首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life‐history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change‐related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ‐LC‐MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down‐regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down‐regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up‐regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.  相似文献   

2.
Ge Y  Bruno M  Wallace K  Winnik W  Prasad RY 《Proteomics》2011,11(12):2406-2422
Oxidative stress is known to play important roles in engineered nanomaterial‐induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial‐mediated oxidative stress and toxicity are largely unknown. To identify these toxicity pathways and networks that are associated with exposure to engineered nanomaterials, an integrated proteomic study was conducted using human bronchial epithelial cells, BEAS‐2B and nanoscale titanium dioxide. Utilizing 2‐DE and MS, we identified 46 proteins that were altered at protein expression levels. The protein changes detected by 2‐DE/MS were verified by functional protein assays. These identified proteins include some key proteins involved in cellular stress response, metabolism, adhesion, cytoskeletal dynamics, cell growth, cell death, and cell signaling. The differentially expressed proteins were mapped using Ingenuity Pathway Analyses? canonical pathways and Ingenuity Pathway Analyses tox lists to create protein‐interacting networks and proteomic pathways. Twenty protein canonical pathways and tox lists were generated, and these pathways were compared to signaling pathways generated from genomic analyses of BEAS‐2B cells treated with titanium dioxide. There was a significant overlap in the specific pathways and lists generated from the proteomic and the genomic data. In addition, we also analyzed the phosphorylation profiles of protein kinases in titanium dioxide‐treated BEAS‐2B cells for a better understanding of upstream signaling pathways in response to the titanium dioxide treatment and the induced oxidative stress. In summary, the present study provides the first protein‐interacting network maps and novel insights into the biological responses and potential toxicity and detoxification pathways of titanium dioxide.  相似文献   

3.
NEP1 (necrosis‐ and ethylene‐inducing peptide 1)‐like proteins (NLPs) have been identified in a variety of taxonomically unrelated plant pathogens and share a common characteristic of inducing responses of plant defense and cell death in dicotyledonous plants. Even though some aspects of NLP action have been well characterized, nothing is known about the global range of modifications in proteome and metabolome of NLP‐treated plant cells. Here, using both proteomic and metabolomic approaches we were able to identify the global molecular and biochemical changes in cells of Nicotiana benthamiana elicited by short‐term treatment with MpNEP2, a NLP of Moniliophthora perniciosa, the basidiomycete responsible for the witches' broom disease on cocoa (Theobroma cacao L.). Approximately 100 protein spots were collected from 2‐DE gels in each proteome, with one‐third showing more than twofold differences in the expression values. Fifty‐three such proteins were identified by mass spectrometry (MS)/MS and mapped into specific metabolic pathways and cellular processes. Most MpNEP2 upregulated proteins are involved in nucleotide‐binding function and oxidoreductase activity, whereas the downregulated proteins are mostly involved in glycolysis, response to stress and protein folding. Thirty metabolites were detected by gas spectrometry (GC)/MS and semi‐quantified, of which eleven showed significant differences between the treatments, including proline, alanine, myo‐inositol, ethylene, threonine and hydroxylamine. The global changes described affect the reduction‐oxidation reactions, ATP biosynthesis and key signaling molecules as calcium and hydrogen peroxide. These findings will help creating a broader understanding of NLP‐mediated cell death signaling in plants.  相似文献   

4.
In‐depth proteome analysis of the haloarchaeal model organism Haloferax volcanii has been performed under standard, low/high salt, and low/high temperature conditions using label‐free mass spectrometry. Qualitative analysis of protein identification data from high‐pH/reversed‐phase fractionated samples indicates 61.1% proteome coverage (2509 proteins), which is close to the maximum recorded values in archaea. Identified proteins match to the predicted proteome in their physicochemical properties, with only a small bias against low‐molecular‐weight and membrane‐associated proteins. Cells grown under low and high salt stress as well as low and high temperature stress are quantitatively compared to standard cultures by sequential window acquisition of all theoretical mass spectra (SWATH‐MS). A total of 2244 proteins, or 54.7% of the predicted proteome, are quantified across all conditions at high reproducibility, which allowed for global analysis of protein expression changes under these stresses. Of these, 2034 are significantly regulated under at least one stress condition. KEGG pathway enrichment analysis shows that several major cellular pathways are part of H. volcanii’s universal stress response. In addition, specific pathways (purine, cobalamin, and tryptophan) are affected by temperature stress. The most strongly downregulated proteins under all stress conditions, zinc finger protein HVO_2753 and ribosomal protein S14, are found oppositely regulated to their immediate genetic neighbors from the same operon.  相似文献   

