首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease. ADPKD is characterized by cyst development that leads to abnormal kidney structure. Renal tubules are a fundamental unit of architecture, so controls of tubular growth and formation are important for proper kidney function. The molecular mechanisms of tubulogenesis are being actively studied as the basis of diagnosis and treatment of ADPKD. Mxi1 is a member of the MAD family of proteins that functions in terminal differentiation, inhibition of cell cycle progression and tumor suppression, while the Myc protein, which is antagonized by Mxi1, causes renal cystogenesis. Based on these molecular relationships, the present study implicated Mxi1 with ADPKD be demonstrating that curtailed Mxi1 gene expression caused cyst formation in Mxi1-deficient mice. To ascertain whether Mxi1 affects renal epithelial cell tubulogenesis, three-dimensional cultures (3D culture) of mIMCD-3 cells and stably Mxi1 over-expressed mIMCD-3 cells were established. The results indicated that over-expression of the Mxi1 gene plays a role in the regulation of tubulogenesis by regulating some genes participating in renal epithelial branching tubulogenesis such as matrix metalloproteinase 9 (MMP9), integrins, fibronectin, and E-cadherin. The results support the suggestion that over-expression of Mxi1 can suppress renal epithelial tubulogenesis. In particular, MMP9 is greatly affected by the expression level of Mxi1. It can be concluded that mIMCD-3 cells that stably over-express Mxi1 fail to form renal epithelial tubules because of abnormally reduced expression of MMP9.  相似文献   

2.
Cilia in ciliated cells consist of protruding structures that sense mechanical and chemical signals from the extracellular environment. Cilia are assembled with variety molecules via a process known as intraflagellar transport (IFT). What controls the length of cilia in ciliated cells is critical to understand ciliary disease such as autosomal dominant polycystic kidney disease, which involves abnormally short cilia. But this control mechanism is not well understood. Previously, multiple tubular cysts have been observed in the kidneys of max-interacting protein 1 (Mxi1)-deficient mice aged 6 months or more. Here, we clarified the relationship between Mxi1 inactivation and cilia disassembly. Cilia phenotypes were observed in kidneys of Mxi1-deficient mice using scanning electron microscopy to elucidate the effect of Mxi1 on renal cilia phenotype, and cilia disassembly was observed in Mxi1-deficient kidney. In addition, genes related to cilia were validated in vitro and in vivo using quantitative PCR, and Ift20 was selected as a candidate gene in this study. The length of cilium decreased, and p-ERK level induced by a cilia defect increased in kidneys of Mxi1-deficient mice. Ciliogenesis of Mxi1-deficient mouse embryonic fibroblasts (MEFs) decreased, and this abnormality was restored by Mxi1 transfection in Mxi1-deficient MEFs. We confirmed that ciliogenesis and Ift20 expression were regulated by Mxi1 in vitro. We also determined that Mxi1 regulates Ift20 promoter activity via Ets-1 binding to the Ift20 promoter. These results indicate that inactivating Mxi1 induces ciliary defects in polycystic kidney.  相似文献   

3.
The Mxi1 proteins are biochemical and biological antagonists of c-myc oncoprotein. It has been reported that the overexpression pattern of c-myc might be similar to a molecular feature of early and late stages of human autosomal dominant polycystic kidney disease. We identified the cyst phenotype in Mxi1-deficient mice aged 6-12 months using H&E staining. Some chemokines containing a protein domain similar to human IL-8, which is associated with the inflammatory response, were subsequently selected from the up-regulated genes. We confirmed the expression level of these chemokines and measured protein concentrations of IL-8 using ELISA in the Mxi1-knockdown cells. IL-8 was found to be significantly increased in Mxi1-knockdown cells. We found that p38 MAP kinase activation was involved in the signal transduction of the Mxi1-inactivated secretion of IL-8. Therefore, we could suggest that the inactivation of Mxi1 leads to the inflammatory response and has the potential to induce polycystic renal disease.  相似文献   

