首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We are developing a rapid, time‐resolved method using laser‐activated cross‐linking to capture protein‐peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding‐yeast mating pheromone (α‐factor) and the decapeptide human gonadotropin‐releasing hormone (GnRH). Cross‐linking of α‐factor, using a biotinylated, photoactivatable p‐benzoyl‐L‐phenylalanine (Bpa)–modified analog, was energy‐dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA‐peptide complex. The cross‐linked complex was trypsinized and then interrogated with nano‐LC–MS/MS to identify the peptide cross‐links. Cross‐linking was greatly facilitated by Bpa in the peptide, but some cross‐linking occurred at higher laser powers and high concentrations of a non‐Bpa–modified α‐factor. This was supported by experiments using GnRH, a peptide with sequence homology to α‐factor, which was likewise found to be cross‐linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α‐factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser‐activation to facilitate cross‐linking of Bpa‐containing molecules to proteins. The rapid cross‐linking procedure and high performance of MS/MS to identify cross‐links provides a method to interrogate protein‐peptide interactions in a living cell in a time‐resolved manner.  相似文献   

2.
Exposure to cow's milk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion of milk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross‐allergenicity described between soy and milk proteins. We have previously identified several cross‐reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1‐casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α‐casein‐specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross‐reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI‐TOF MS analysis. On a second approach, the peptide mixture was resolved by RP‐HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI‐TOF MS. This novel MS based approach led us to identify and characterize four peptides on α‐casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross‐reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross‐reactivity, to further develop new and more effective vaccines for food allergy.  相似文献   

3.
Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross‐links, or caps the filament ends have been identified and the actin cross‐linker α‐actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α‐actinin is believed to be required for infection. To better understand the role of α‐actinin in the infectious process we have determined the solution structure of the C‐terminal calmodulin‐like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium‐binding EF‐hand motifs, connected with a mobile linker. Proteins 2016; 84:461–466. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Animal venoms are highly complex mixtures that can contain many disulfide-bridged toxins. This work presents an LC-MALDI approach allowing (1) a rapid classification of toxins according to their number of disulfide bonds and (2) a rapid top-down sequencing of the toxins using a new MALDI matrix enhancing in-source decay (ISD). The crude venom is separated twice by LC: the fractions of the first separation are spotted on the MALDI matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) and the others using 1,5-diaminonaphthalene (1,5-DAN). CHCA spots are more convenient for obtaining a precise mass fingerprint of a large number of peptides; however, the analysis of 1,5-DAN spots allows the number of disulfide bridges to be counted owing to their partial in-plume reduction by this particular matrix. Subsequently, the disulfide bonds of all peptides present in the crude venom were reduced by an excess of tris(carboxyethyl)phosphine before the LC separation and were subjected to the same analysis in CHCA and 1,5-DAN. Toxins were sequenced using a TOF/TOF analysis of metastable fragments from CHCA spots and ISD fragmentation from 1,5-DAN spots. Novel conotoxin sequences were found using this approach. The use of 1,5-DAN for ISD top-down sequencing is also illustrated for higher molecular weight toxins such as snake cardiotoxins and neurotoxins (>6500 Da), where sequence coverage >70% is obtained from the c-ion series.  相似文献   

5.
Two new rigid bi‐aromatic linkers for synthesis of peptide arrays by SPOT methodology were obtained from cellulose treated with 2,4‐dichloro‐6‐methoxy‐1,3,5‐triazine. Reaction with m‐phenylenediamine gave non‐cleavable TYPE I linker which enabled attachment of the peptides via resistant to harsh reaction conditions amide, ether, and amine bonds. Reaction with 3‐Fmoc‐aminobenzoic acid followed by thermal isomerization of the intermediate “superactive” ester producing an amide‐like bond gave TYPE II linker that was very stable during peptide synthesis. However, the peptide was cleavable, with fragment of the linker, in the presence of 1 M LiOH solution. The uniform loading of the cellulose and efficient synthesis of the peptide array was achieved by using N‐(4,6‐dimethoxy‐1,3,5‐triazin‐1‐yl)‐N‐methylmorpholinium 4‐toluenesulfonate as the coupling reagent.  相似文献   