5.
Pterostilbene (PTS), a naturally occurring stilbene, confers protection against oxidative and cytokine stress induced pancreatic β-cell apoptosis in vitro and in vivo. To provide insights into the molecular mechanism, we performed a proteomic study on the pancreas of PTS-treated diabetic mice using electrospray ionization tandem–mass spectrometry (LC–MS/MS). A total of 1,260 proteins were detected in triplicate samples. Of which, 359 proteins were found to be differentially regulated in streptozotocin-induced diabetic mice pancreas with two fold difference ( P < 0.05, two or more peptides) and on PTS treatment 315 proteins were normalized to control levels. Gene ontology (GO) indicated that majority of the differentially regulated proteins are involved in cellular functions such as metabolism, cellular structure, oxidative stress, endoplasmic-reticulum-associated protein degradation (ERAD) pathway and several stress sensors. Protein–protein interaction network analysis of these differentially expressed proteins showed clustering of proteins involved in protein processing in endoplasmic reticulum (protein synthesis machinery and protein folding), oxidative phosphorylation/oxidative stress proteins, oligosaccharide metabolic process, and antioxidant activity. Our results highlighted that PTS administration rehabilitated the defective metabolic process and redox imbalance, and also suppressed the unfolded protein response and ERAD pathways. The effects on targeting ER machinery and suppressing oxidative stress suggest the great potential of PTS for diabetes management.  相似文献   

6.
Plant responses to abiotic stress include various modifications in amino acid metabolism. By using a hydroponic culture system, we systematically investigate modification in amino acid profiles and the proteome of Arabidopsis thaliana leaves during initial recovery from low water potential or high salinity. Both treatments elicited oxidative stress leading to a biphasic stress response during recovery. Degradation of highly abundant proteins such as subunits of photosystems and ribosomes contributed to an accumulation of free amino acids. Catabolic pathways for several low abundant amino acids were induced indicating their usage as an alternative respiratory substrate to compensate for the decreased photosynthesis. Our results demonstrate that rapid detoxification of potentially detrimental amino acids such as Lys is a priority during the initial stress recovery period. The content of Pro, which acts as a compatible osmolyte during stress, was adjusted by balancing its synthesis and catabolism both of which were induced both during and after stress treatments. The production of amino acid derived secondary metabolites was up‐regulated specifically during the recovery period, and our dataset also indicates increased synthesis rates of the precursor amino acids. Overall, our results support a tight relationship between amino acid metabolism and stress responses.  相似文献   

7.
One of the mechanisms involved in host immunity is the limitation of iron accessibility to pathogens, which in turn provokes the corresponding physiological adaptation of pathogens. This study reports a gel‐free nanoLC‐MS/MS‐based comparative proteome analysis of Bordetella pertussis grown under iron‐excess and iron‐depleted conditions. Out of the 926 proteins covered 98 displayed a shift in their abundance in response to low iron availability. Forty‐seven of them were found to be increased in level while 58 were found with decreased protein levels under iron starvation. In addition to proteins previously reported to be influenced by iron in B. pertussis, we observed changes in metabolic proteins involved in fatty acid utilization and poly‐hydroxybutyrate production. Additionally, many bacterial virulence factors regulated by the BvgAS two‐component system were found at decreased levels in response to iron limitation. These results, together with the increased production of proteins potentially involved in oxidative stress resistance, seem to indicate that iron starvation provokes changes in B. pertussis phenotype that might shape host–pathogen interaction.  相似文献   

8.
9.
10.
11.
In this study, a quantitative comparative proteomics approach has been used to analyze the Dictyostelium discoideum mitochondrial proteome variations during vegetative growth, starvation and the early stages of development. Application of 2‐D DIGE technology allowed the detection of around 2000 protein spots on each 2‐D gel with 180 proteins exhibiting significant changes in their expression level. In total, 96 proteins (51 unique and 45 redundant) were unambiguously identified. We show that the D. discoideum mitochondrial proteome adaptations mainly affect energy metabolism enzymes (the Krebs cycle, anaplerotic pathways, the oxidative phosphorylation system and energy dissipation), proteins involved in developmental and signaling processes as well as in protein biosynthesis and fate. The most striking observations were the opposite regulation of expression of citrate synthase and aconitase and the very large variation in the expression of the alternative oxidase that highlighted the importance of citrate and alternative oxidase in the physiology of the development of D. discoideum. Mitochondrial energy states measured in vivo with MitoTracker Orange CM?Ros showed an increase in mitochondrial membrane polarization during D. discoideum starvation and starvation‐induced development.  相似文献   