4.
Transforming growth factor‐β1 (TGF‐β1) has a wide range of biological functions such as the regulation of cell growth, differentiation, and immunological response in various types of cells. Particularly, TGF‐β1 induces plasminogen activator inhibitor‐1 (PAI‐1) as a major target protein. PAI‐1 is associated with fibrosis, thrombosis, and metabolic disorders. In this study, to identify proteins potentially involved in TGF‐β1‐induced fibrosis processes, we performed a proteomic analysis of TGF‐β1‐induced normal rat kidney cells exposed to ascofuranone (AF). In these cells, we detected 1500 proteins, with 74 differentially expressed proteins identified by MALDI‐TOF and reference to the NCBI and Swiss‐Prot databases, including PAI‐1, peroxisome prdifesator‐activated receptor, prohibitin, glutamate formyltransferase, LIM domain protein 1, LASP‐1, porphobilinogen deaminase, and peroxiredoxin 2. We also found that AF suppresses expression of profibrotic factors induced by TGF‐β in renal fibroblasts, including matrix proteins and PAI‐1. AF was also shown to inhibit selectively phosphorylation of epidermal growth factor receptor, and downstream kinases such as extracellular signal‐regulated kinase 1/2 (ERK‐1/2). Further ongoing analysis of fibrosis‐related proteins will determine AF's potential for application in fibrotic diseases and therapeutics.  相似文献   

5.
End‐stage renal disease, the final stage of all chronic kidney disorders, is associated with renal fibrosis and inevitably leads to renal failure and death. Transition of tubular epithelial cells (TECs) into mesenchymal fibroblasts constitutes a proposed mechanism underlying the progression of renal fibrosis and here we assessed whether protease‐activated receptor (PAR)‐1, which recently emerged as an inducer of epithelial‐to‐mesenchymal transition (EMT), aggravates renal fibrosis. We show that PAR‐1 activation on TECs reduces the expression of epithelial markers and simultaneously induces mesenchymal marker expression reminiscent of EMT. We next show that kidney damage was reduced in PAR‐1‐deficient mice during unilateral ureter obstruction (UUO) and that PAR‐1‐deficient mice develop a diminished fibrotic response. Importantly, however, we did hardly observe any signs of mesenchymal transition in both wild‐type and PAR‐1‐deficient mice suggesting that diminished fibrosis in PAR‐1‐deficient mice is not due to reduced EMT. Instead, the accumulation of macrophages and fibroblasts was significantly reduced in PAR‐1‐deficient animals which were accompanied by diminished production of MCP‐1 and TGF‐β. Overall, we thus show that PAR‐1 drives EMT of TECs in vitro and aggravates UUO‐induced renal fibrosis although this is likely due to PAR‐1‐dependent pro‐fibrotic cytokine production rather than EMT.  相似文献   

6.
The age on onset of decline in renal function and end-stage renal disease (ESRD) in autosomal polycystic kidney disease (ADPKD) is highly variable and there are currently no prognostic tools to identify patients who will progress rapidly to ESRD. In ADPKD, expansion of cysts and loss of renal function are associated with progressive fibrosis. Similar to the correlation between tubulointerstitial fibrosis and progression of chronic kidney disease (CKD), in ADPKD, fibrosis has been identified as the most significant manifestation associated with an increased rate of progression to ESRD. Fibrosis in CKD has been studied extensively. In contrast, little is known about the mechanisms underlying progressive scarring in ADPKD although some commonality may be anticipated. Current data suggest that fibrosis associated with ADPKD shares at least some of the “classical” features of fibrosis in CKD (increased interstitial collagens, changes in matrix metalloproteinases (MMPs), over-expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), over-expression of plasminogen activator inhibitor-1 (PAI-1) and increased transforming growth factor beta (TGFβ) but that there are also some unique and stage-specific features. Epithelial changes appear to precede and to drive interstitial changes leading to the proposal that development of fibrosis in ADPKD is biphasic with alterations in cystic epithelia precipitating changes in interstitial fibroblasts and that reciprocal interactions between these cell types drives progressive accumulation of extracellular matrix (ECM). Since fibrosis is a major component of ADPKD it follows that preventing or slowing fibrosis should retard disease progression with obvious therapeutic benefits. The development of effective anti-fibrotic strategies in ADPKD is dependent on understanding the precise mechanisms underlying initiation and progression of fibrosis in ADPKD and the role of the intrinsic genetic defect in these processes. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