6.
The beneficial use of NC in MALDI‐MS has previously been reported to provide better S/N and reproducibility as well as less alkali metal adducts. We have therefore investigated if additional beneficial properties of NC also existed for commonly employed proteomics‐based LC‐MALDI procedures. Specifically we studied the effects of NC as a matrix cofactor for prestructured sample supports (AnchorChip plates), and compared the performance with several alternative sample preparation methods recently reported in the literature. The work reported here describes a new method of mixing the NC‐matrix solution with the LC‐eluent prior to sample deposition and shows that a mixture of CHCA and NC in a complex solvent offers superior analytical results in several ways: most striking is the higher signal intensity, and that the signals last much longer, due to the robustness of the matrix formulation. We have tested the use of the nitromatrix on a single LC‐MALDI preparation and found that at least ten reiterative analyses could be performed, resulting in total analysis times of more than 75 h (approximately 15 million laser shots). Consequently more than twice as many proteins could be identified than from a single analysis. This combination of longer, and stronger, MALDI signals provided an increase in the number of peptides, greater sequence coverage in MS/MS experiments and ultimately more confident peptide assignments.  相似文献   

7.
Mass spectrometers equipped with matrix‐assisted laser desorption/ionization (MALDI‐MS) require frequent multipoint calibration to obtain good mass accuracy over a wide mass range and across large numbers of samples. In this study, we introduce a new synthetic peptide mass calibration standard termed PAS‐cal tailored for MALDI‐MS based bottom‐up proteomics. This standard consists of 30 peptides between 8 and 37 amino acids long and each constructed to contain repetitive sequences of Pro, Ala and Ser as well as one C‐terminal arginine residue. MALDI spectra thus cover a mass range between 750 and 3200 m/z in MS mode and between 100 and 3200 m/z in MS/MS mode. Our results show that multipoint calibration of MS spectra using PAS‐cal peptides compares well to current commercial reagents for protein identification by PMF. Calibration of tandem mass spectra from LC‐MALDI experiments using the longest peptide, PAS‐cal37, resulted in smaller fragment ion mass errors, more matching fragment ions and more protein and peptide identifications compared to commercial standards, making the PAS‐cal standard generically useful for bottom‐up proteomics.  相似文献   

8.
Cramer R  Corless S 《Proteomics》2005,5(2):360-370
We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet -- matrix-assisted laser desorption/ionisation -- mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. The low-femtomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydroxybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and low-mass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.  相似文献   

9.
The quality of MALDI‐TOF mass spectrometric analysis is highly dependent on the matrix and its deposition strategy. Although different matrix‐deposition methods have specific advantages, one major problem in the field of proteomics, particularly with respect to quantitation, is reproducibility between users or laboratories. Compounding this is the varying crystal homogeneity of matrices depending on the deposition strategy used. Here, we describe a novel optimised matrix‐deposition strategy for LC‐MALDI‐TOF/TOF MS using an automated instrument that produces a nebulised matrix “mist” under controlled atmospheric conditions. Comparisons of this with previously reported strategies showed the method to be advantageous for the atypical matrix, 2,5‐DHB, and improved phosphopeptide ionisation when compared with deposition strategies for CHCA. This optimised DHB matrix‐deposition strategy with LC‐MALDI‐TOF/TOF MS, termed EZYprep LC, was subsequently optimised for phosphoproteome analysis and compared to LC‐ESI‐IT‐MS and a previously reported approach for phosphotyrosine identification and characterisation. These methods were used to map phosphorylation on epidermal growth factor‐stimulated epidermal growth factor receptor to gauge the sensitivity of the proposed method. EZYprep DHB LC‐MALDI‐TOF/TOF MS was able to identify more phosphopeptides and characterise more phosphorylation sites than the other two proteomic strategies, thus proving to be a sensitive approach for phosphoproteome analysis.  相似文献   

