of Drosophila Snky, acrosome function and sperm PMBD to membrane fusion events that occur in other systems.  相似文献   

10.
11.
During mammalian fertilization sperm bind to the egg's zona pellucida (ZP) after undergoing capacitation. Capacitated mouse sperm bind to mZP3 (one of three ZP glycoproteins), undergo the acrosome reaction, penetrate the ZP, and fuse with egg plasma membrane. Sperm protein 56 (sp56), a member of the C3/C4 superfamily of binding proteins, was identified nearly 20 years ago as a binding partner for mZP3 by photoaffinity cross‐linking of acrosome‐intact sperm. However, subsequent research revealed that sp56 is a component of the sperm's acrosomal matrix and, for sperm with an intact acrosome, should be unavailable for binding to mZP3. Recently, this dilemma was resolved when it was recognized that some acrosomal matrix (AM) proteins, including sp56, are released to the sperm surface during capacitation. This may explain why uncapacitated mammalian sperm are unable to bind to the unfertilized egg ZP.  相似文献   

12.
13.
The molecular details of the association between the human Fyn‐SH3 domain, and the fragment of 18.5‐kDa myelin basic protein (MBP) spanning residues S38–S107 (denoted as xα2‐peptide, murine sequence numbering), were studied in silico via docking and molecular dynamics over 50‐ns trajectories. The results show that interaction between the two proteins is energetically favorable and heavily dependent on the MBP proline‐rich region (P93‐P98) in both aqueous and membrane environments. In aqueous conditions, the xα2‐peptide/Fyn‐SH3 complex adopts a “sandwich”"‐like structure. In the membrane context, the xα2‐peptide interacts with the Fyn‐SH3 domain via the proline‐rich region and the β‐sheets of Fyn‐SH3, with the latter wrapping around the proline‐rich region in a form of a clip. Moreover, the simulations corroborate prior experimental evidence of the importance of upstream segments beyond the canonical SH3‐ligand. This study thus provides a more‐detailed glimpse into the context‐dependent interaction dynamics and importance of the β‐sheets in Fyn‐SH3 and proline‐rich region of MBP. Proteins 2017; 85:1336–1350. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
The role of Src-family protein tyrosine kinases (SFKs) in egg activation has been established, in large part, by the observation that GST fusion proteins encoding the SH2 domain of Src or Fyn suppress the sperm-induced calcium transient and cause polyspermy in marine invertebrate eggs. These fusion proteins are thought to act as dominant-negative inhibitors of SFK function; however, the mechanism by which they work is not known. The objective of the present study was to test the hypothesis that fusion proteins containing the above SH2 domains prevent activation of SFKs in response to fertilization. A single cell assay was developed that allows estimation of SFK activity in eggs injected with the GST-Fyn-SH2 fusion protein. The results demonstrate that the GST-Fyn-SH2 fusion protein prevents fertilization induced stimulation of SFK activity at concentrations that also suppress the sperm-induced calcium transient in zebrafish eggs.  相似文献   

15.
Fertilization triggers activation of Fyn kinase in the zebrafish egg   总被引:2,自引:0,他引:2  
Fertilization results in the tyrosine phosphorylation of several egg proteins and studies have shown that tyrosine protein kinase activity is required for successful fertilization. The Fyn protein kinase has been detected in eggs of the sea urchin, frog and rat, although measurement of fertilization-induced changes in Fyn kinase activity have only been successful in the sea urchin system. The present study demonstrates the presence of Fyn kinase in the zebrafish egg and the stimulation of this enzyme at fertilization. Activation of Fyn was detected as early as 30 seconds post-fertilization and increased approximately six-fold by 2 minutes post-insemination. The activation of Fyn in the zebrafish egg required sperm and was not observed in spontaneously activated eggs.  相似文献   