7.
A high-fat diet (HFD) is a major risk factor for chronic kidney disease. Although HFD promotes renal injury, characterized by increased inflammation and oxidative stress leading to fibrosis, the underlying mechanism remains elusive. Here, we investigated the role and mechanism of protease-activating receptor 2 (PAR2) activation during HFD-induced renal injury in C57/BL6 mice. HFD for 16 weeks resulted in kidney injury, manifested by increased blood levels of blood urea nitrogen, increased levels of oxidative stress with inflammation, and structural changes in the kidney tubules. HFD-fed kidneys showed elevated PAR2 expression level in the tubular epithelial region. To elucidate the role of PAR2, PAR2 knockout mice and their littermates were administered HFD. PAR2 deficient kidneys showed reduced extent of renal injury. PAR2 deficient kidneys showed significantly decreased levels of inflammatory gene expression and macrophage infiltration, followed by reduced accumulation of extracellular matrix proteins. Using NRK52E kidney epithelial cells, we further elucidated the mechanism and role of PAR2 activation during renal injury. Palmitate treatment increased PAR2 expression level in NRK52E cells and scavenging of oxidative stress blocked PAR2 expression. Under palmitate-treated conditions, PAR2 agonist-induced NF-κB activation level was higher with increased chemokine expression level in the cells. These changes were attenuated by the depletion of oxidative stress. Taken together, our results suggest that HFD-induced PAR2 activation is associated with increased levels of renal oxidative stress, inflammatory response, and fibrosis.  相似文献   

8.
Although it is known that the expression and activity of sirtuin 1 (Sirt1) decrease in the aged kidney, the role of interaction between Sirt1 and hypoxia‐inducible factor (HIF)‐1α is largely unknown. In this study, we investigated whether HIF‐1α could be a deacetylation target of Sirt1 and the effect of their interaction on age‐associated renal injury. Five‐week‐old (young) and 24‐month‐old (old) C57Bl/6J mice were assessed for their age‐associated changes. Kidneys from aged mice showed increased infiltration of CD68‐positive macrophages, higher expression of extracellular matrix (ECM) proteins, and more apoptosis than young controls. They also showed decreased Sirt1 expression along with increased acetylated HIF‐1α. The level of Bcl‐2/adenovirus E1B‐interacting protein 3, carbonic anhydrase 9, Snail, and transforming growth factor‐β1, which are regulated by HIF‐1α, was significantly higher in aged mice suggesting that HIF‐1α activity was increased. In HK‐2 cells, Sirt1 inhibitor sirtinol and siRNA‐mediated knockdown of Sirt1 enhanced apoptosis and ECM accumulation. During hypoxia, Sirt1 was down‐regulated, which allowed the acetylation and activation of HIF‐1α. Resveratrol, a Sirt1 activator, effectively prevented hypoxia‐induced production of ECM proteins, mitochondrial damage, reactive oxygen species generation, and apoptosis. The inhibition of HIF‐1α activity by Sirt1‐induced deacetylation of HIF‐1α was confirmed by Sirt1 overexpression under hypoxic conditions and by resveratrol treatment or Sirt1 overexpression in HIF‐1α‐transfected HK‐2 cells. Finally, we confirmed that chronic activation of HIF‐1α promoted apoptosis and fibrosis, using tubular cell‐specific HIF‐1α transgenic mice. Taken together, our data suggest that Sirt1‐induced deacetylation of HIF‐1α may have protective effects against tubulointerstitial damage in aged kidney.  相似文献   

