首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungi are a megadiverse group of organisms, they play major roles in ecosystem functioning and are important for human health, food production and nature conservation. Our knowledge on fungal diversity and fungal ecology is however still very limited, in part because surveying and identifying fungi is time demanding and requires expert knowledge. We present a method that allows anyone to generate a list of fungal species likely to occur in a region of interest, with minimal effort and without requiring taxonomical expertise. The method consists of using a cyclone sampler to acquire fungal spores directly from the air to an Eppendorf tube, and applying DNA barcoding with probabilistic species identification to generate a list of species from the sample. We tested the feasibility of the method by acquiring replicate air samples from different geographical regions within Finland. Our results show that air sampling is adequate for regional‐level surveys, with samples collected >100 km apart varying but samples collected <10 km apart not varying in their species composition. The data show marked phenology, and thus obtaining a representative species list requires aerial sampling that covers the entire fruiting season. In sum, aerial sampling combined with probabilistic molecular species identification offers a highly effective method for generating a species list of air‐dispersing fungi. The method presented here has the potential to revolutionize fungal surveys, as it provides a highly cost‐efficient way to include fungi as a part of large‐scale biodiversity assessments and monitoring programs.  相似文献   

2.
Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99-100%) and unpublished high-throughput 454 environmental datasets (>95%). BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions.  相似文献   

3.
In molecular ecology, the development of efficient molecular markers for fungi remains an important research domain. Nuclear ribosomal internal transcribed spacer (ITS) region was proposed as universal DNA barcode marker for fungi, but this marker was criticized for Indel‐induced alignment problems and its potential lack of phylogenetic resolution. Our main aim was to develop a new phylogenetic gene and a putative functional marker, from single‐copy gene, to describe fungal diversity. Thus, we developed a series of primers to amplify a polymorphic region of the Glycoside Hydrolase GH63 gene, encoding exo‐acting α‐glucosidases, in basidiomycetes. These primers were validated on 125 different fungal genomic DNAs, and GH63 amplification yield was compared with that of already published functional markers targeting genes coding for laccases, N‐acetylhexosaminidases, cellobiohydrolases and class II peroxidases. Specific amplicons were recovered for 95% of the fungal species tested, and GH63 amplification success was strikingly higher than rates obtained with other functional genes. We downloaded the GH63 sequences from 483 fungal genomes publicly available at the JGI mycocosm database. GH63 was present in 461 fungal genomes belonging to all phyla, except Microsporidia and Neocallimastigomycota divisions. Moreover, the phylogenetic trees built with both GH63 and Rpb1 protein sequences revealed that GH63 is also a promising phylogenetic marker. Finally, a very high proportion of GH63 proteins was predicted to be secreted. This molecular tool could be a new phylogenetic marker of fungal species as well as potential indicator of functional diversity of basidiomycetes fungal communities in term of secretory capacities.  相似文献   

4.
In the African and Asian tropics, termites of the subfamily Macrotermitinae play a major role in the decomposition of dead plant material. Their ecological success lies in the obligate mutualism of the termites with fungi of the genus Termitomyces. Before the advent of molecular studies, the interaction with these fungi was poorly understood. Here, we combined available ITS sequence data from West, Central, and South Africa with data of 39 new samples from East Africa to achieve the most comprehensive view of the diversity and host specificity of Termitomyces symbionts across Africa to date. A high amount of sequence divergence in the ITS sequences was found; 11 different Termitomyces lineages in East Africa and >30 lineages across Africa were identified, and the expected diversity is estimated to be about 41 lineages. The fungal lineages belong to four major clades, each almost exclusively associated with one termite host genus. Analysis of molecular variance revealed that 40% of the ITS sequence variation occurred between host genera, indicating close co-evolution at this level. However, within host genera, fungal lineages and haplotypes were frequently shared among host species and sampling localities, except for fungal symbionts of Odontotermes. Horizontal transmission of fungal symbionts may facilitate the transfer of haplotypes and species among hosts. However, at present, we have little understanding of the maintenance of specificity at the genus level. Possible explanations range from substrate specificity of fungi to an active selection of fungi by termites.  相似文献   