16.
The acrosome reaction (i.e. the exocytosis of the sperm vesicle) is a prerequisite for fertilization, but its molecular mechanism is largely unknown. We have identified a cDNA clone for a gene named haprin, which encodes a haploid germ cell-specific RING finger protein. This protein is a novel member of the RBCC (RING finger, B-box type zinc finger, and coiled-coil domain) motif family that has roles in several cellular processes, such as exocytosis. It is transcribed exclusively in testicular germ cells after meiotic division. Western blot and immunohistochemical analyses showed the molecular weight of Haprin protein to be Mr approximately 82,000. It was localized in the acrosomal region of elongated spermatids and mature sperm and was not present in acrosome-reacted sperm. The specific antibody against the RING finger domain of Haprin inhibited the acrosome reaction in permeabilized sperm. These results indicated that the novel RBCC protein Haprin plays a key role in the acrosome reaction and fertilization.  相似文献   

17.
Acrosome biogenesis involves the transport and fusion of Golgi-derived proacrosomal vesicles along the acroplaxome, an F-actin/keratin 5-containing cytoskeletal plate anchored to the spermatid nucleus. A significant issue is whether the acroplaxome develops in acrosomeless mutant mice. Male mice with a Hrb null mutation are infertile and both spermatids and sperm are round-headed and lack an acrosome. Hrb, a protein that contains several NPF motifs (Asn-Pro-Phe) and interacts with proteins with Eps15 homology domains, is regarded as critical for the docking and/or fusion of Golgi-derived proacrosomal vesicles. Here we report that the lack of an acrosome in Hrb mutant spermatids does not prevent the development of the acroplaxome. Yet the acroplaxome in the mutant contains F-actin but is deficient in keratin 5. We also show that the actin-based motor protein myosin Va and its receptor, Rab27a/b, known to be involved in vesicle transport, are present in the Golgi and Golgi-derived proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. In the Hrb mutant, myosin-Va-bound proacrosome vesicles tether to the acroplaxome, where they flatten and form a flat sac, designated pseudoacrosome. As spermiogenesis advances, round-shaped spermatid nuclei of the mutant display several nuclear protrusions, designated nucleopodes. Nucleopodes are consistently found at the acroplaxome- pseudoacrosome site. Our findings support the interpretation that the acroplaxome provides a focal point for myosin-Va/ Rab27a/b-driven proacrosomal vesicles to accumulate, coalesce, and form an acrosome in wild-type spermatids and a pseudoacrosome in Hrb mutant spermatids. We suggest that nucleopodes develop at a site where a keratin 5-deficient acroplaxome may not withstand tension forces operating during spermatid nuclear shaping.  相似文献   

18.
The objective of the present study was to determine whether Fyn kinase participated in signaling events during sperm–egg interactions, sperm incorporation, and meiosis II. The functional requirement of Fyn kinase activity in these events was tested through the use of the protein kinase inhibitor SKI‐606 (Bosutinib) and by analysis of Fyn‐null oocytes. Suppression of Fyn kinase signaling prior to fertilization caused disruption of the functional polarity of the oocyte with the result that sperm were able to fuse with the oocyte in the immediate vicinity of the meiotic spindle, a region that normally does not allow sperm fusion. The loss of functional polarity was accompanied by disruption of the microvilli and cortical granule‐free zone that normally overlie the meiotic spindle. Changes in the distribution of cortical granules and filamentous actin provided further evidence of disorganization of the oocyte cortex. Rho B, a molecular marker for oocyte polarity, was unaffected by suppression of Fyn activity; however, the polarized association of Par‐3 with the cortex overlying the meiotic spindle was completely disrupted. The defects in oocyte polarity in Fyn‐null oocytes correlated with a failure of the MII chromosomes to maintain a position close to the oocyte cortex which seemed to underlie the above defects in oocyte polarity. This was associated with a delay in completion of meiosis II. Pronuclei, however, eventually formed and subsequent mitotic cleavages and blastocyst formation occurred normally. Mol. Reprod. Dev. 76: 819–831, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号