9.
In autosomal dominant polycystic kidney disease (ADPKD), the inexorable growth of numerous fluid-filled cysts leads to massively enlarged kidneys, renal interstitial damage, inflammation, and fibrosis, and progressive decline in kidney function. It has long been recognized that interstitial fibrosis is the most important manifestation associated with end-stage renal disease; however, the role of abnormal extracellular matrix (ECM) production on ADPKD pathogenesis is not fully understood. Early evidence showed that cysts in end-stage human ADPKD kidneys had thickened and extensively laminated cellular basement membranes, and abnormal regulation of gene expression of several basement membrane components, including collagens, laminins, and proteoglycans by cyst epithelial cells. These basement membrane changes were also observed in dilated tubules and small cysts of early ADPKD kidneys, indicating that ECM alterations were early features of cyst development. Renal cystic cells were also found to overexpress several integrins and their ligands, including ECM structural components and soluble matricellular proteins. ECM ligands binding to integrins stimulate focal adhesion formation and can promote cell attachment and migration. Abnormal expression of laminin-332 (laminin-5) and its receptor α6β4 stimulated cyst epithelial cell proliferation; and mice that lacked laminin α5, a component of laminin-511 normally expressed by renal tubules, had an overexpression of laminin-332 that was associated with renal cyst formation. Periostin, a matricellular protein that binds αVβ3- and αVβ5-integrins, was found to be highly overexpressed in the kidneys of ADPKD and autosomal recessive PKD patients, and several rodent models of PKD. αVβ3-integrin is also overexpressed by cystic epithelial cells, and the binding of periostin to αVβ3-integrin activates the integrin-linked kinase and downstream signal transduction pathways involved in tissue repair promoting cyst growth, ECM synthesis, and tissue fibrosis. This chapter reviews the roles of the ECM, integrins, and focal adhesion signaling in cyst growth and fibrosis in PKD.  相似文献   

10.
Cysts arising from hepatic bile ducts are a common extra‐renal pathology associated with polycystic kidney disease in humans. As an initial step in identifying active components that could contribute to disease progression, we have investigated the protein composition of hepatic cyst fluid in an orthologous animal model of autosomal recessive polycystic kidney disease, heterozygous (BALB/c‐cpk/+) mice. Proteomic analysis of cyst fluid tryptic digests using LC‐MS/MS identified 303 proteins, many of which are consistent with enhanced inflammatory cell processes, cellular proliferation, and basal laminar fibrosis associated with the development of hepatic bile duct cysts. Protein identifications have been submitted to the PRIDE database ( http://www.ebi.ac.uk/pride ), accession number 9227.  相似文献   

11.
In autosomal recessive polycystic kidney disease (ARPKD), progressive enlargement of fluid-filled cysts is due to aberrant proliferation of tubule epithelial cells and transepithelial fluid secretion leading to extensive nephron loss and interstitial fibrosis. Congenital hepatic fibrosis associated with biliary cysts/dilatations is the most common extrarenal manifestation in ARPKD and can lead to massive liver enlargement. Peroxisome proliferator-activated receptor γ (PPAR-γ), a member of the ligand-dependent nuclear receptor superfamily, is expressed in a variety of tissues, including the kidneys and liver, and plays important roles in cell proliferation, fibrosis, and inflammation. In the current study, we determined that pioglitazone (PIO), a PPAR-γ agonist, decreases polycystic kidney and liver disease progression in the polycystic kidney rat, an orthologous model of human ARPKD. Daily treatment with 10 mg/kg PIO for 16 wk decreased kidney weight (% of body weight), renal cystic area, serum urea nitrogen, and the number of Ki67-, pERK1/2-, and pS6-positive cells in the kidney. There was also a decrease in liver weight (% of body weight), liver cystic area, fibrotic index, and the number of Ki67-, pERK1/2-, pERK5-, and TGF-β-positive cells in the liver. Taken together, these data suggest that PIO inhibits the progression of polycystic kidney and liver disease in a model of human ARPKD by inhibiting cell proliferation and fibrosis. These findings suggest that PPAR-γ agonists may have therapeutic value in the treatment of the renal and hepatic manifestations of ARPKD.  相似文献   

12.
Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy‐related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell‐autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.  相似文献   