5.
The primary structure of an extracellular ribonuclease (RNase LE) from Pi-depleted media of cultured cells of Lycopersicon esculentum L. cv. Lukullus has been determined. This was carried out by analysis of peptides isolated after enzymatic and chemical cleavage of the reduced and S-ethylpyridylated protein. RNase LE consists of 205 amino acid residues and has a molecular mass of 22,666 Da and an isoelectric point of 4.24. The enzyme contains 10 half-cystines. There are no potential N-glycosylation sites in the sequence. The sequence of RNase LE is homologous with those of self-incompatibility proteins of several higher plant species and with those of a number of fungal RNases. The sequence similarity with the family of self-incompatibility proteins is greater than with the fungal RNases, suggesting that the self-incompatibility proteins arose from ancestral RNase by gene duplication after the divergence of higher plants and fungi. Two pentapeptide sequences, i.e. HGLWP and KHGTC (or KHGSC), are present at identical positions in all the aligned proteins, suggesting that they contribute to the active site.  相似文献   

6.
Root‐associated fungi and host‐specific pathogens are major determinants of species coexistence in forests. Phylogenetically related neighboring trees can strongly affect the fungal community structure of the host plant, which, in turn, will affect the ecological processes. Unfortunately, our understanding of the factors influencing fungal community composition in forests is still limited. In particular, investigation of the relationship between the phytopathogenic fungal community and neighboring trees is incomplete. In the current study, we tested the host specificity of members of the root‐associated fungal community collected from seven tree species and determined the influence of neighboring trees and habitat variation on the composition of the phytopathogenic fungal community of the focal plant in a subtropical evergreen forest. Using high‐throughput sequencing data with respect to the internal transcribed spacer (ITS) region, we characterized the community composition of the root‐associated fungi and found significant differences with respect to fungal groups among the seven tree species. The density of conspecific neighboring trees had a significantly positive influence on the relative abundance of phytopathogens, especially host‐specific pathogens, while the heterospecific neighbor density had a significant negative impact on the species richness of host‐specific pathogens, as well as phytopathogens. Our work provides evidence that the root‐associated phytopathogenic fungi of a host plant depend greatly on the tree neighbors of the host plant.  相似文献   

7.
The diversity of arbuscular mycorrhizal (AM) fungi and their broad or narrow association with distinct plant species in natural environments are crucial information in the understanding of the ecological role of AM fungi on plant co-existence. This knowledge is also needed for appropriate mycorrhization of nursery-grown seedlings for forestation efforts. Here, we report results from comparative studies on three co-occurring indigenous tree species of the dry Afromontane forests of Ethiopia and their seedlings grown under controlled conditions in soil collected from the sites. AM fungal SSU rDNA fragment was amplified and sequenced from mycorrhizas of adult plants and seedlings of Olea europaea subsp. cuspidata and Prunus africana, and from Podocarpus falcatus seedlings. AM fungal identity, diversity and community structure were analyzed based on sequence types defined by the NS31-AM1 SSU rDNA fragment similarity in order to compare with data from other habitats. A total of 409 sequences, grouped in 32 sequence types, belonging to Glomeraceae, Diversisporaceae and Gigasporaceae were found. Some sequence types are close to the widespread Glomus intraradices, G. hoi, G. etunicatum, G. cf. etunicatum and Gigaspora margarita. However, the majority (59%) of sequence types are so far specific for the sites including 11 new types when compared with previous data from the same area. The AM fungal community associated with adult plants, including data previously obtained from adult Podocarpus falcatus seedlings, and seedlings of a host species differed significantly, where seedlings trapping a surprising large number of native fungi. AM fungal community structure also differed significantly between host species and sites, respectively. The results confirm previous results from the same area indicating distinct fungal communities associated with the diverse tree species and suggests the potential of these indigenous tree seedlings to trap a wide range of AM fungi appropriate for successful afforestation.  相似文献   

8.
9.
Fungi are important parasites of primary producers and nutrient cyclers in aquatic ecosystems. In the Pacific‐Arctic domain, fungal parasitism is linked to light intensities and algal stress that can elevate disease incidence on algae and reduce diatom concentrations. Fungi are vastly understudied in the marine realm and knowledge of their function is constrained by the current understanding of fungal distribution and drivers on global scales. To investigate the spatial distribution of fungi in the western Arctic and sub‐Arctic, we used high throughput methods to sequence 18S rRNA, cloned and sequenced 28S rRNA and microscopically counted chytrid‐infected diatoms. We identified a broad distribution of fungal taxa predominated by Chytridiomycota and Dikarya. Phylogenetic analysis of our Chytridiomycota clones placed Arctic marine fungi sister to the order Lobulomycetales. This clade of fungi predominated in fungal communities under ice with low snowpack. Microscopic examination of fixed seawater and sea ice samples revealed chytrids parasitizing diatoms collected across the Arctic that notably infected 25% of a single diatom species in the Bering Sea. The Pezizomycotina comprised > 95% of eukaryotic sequence reads in Greenland, providing preliminary evidence for osmotrophs being a substitute for algae as the base of food webs.  相似文献   