10.
MALDI-TOF continues to be an important tool for many proteomic studies. Recently, a new rationally designed matrix 4-chloro-α-cyanocinnamic acid was introduced, which is reported to have superior performance as compared with the “gold standard” α-cyano-4-hydroxycinnamic acid (CHCA).1 In this study, the performance of this new matrix, using the Shimadzu Biotech Axima TOF2 (Shimadzu Biotech, Manchester, UK), was investigated. The overall sequence coverage as well as sensitivity of this matrix were compared with CHCA using standard protein tryptic digests. The performance of this matrix with labile peptides, such as phosphopeptides and 4-sulfophenyl isothiocynate-derivatized peptides, to facilitate de novo sequencing was also explored. This matrix was found to be better performing than CHCA in overall sensitivity and showed better sequence coverage at low-digest levels, partly as a result of less of a bias for arginine-containing peptides. It also showed as much as a tenfold improvement in sensitivity with labile peptides on standard stainless-steel targets. In addition, as a result of the much cooler nature of this matrix, labile peptides are readily seen intact with much less fragmentation in mass spectrometry (MS) mode. This matrix was also evaluated in the MS/MS fragmentation modes of post-source decay (PSD) and collisional-induced dissociation (CID). It was found that fragmentation occurs readily in CID, however as a result of the very cool nature of this new matrix, the PSD fragments were quite weak. This matrix promises to be an important addition to the already extensive array of MALDI matrices.  相似文献   

11.
Mark L. Stolowitz 《Proteomics》2012,12(23-24):3438-3450
Over the course of the last decade, a number of investigators have come to appreciate that the surface of a MALDI target, after suitable modification, can be used for selective enrichment of peptides and proteins. More recently, surface‐modified nanoparticles (NPs) that readily co‐crystallize in MALDI matrix, are not ionized by laser desorption/ionization, and do not interfere with MS have attracted interest as alternatives to surface‐modified targets for selective enrichment of peptides and proteins. Surface‐modified targets and NPs facilitate parallel processing of samples, and when used in conjunction with MALDI mass spectrometers with kHz lasers enable development of high‐throughput proteomics platforms. Targets and NPs for reversed phase and ion exchange retention, selective enrichment of glycopeptides, selective enrichment of phosphopeptides, and immunoaffinity MS are described in conjunction with details regarding their preparation and utility. Commercial availability of the reagents and substrates required to prepare surface‐modified targets and NPs is also discussed.  相似文献   

12.
13.
Some 4′‐C‐ethynyl‐2′‐deoxy purine nucleosides showed the most potent anti‐HIV activity among the series of 4′‐C‐substituted 2′‐deoxynucleosides whose 4′‐C‐substituents were methyl, ethyl, ethynyl and so on. Our hypothesis is that the smaller the substituent at the C‐4′ position they have, the more acceptable biological activity they show. Thus, 4′‐C‐cyano‐2′‐deoxy purine nucleosides, whose substituent is smaller than the ethynyl group, will have more potent antiviral activity. To prove our hypothesis, we planned to develop an efficient synthesis of 4′‐C‐cyano‐2′‐deoxy purine nucleosides (4′‐CNdNs) and 4′‐C‐ethynyl‐2′‐deoxy purine nucleosides (4′‐EdNs). Consequently, we succeeded in developing an efficient synthesis of six 2′‐deoxy purine nucleosides bearing either a cyano or an ethynyl group at the C‐4′ position of the sugar moiety from 2′‐deoxyadenosine and 2,6‐diaminopurine 2′‐deoxyriboside. Unfortunately, 4′‐C‐cyano derivatives showed lower activity against HIV‐1, and two 4′‐C‐ethynyl derivatives suggested high toxicity in vivo.  相似文献   