13.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) regulates apoptosis, proliferation and inflammation in renal epithelial cells and plays a role in acute kidney injury. However, there is little information on the chronic effects of TWEAK. We hypothesized that TWEAK may influence renal fibrosis and regulate kidney fibroblast biology, in part, through Ras pathway.We studied a chronic model of experimental unilateral ureteral obstruction in wild type and TWEAK deficient mice, and a murine model of systemic TWEAK overexpression. TWEAK actions were also explored in cultured renal and embryonic fibroblasts.TWEAK and TWEAK receptor expression was increased in the obstructed kidneys. The absence of TWEAK decreased early kidney tubular damage, inflammatory infiltrates and myofibroblast number. TWEAK deficient mice had decreased renal fibrosis 21 days after obstruction, as assessed by extracellular matrix staining. In mice without prior underlying kidney disease, systemic overexpression of TWEAK induced kidney inflammation and fibrosis. In cultured fibroblasts, TWEAK induced proliferation through activation of the Ras/ERK pathway. TWEAK also activated nuclear factor κB (NFκB)-dependent inflammatory chemokine production in murine renal fibroblasts.In conclusion, lack of TWEAK reduces renal fibrosis in a model of persistent kidney insult and overexpression of TWEAK led to renal fibrosis. TWEAK actions on renal fibroblasts may contribute to the in vivo observations, as TWEAK promotes inflammatory activity and proliferation in fibroblast cultures.  相似文献   

14.
Alport syndrome is a hereditary type IV collagen disease leading to progressive renal fibrosis, hearing loss and ocular changes. End stage renal failure usually develops during adolescence. COL4A3?/? mice serve as an animal model for progressive renal scarring in Alport syndrome. The present study evaluates the role of Discoidin Domain Receptor 1 (DDR1) in cell–matrix interaction involved in pathogenesis of Alport syndrome including renal inflammation and fibrosis.DDR1/COL4A3 Double-knockouts were compared to COL4A3?/? mice with 50% or 100% expression of DDR1, wildtype controls and to DDR1?/? COL4A3+/+ controls for over 6 years. Double-knockouts lived 47% longer, mice with 50% DDR1 lived 29% longer and showed improved renal function (reduction in proteinuria and blood urea nitrogen) compared to animals with 100% DDR1 expression. Loss of DDR1 reduced proinflammtory, profibrotic cells via signaling of TGFβ, CTGF, NFκB and IL-6 and decreased deposition of extracellular matrix. Immunogold-staining and in-situ hybridisation identified podocytes as major players in DDR1-mediated fibrosis and inflammation within the kidney.In summary, glomerular epithelial cells (podocytes) express DDR1. Loss of DDR1-expression in the kidney delayed renal fibrosis and inflammation in hereditary type IV collagen disease. This supports our hypothesis that podocyte–matrix interaction via collagen receptors plays an important part in progression of renal fibrosis in Alport disease. The blockade of collagen-receptor DDR1 might serve as an important new therapeutic concept in progressive fibrotic and inflammatory diseases in the future.  相似文献   

15.
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is caused by the mutation of polycystins (PC-1 or PC-2), in which cysts start from the collecting duct to extend to all nephron segments with eventual end stage renal failure. The cyst development is attenuated by a vasopressin V2 receptor antagonist tolvaptan which, however, will not affect proximal tubule cysts devoid of V2 receptor. Aquaporin-11 (AQP11) is expressed selectively in the proximal tubule of the kidney and AQP11-null kidneys have a disruptive PC-1 trafficking to the plasma membrane to develop polycystic kidneys. Here, we analyzed AQP11-null kidneys at the beginning of cyst formation by quantitative proteomic analysis using Tandem Mass Tag (TMT). Among ~ 1200 identified proteins, 124 proteins were differently expressed by > 1.5 or < 0.8 fold change. A pancreatic stone inhibitor or a growth factor, lithostathine-1 (Reg1) was most enhanced by 5 folds which was confirmed by western blot, while mitochondria-related proteins were downregulated. The identified proteins will be new target molecules for the treatment of proximal tubular cysts and helpful to explore the functional roles of AQP11 in the kidney.  相似文献   