10.
How community‐level specialization differs among groups of organisms, and changes along environmental gradients, is fundamental to understanding the mechanisms influencing ecological communities. In this paper, we investigate the specialization of root‐associated fungi for plant species, asking whether the level of specialization varies with elevation. For this, we applied DNA barcoding based on the ITS region to root samples of five plant species equivalently sampled along an elevational gradient at a high arctic site. To assess whether the level of specialization changed with elevation and whether the observed patterns varied between mycorrhizal and endophytic fungi, we applied a joint species distribution modeling approach. Our results show that host plant specialization is not environmentally constrained in arctic root‐associated fungal communities, since there was no evidence for changing specialization with elevation, even if the composition of root‐associated fungal communities changed substantially. However, the level of specialization for particular plant species differed among fungal groups, root‐associated endophytic fungal communities being highly specialized on particular host species, and mycorrhizal fungi showing almost no signs of specialization. Our results suggest that plant identity affects associated mycorrhizal and endophytic fungi differently, highlighting the need of considering both endophytic and mycorrhizal fungi when studying specialization in root‐associated fungal communities.  相似文献   

11.
Ectomycorrhiza is a mutualistic symbiosis formed between fine roots of trees and the mycelium of soil fungi. This symbiosis plays a key role in forest ecosystems for the mineral nutrition of trees and the biology of the fungal communities associated. The characterization of genes involved in developmental and metabolic processes is important to understand the complex interactions that control the ectomycorrhizal symbiosis. Agrobacterium‐mediated gene transfer (AMT) in fungi is currently opening a new era for fungal research. As whole genome sequences of several fungi are being released studies about T‐DNA integration patterns are needed in order to understand the integration mechanisms involved and to evaluate the AMT as an insertional mutagenesis tool for different fungal species. The first genome sequence of a mycorrhizal fungus, the basidiomycete Laccaria bicolor, became public in July 2006. Release of Laccaria genome sequence and the availability of AMT makes this fungus an excellent model for functional genomic studies in ectomycorrhizal research. No data on the integration pattern in Laccaria genome were available, thus we optimized a plasmid rescue approach for this fungus. To this end the transformation vector (pHg/pBSk) was constructed allowing the rescue of the T‐DNA right border (RB)–genomic DNA junctions in Escherichia coli. Fifty‐one Agrobacterium‐transformed fungal strains, picked up at random from a larger collection of T‐DNA tagged strains (about 500), were analysed. Sixty‐nine per cent were successfully rescued for the RB of which 87% were resolved for genomic integration sequences. Our results demonstrate that the plasmid rescue approach can be used for resolving T‐DNA integration sites in Laccaria. The RB was well conserved during transformation of this fungus and the integration analysis showed no clear sequence homology between different genomic sites. Neither obvious sequence similarities were found between these sites and the T‐DNA borders indicating non‐homologous integration of the transgenes. Majority (75%) of the integrations were located in predicted genes. Agrobacterium‐mediated gene transfer is a powerful tool that can be used for functional gene studies in Laccaria and will be helpful along with plasmid rescue in searching for relevant fungal genes involved in the symbiotic process.  相似文献   

12.
Sequences of peptidases with conserved motifs around the active site residues that are characteristic of trypsins (similar to trypsin peptidases, STP) were obtained from publicly-available fungal genomes and related databases. Among the 75 fungal genomes, 29 species of parasitic Ascomycota contained genes encoding STP and their homologs. Searches of non-redundant protein sequences, patented protein sequences, and expressed sequence tags resulted in another 18 STP sequences in 10 fungal species from Ascomycota, Basidiomycota, and Zygomycota. A comparison of fungi species containing STP sequences revealed that almost all are pathogens of plants, animals or fungi. A comparison of the primary structure of homologous proteins, including the residues responsible for substrate binding and specificity of the enzyme, revealed three groups of homologous sequences, all presumably from S1 family: trypsin-like peptidases, chymotrypsin-like peptidases and serine peptidases with unknown substrate specificity. Homologs that are presumably functionally inactive were predicted in all groups. The results in general support the hypothesis that the expression of trypsin-like peptidases in fungi represents a marker of fungal phytopathogenicity. A phylogenetic tree was constructed using peptidase and homolog amino acid sequences, demonstrating that all have noticeable differences and almost immediately deviate from the common root. Therefore, we conclude that the changes that occurred in STP of pathogenic fungi in the course of evolution represent specific adaptations to proteins of their respective hosts, and mutations in peptidase genes are important components of life-style changes and taxonomic divergence.  相似文献   