14.
In this study, an on‐plate‐selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless‐steel plate, then modified with 4‐mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI‐MS simply by deposition of 2,5‐dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on‐plate strategy promising for online enrichment of glycopeptides, which could be applied in high‐throughput proteome research.  相似文献   

15.
Aza‐peptides have been used as tools for studying SARs in programs aimed at drug discovery and chemical biology. Protected aza‐dipeptides were synthesized by a solution‐phase submonomer approach featuring alkylation of N‐terminal benzophenone semicarbazone aza‐Gly‐Xaa dipeptides using different alkyl halides in the presence of potassium tert‐butoxide as base. Benzophenone protected aza‐dipeptide tert‐butyl ester 31c was selectively deprotected at the C‐terminal ester or N‐terminal hydrazone to afford, respectively, aza‐dipeptide acid and amine building blocks 36c and 40c, which were introduced into longer aza‐peptides. Alternatively, removal of the benzophenone semicarbazone protection from aza‐dipeptide methyl esters 29a–c led to intramolecular cyclization to produce aza‐DKPs 39a–c. In light of the importance of aza‐peptides and DKPs as therapeutic agents and probes of biological processes, this diversity‐oriented solution‐phase approach may provide useful tools for studying peptide science. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Short cyclic peptides have a great interest in therapeutic, diagnostic and affinity chromatography applications. The screening of ‘one‐bead‐one‐peptide’ combinatorial libraries combined with mass spectrometry (MS) is an excellent tool to find peptides with affinity for any target protein. The fragmentation patterns of cyclic peptides are quite more complex than those of their linear counterparts, and the elucidation of the resulting tandem mass spectra is rather more difficult. Here, we propose a simple protocol for combinatorial cyclic libraries synthesis and ring opening before MS analysis. In this strategy, 4‐hydroxymethylbenzoic acid, which forms a benzyl ester with the first amino acid, was used as the linker. A glycolamidic ester group was incorporated after the combinatorial positions by adding glycolic acid. The library synthesis protocol consisted in the following: (i) incorporation of Fmoc‐Asp[2‐phenylisopropyl (OPp)]‐OH to Ala‐Gly‐oxymethylbenzamide‐ChemMatrix, (ii) synthesis of the combinatorial library, (iii) assembly of a glycolic acid, (iv) couple of an Ala residue in the N‐terminal, (v) removal of OPp, (vi) peptide cyclisation through side chain Asp and N‐Ala amino terminus and (vii) removal of side chain protecting groups. In order to simultaneously open the ring and release each peptide, benzyl and glycolamidic esters were cleaved with ammonia. Peptide sequences could be deduced from the tandem mass spectra of each single bead evaluated. The strategy herein proposed is suitable for the preparation of one‐bead‐one‐cyclic depsipeptide libraries that can be easily open for its sequencing by matrix‐assisted laser desorption/ionisation MS. It employs techniques and reagents frequently used in a broad range of laboratories without special expertise in organic synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Treatment of both uninfested and armyworm‐infested maize plants with jasmonic acid (JA) is known to attract the parasitic wasp, Cotesia kariyai Watanabe (Hymenoptera: Braconidae). Here, we show that treatment with a methyl ester of a JA precursor, methyl linolenate (MeLin), also causes maize plants to attract this wasp, yet does not cause elevated levels of endogenous JA. The volatile chemicals emitted from either infested or uninfested maize plants treated with MeLin were qualitatively and quantitatively different from those emitted from JA‐treated plants. Among compounds emitted from MeLin‐treated plants, α‐pinene and menthol attracted wasps in pure form in a two‐choice test using a choice chamber. A mixture of methyl salicylate, α‐copaene, and β‐myrcene also attracted wasps. In contrast, (Z)‐3‐hexenyl acetate was among the main attractants for C. kariyai in JA‐treated plants. These data show that in addition to JA, MeLin also has the potential to increase the host‐finding ability of C. kariyai, but that the composition of attractants they induce differs.  相似文献   