16.
17.
多囊肾病(Polycystic kidney disease,PKD)是以肾脏充满多个液性囊泡,细胞增殖异常,间质炎细胞浸润及细胞外基质重塑等病理特点为主的遗传性疾病。主要分为常染色体显性多囊肾病(Autosomal dominant polycystic kidney disease,ADPKD)及常染色体隐性多囊肾病(Autosomal recessive polycystic kidney disease,ARPKD)。ADPKD更为常见,发病率约为1:500-1000,约50%的患者到60岁会发展为终末期肾脏病。ARPKD较少见,发病率约为1:20000-1:40000,患者多在婴幼儿时期死亡。目前,一旦多囊肾发展为终末期肾脏病,除了肾脏移植和透析外没有更有效的治疗方法,因此,早期的诊治对延缓多囊肾进展及防止其发展为终末期肾脏病是至关重要的。多囊肾动物模型的建立在研究多囊肾疾病具体发病机制及新药研发中具有重要意义。本文介绍了PKD疾病动物模型的研究进展,包括经典PKD自发模型、化学诱导模型及基因修饰模型。  相似文献   

18.
To obtain insight into the physiological functions of the Krüppel-like zinc finger protein Gli-similar 2 (Glis2), mice deficient in Glis2 expression were generated. Glis2 mutant (Glis2(mut)) mice exhibit significantly shorter life spans than do littermate wild-type (WT) mice due to the development of progressive chronic kidney disease with features resembling nephronophthisis. Glis2(mut) mice develop severe renal atrophy involving increased cell death and basement membrane thickening in the proximal convoluted tubules. This development is accompanied by infiltration of lymphocytic inflammatory cells and interstitial/glomerular fibrosis. The severity of the fibrosis, inflammatory infiltrates, and glomerular and tubular changes progresses with age. Blood urea nitrogen and creatinine increase, and Glis2(mut) mice develop proteinuria and ultimately die prematurely of renal failure. A comparison of the gene expression profiles of kidneys from 25-day-old/60-day-old WT and Glis2(mut) mice by microarray analysis showed increased expressions of many genes involved in immune responses/inflammation and fibrosis/tissue remodeling in kidneys of Glis2(mut) mice, including several cytokines and adhesion and extracellular matrix proteins. Our data demonstrate that a deficiency in Glis2 expression leads to tubular atrophy and progressive fibrosis, similar to nephronophthisis, that ultimately results in renal failure. Our study indicates that Glis2 plays a critical role in the maintenance of normal kidney architecture and functions.  相似文献   

19.
孙丽萍  张欣洲 《生命科学》2010,(10):1043-1046
PKHD1是目前所知人类常染色体隐性遗传多囊肾病(autosomal recessive polycystic kidney disease,ARPKD)的惟一致病基因。ARPKD临床病变以双肾多发性进行性充液囊泡为主要特征。目前对PKHDl基因在ARPKD发病中的作用了解并不多。该文对ARPKD的发病机制和PKHD1基因功能最新研究进展进行综述。  相似文献   

20.
Autosomal dominant polycystic kidney disease (ADPKD), a hereditary renal disease caused by mutations in PKD1 (85%) or PKD2 (15%), is characterized by the development of gradually enlarging multiple renal cysts and progressive renal failure. Polycystin-1 (PC1), PKD1 gene product, is an integral membrane glycoprotein which regulates a number of different biological processes including cell proliferation, apoptosis, cell polarity, and tubulogenesis. PC1 is a target of various proteolytic cleavages and proteosomal degradations, but its role in intracellular signaling pathways remains poorly understood. Herein, we demonstrated that PC1 is a novel substrate for μ- and m-calpains, which are calcium-dependent cysteine proteases. Overexpression of PC1 altered both Janus-activated kinase 2 (JAK2) and extracellular signal-regulated kinase (ERK) signals, which were independently regulated by calpain-mediated PC1 degradation. They suggest that the PC1 function on JAK2 and ERK signaling pathways might be regulated by calpains in response to the changes in intracellular calcium concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号