13.
Understanding the effects of root‐associated microbes in explaining plant community patterns represents a challenge in community ecology. Although typically overlooked, several lines of evidence point out that nonmycorrhizal, root endophytic fungi in the Ascomycota may have the potential to drive changes in plant community ecology given their ubiquitous presence, wide host ranges, and plant species‐specific fitness effects. Thus, we experimentally manipulated the presence of root endophytic fungal species in microcosms and measured its effects on plant communities. Specifically, we tested whether (1) three different root endophyte species can modify plant community structure; (2) those changes can also modified the way plant respond to different soil types; and (3) the effects are modified when all the fungi are present. As a model system, we used plant and fungal species that naturally co‐occur in a temperate grassland. Further, the soil types used in our experiment reflected a strong gradient in soil texture that has been shown to drive changes in plant and fungal community structure in the field. Results showed that each plant species responded differently to infection, resulting in distinct patterns of plant community structure depending on the identity of the fungus present. Those effects depended on the soil type. For example, large positive effects due to presence of the fungi were able to compensate for less nutrients levels in one soil type. Further, host responses when all three fungi were present were different from the ones observed in single fungal inoculations, suggesting that endophyte–endophyte interactions may be important in structuring plant communities. Overall, these results indicate that plant responses to changes in the species identity of nonmycorrhizal fungal community species and their interactions can modify plant community structure.  相似文献   

14.
15.
The Monotropoideae (Ericaceae) are non-photosynthetic angiosperms that obtain fixed carbon from basidiomycete ectomycorrhizal fungi. In previous work, we showed that each plant species is associated with a single genus or a set of closely related genera of ectomycorrhizal fungi. Here we show that the level of specificity is much higher. We used a molecular phylogenetic approach to contrast specificity patterns among eight plant lineages and three fungal genera. We relied on fungal nuclear internal transcribed spacer (nrITS) sequence data obtained from 161 basidiocarps and 85 monotropoid roots representing 286 sampled plants screened using restriction length polymorphisms. From the phylogenetic placement of fungal symbionts in fungal phylograms, we found that three basal (Sarcodes, Pterospora, Pleuricospora) and one derived lineage (Allotropa) of plants target narrow clades of closely related species groups of fungi, and four derived lineages (Monotropa hypopithys species group, Pityopus) target more distant species groups. Within most plant lineages, geography and photobiont association constrain specificity. Specificity extended further in Pterospora andromedea, in which sequence haplotypes at the plastid trn L-F region of 73 plants were significantly associated with different fungal species groups even in sympatry. These results indicate that both the macro- and microevolution of the Monotropoideae are tightly coupled to their mycorrhizal symbionts.  相似文献   

16.
To better understand the ecology of arbuscular mycorrhizal (AM) symbiosis, we need to measure functional traits of individual fungal virtual taxa under field conditions. The efficiency of AM fungi in locating nutrient‐rich patches in soil space is one of their central traits in this symbiotic relationship. We used plots of a long‐term field experiment in grassland with manipulated functional group composition of host plant community to establish ingrowth patches with substrate free of roots and fungi and with varying nutrient availability. Comparison of the original AM fungal community before patch creation with that present 9 weeks after patch establishment enabled us to estimate relative hyphal foraging speed for 41 fungal taxa, and a comparison of the fungal community in neighbouring patches differing in nutrient availability provided estimates of hyphal foraging precision for 22 taxa. Members of two dominant fungal families, Glomeraceae and Claroideoglomeraceae, differed in their foraging speed and precision. Glomeraceae taxa responded more slowly, but with a higher focus on enriched patches. We further demonstrated the usefulness of the obtained fungal functional traits by testing the differences between grass and dicotyledonous plant hosts using a data set obtained in another experiment at the same plots. Grass species hosted AM fungal communities with higher foraging speed, but lower foraging precision than the dicotyledonous species. Our study results support the use of field experiments for measuring comparative characteristics of AM fungi, which are highly elusive (or misrepresented) under controlled conditions.  相似文献   