12.
13.
Hepatitis B virus (HBV) infection is a worldwide health problem and may develop to liver fibrosis, cirrhosis, and even hepatocellular carcinoma. To investigate the global proteome responses of liver‐derived cells to HBV infection and IFNα treatment, 2‐DE and MS‐based analysis were performed to compare the proteome changes between HBV stably transfected cell line HepG2.2.15 and its parental cell line HepG2, as well as HepG2.2.15 before and after IFNα treatment (5000 IU/mL for 72 h). Compared to HepG2, 12 of 18 down‐regulated and 27 of 32 up‐regulated proteins were identified in HepG2.2.15. After IFNα treatment, 6 of 7 down‐regulated and 11 of 14 up‐regulated proteins were identified. Differentially expressed proteins caused by HBV infection were involved with cytoskeletal matrix, heat shock stress, kinases/signal transduction, protease/proteasome components, etc. Prohibitin showed a dose‐dependent up‐regulation during IFNα treatment and might play a potent role in anti‐HBV activities of IFNα by enhancing the crossbinding p53 expression to achieve the apoptosis of HBV infected liver cells. Down‐regulation of interferon‐stimulated gene 15 (ISG15) in HepG2.2.15 and recovery by IFNα suggested its relationship with IFNα's anti‐HBV effect.  相似文献   

14.
15.
Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2‐DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI‐TOF‐MS and LC‐ESI‐MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour.  相似文献   

16.
17.
18.
During infection by herpes simplex virus type‐1 (HSV‐1) the host cell undergoes widespread changes in gene expression and morphology in response to viral replication and release. However, relatively little is known about the specific proteome changes that occur during the early stages of HSV‐1 replication prior to the global damaging effects of virion maturation and egress. To investigate pathways that may be activated or utilised during the early stages of HSV‐1 replication, 2‐DE and LC‐MS/MS were used to identify cellular proteome changes at 6 h post infection. Comparative analysis of multiple gels representing whole cell extracts from mock‐ and HSV‐1‐infected HEp‐2 cells revealed a total of 103 protein spot changes. Of these, 63 were up‐regulated and 40 down‐regulated in response to infection. Changes in selected candidate proteins were verified by Western blot analysis and their respective cellular localisations analysed by confocal microscopy. We have identified differential regulation and modification of proteins with key roles in diverse cellular pathways, including DNA replication, chromatin remodelling, mRNA stability and the ER stress response. This work represents the first global comparative analysis of HSV‐1 infected cells and provides an important insight into host cell proteome changes during the early stages of HSV‐1 infection.  相似文献   

19.
This study aimed to identify new diabetic nephropathy (DN)‐related proteins and renal targets of the copper(II)‐selective chelator, triethylenetetramine (TETA) in streptozotocin‐diabetic rats. We used the recently developed iTRAQ? technology to compare renal protein profiles among non‐diabetic, diabetic, and TETA‐treated diabetic rats. In diabetic kidneys, tubulointerstitial nephritis antigen (TINag), voltage‐dependent anion‐selective channel (VDAC) 1, and VDAC2 were up‐regulated in parallel with alterations in expression of proteins with functions in oxidative stress and oxidative phosphorylation (OxPhos) pathways. By contrast, mitochondrial HSP 60, Cu/Zn‐superoxide dismutase, glutathione S‐transferase α3 and aquaporin‐1 were down‐regulated in diabetic kidneys. Following TETA treatment, levels of D ‐amino acid oxidase‐1, epoxide hydrolase‐1, aquaporin‐1, and a number of mitochondrial proteins were normalized, with concomitant amelioration of albuminuria. Changes in levels of TINag, collagen VIα1, actinin 4α, apoptosis‐inducing factor 1, cytochrome C, histone H3, VDAC1, and aquaporin‐1 were confirmed by Western blotting or immunohistochemistry. Changes in expression of proteins related to tubulointerstitial function, podocyte structure, and mitochondrial apoptosis are implicated in the mechanism of DN and their reversal by TETA. These findings are consistent with the hypothesis that this new experimental therapy may be useful for treatment of DN.  相似文献   

20.
Odoroside A (OA) is an active ingredient extracted from the leaves of Nerium oleander Linn. (Apocynaceae). This study aims to examine the anticancer bioactivity of OA against CRC cells and to investigate the action mechanisms involved. As a result, OA can significantly inhibit cellular ability and induce apoptosis of CRC cells in a concentration‐dependent manner without any obvious cytotoxicity in normal colorectal epithelial cells. Then, quantitative proteomics combined with bioinformatics is adopted to investigate the alterations of proteins and signaling pathways in response to OA treatment. As suggested by the proteomic analysis, flow cytometry and Western blotting analyses validate that exposure of CRC cells to OA causes cell cycle arrest and apoptosis, accompanied with the activation of the ROS/p53 signaling pathway. This observation demonstrates that OA, as a natural product, can induce oxidative stress to suppress tumor cell growth, implicating a novel therapeutic agent against CRC without obvious side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号