18.
N‐terminal modification of peptides by unnatural amino acids significantly affects their enzymatic stability, conformational properties and biological activity. Application of N‐amidino‐amino acids, positively charged under physiological conditions, can change peptide conformation and its affinity to the corresponding receptor. In this article, we describe synthesis of short peptides, containing a new building block—N‐amidino‐pyroglutamic acid. Although direct guanidinylation of pyroglutamic acid and oxidation of N‐amidino‐proline using RuO4 did not produce positive results, N‐amidino‐Glp‐Phe‐OH was synthesized on Wang polymer by cyclization of α‐guanidinoglutaric acid residue. In the course of synthesis, it was found that literature procedure of selective Boc deprotection using TMSOTf/TEA reagent is accompanied by concomitant side reaction of triethylamine alkylation by polymer linker fragment. It should be mentioned that independently from cyclization time and coupling agent (DIC or HCTU), the lactam formation was incomplete. Separation of the cyclic product from the linear precursor was achieved by HPLC in ammonium formate buffer at pH 6. HPLC analysis showed N‐amidino‐Glp‐Phe‐OH stability at acidic and physiological pH and fast ring opening in water solution at pH 9. The suggested method of N‐amidino‐Glp residue formation can be applied in the case of short peptide chains, whereas synthesis of longer ones will require fragment condensation approach. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Enantiomeric separations of N‐phthaloyl (N‐PHT), N‐tetrachlorophthaloyl (N‐TCPHT), and N‐naphthaloyl (N‐NPHT) α‐amino acids and their esters were examined on several kinds of polysaccharide‐derived chiral stationary phases (CSPs). Resolution capability of CSPs was greater Chiralcel OF than the others for N‐PHT and N‐NPHT α‐amino acids and their esters. In N‐TCPHT α‐amino acids and their esters, good enantioselectivities showed Chiralcel OG for N‐TCPHT α‐amino acids, Chiralpak AD for N‐TCPHT α‐amino acid methyl esters, and Chiralcel OD for N‐TCPHT α‐amino acid ethyl esters, respectively. From the results of liquid chromatography and computational chemistry, it is concluded that l ‐form is preferred and more retained with electrostatic interaction in case of interaction between N‐PHT α‐amino acid derivatives and Chiralcel OF, N‐TCPHT α‐amino acid derivatives and Chiralcel OD, and N‐NPHT α‐amino acid derivatives and Chiracel OF. On the other hand, d ‐form is preferred and more retained with van der Waals interaction in case of interaction between N‐TCPHT α‐amino acid ester derivatives and Chiralcel OG and Chiralpak AD. Chirality 24:1037–1046, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Two analogs of the ten‐amino acid residue, membrane‐active lipopeptaibiotic trichogin GA IV, mono‐labeled with 4‐cyano‐α‐methyl‐L ‐phenylalanine, a potentially useful fluorescence and IR absorption probe of the local microenvironment, were synthesized by the solid‐phase methodology and conformationally characterized. The single modification was incorporated either at the N‐terminus (position 1) or near the C‐terminus (position 8) of the peptide main chain. In both cases, the replaced amino acid was the equally helicogenic α‐aminoisobutyric acid (Aib) residue. We performed a solution conformational analysis by use of FT‐IR absorption, CD, and 2D‐NMR spectroscopies. The results indicate that both labeled analogs essentially maintain the overall helical propensity of the naturally occurring lipopeptaibiotic. Peptide? membrane interactions were assessed by fluorescence and ATR‐IR absorption techniques. Analogies and differences between the two peptides were highlighted. Taken together, our data confirm literature results that some of the spectroscopic parameters of the 4‐cyanobenzyl chromophore are sensitive markers of the local microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号