17.
In natural forests, hundreds of fungal species colonize plant roots. The preference or specificity for partners in these symbiotic relationships is a key to understanding how the community structures of root‐associated fungi and their host plants influence each other. In an oak‐dominated forest in Japan, we investigated the root‐associated fungal community based on a pyrosequencing analysis of the roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were identified on at least two plant species. Although many mycorrhizal and root‐endophytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Likewise, fungi displayed remarkable variation in their association specificity for plants even within the same phylogenetic or ecological groups. For example, some fungi in the ectomycorrhizal family Russulaceae were detected almost exclusively on specific oak (Quercus) species, whereas other Russulaceae fungi were found even on “non‐ectomycorrhizal” plants (e.g., Lyonia and Ilex). Putatively endophytic ascomycetes in the orders Helotiales and Chaetothyriales also displayed variation in their association specificity and many of them were shared among plant species as major symbionts. These results suggest that the entire structure of belowground plant–fungal associations is described neither by the random sharing of hosts/symbionts nor by complete compartmentalization by mycorrhizal type. Rather, the colonization of multiple types of mycorrhizal fungi on the same plant species and the prevalence of diverse root‐endophytic fungi may be important features of belowground linkage between plant and fungal communities.  相似文献   

18.
Epifoliar fungi are a group of poorly studied fungal symbionts that coinhabit the surface of living plants. Meliolaceae is the largest group of epifoliar fungi and has been considered as obligate parasites. We investigated the taxonomy of Meliolaceae and the coevolutionary events with their host plants using time-calibrated cophylogeny based on large subunit, small subunit, and internal transcribed spacer (ITS) sequence data obtained from 17 different fungal taxa and rbcL, ITS, and trnH-psbA sequence data from their corresponding hosts. Nine new fungal species are introduced in this paper and Appendiculella is synonymized under Asteridiella. The dominant coevolutionary events during the Cretaceous and Cenozoic are cospeciation and host shift, respectively. We hypothesize that the evolutionary history of epifoliar fungi can be divided into three major periods: origins of families, formations of genera, and diversification of species. The rise of angiosperms prompted the evolution of modern epifoliar fungi and the diversification of orders of Angiospermae fostered the formation of epifoliar fungal genera. Phylogenetically, epifoliar fungal genera can be delimited according to their coevolutionary patterns and divergent periods.  相似文献   

19.
The development of gene expression systems for filamentous fungi   总被引:7,自引:0,他引:7  
Filamentous fungi have been used for decades in the commercial production of enzymes, antibiotics, and specialty chemicals. Traditionally, improving the yields of these products has involved either mutagenesis and screening or modification of fermentation conditions. Generally, selective breeding of strains has not been successful, because most of the commercially important fungal species lack a sexual cycle. For a few species, strain improvements have been made possible by employing the parasexual cycle for genetic crosses (30). The recent development of DNA-mediated transformation systems for several industrially important fungal species has spawned a flurry of research activity directed toward the development of gene expression systems for these microorganisms. This technology is now a viable means for novel and more directed approaches to improving existing fungal strains which produce enzymes or antibiotics. In addition, fungal expression systems are now being tested for the production of heterologous gene products such as mammalian pharmaceutical proteins. The goal of this review is to present a summary of the gene expression systems which have recently been developed for some filamentous fungi of commercial importance. To insure that the most recent developments are presented we have included data from not only scientific papers, but also from personal communications, abstracts, symposia, and our own laboratory.  相似文献   

20.
Microbially mediated oxidation of Mn(II) to Mn(III/IV) oxides influences the cycling of metals and remineralization of carbon. Despite the prevalence of Mn(II)‐bearing minerals in nature, little is known regarding the ability of microbes to oxidize mineral‐hosted Mn(II). Here, we explored oxidation of the Mn(II)‐bearing mineral rhodochrosite (MnCO3) and characteristics of ensuing Mn oxides by six Mn(II)‐oxidizing Ascomycete fungi. All fungal species substantially enhanced rhodochrosite dissolution and surface modification. Mineral‐hosted Mn(II) was oxidized resulting in formation of Mn(III/IV) oxides that were all similar to δ‐MnO2 but varied in morphology and distribution in relation to cellular structures and the MnCO3 surface. For four fungi, Mn(II) oxidation occurred along hyphae, likely mediated by cell wall‐associated proteins. For two species, Mn(II) oxidation occurred via reaction with fungal‐derived superoxide produced at hyphal tips. This pathway ultimately resulted in structurally unique Mn oxide clusters formed at substantial distances from any cellular structure. Taken together, findings for these two fungi strongly point to a role for fungal‐derived organic molecules in Mn(III) complexation and Mn oxide templation. Overall, this study illustrates the importance of fungi in rhodochrosite dissolution, extends the relevance of biogenic superoxide‐based Mn(II) oxidation and highlights the potential role of mycogenic exudates in directing mineral precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号