首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of sulfated glycoconjugates on the preparation of mammalian sperm for fertilization were investigated. The three sulfated glycoconjugates tested were heparin, dextran sulfate, and the fucose sulfate glycoconjugate (FSG) from the sea urchin egg jelly coat. In vivo, FSG induces the acrosome reaction in sea urchin sperm. Bovine sperm were found to be capacitated by heparin and FSG as judged both by ability of lysophosphatidylcholine (LC) to induce an acrosome reaction and by ability to fertilize bovine oocytes in vitro. The mechanism by which heparin or FSG capacitated bovine sperm appeared similar, since glucose inhibited capacitation by both glycoconjugates. In contrast to effects on bovine sperm, heparin and FSG induced the acrosome reaction in capacitated hamster sperm. When hamster sperm were incubated under noncapacitating conditions, heparin had no effect on capacitation or the acrosome reaction. Three molecular weights (MW) of dextran sulfate (5,000, 8,000, 500,000) were found to capacitate bovine sperm as judged by the ability of LC to induce an acrosome reaction. Whereas bovine sperm incubated with 5,000 or 8,000 M W dextran sulfate fertilized more bovine oocytes than control sperm (P <0.05), sperm treated with 500,000 M W dextran sulfate failed to penetrate oocytes. The high-MW dextran sulfate appeared to interact with the zona pellucida and/or sperm to prevent sperm binding. Results suggest that sulfated glycoconjugates may prepare sperm for fertilization across a wide range of species.  相似文献   

2.
SPINKL, a serine protease inhibitor kazal‐type‐like protein initially found in mouse seminal vesicle secretions, possesses structurally conserved six‐cysteine residues of the kazal‐type serine protease inhibitor family. However, it has no inhibitory activity against serine proteases. Previously, it was found to have the ability to suppress murine sperm capacitation in vitro. Herein, we investigated the mechanisms underlying the suppressive effect of SPINKL on sperm capacitation. Three in vitro capacitation‐enhancing agents, including bovine serum albumin (BSA), methyl‐beta‐cyclodextrin (MBCD), and dibutyryl cyclic AMP (dbcAMP), coupled with 3‐isobutyl‐1‐methylxanthine (IBMX), were used to evaluate the influence of SPINKL on capacitation signaling. Preincubation of sperm with SPINKL suppressed BSA‐ and MBCD‐induced sperm capacitation by blocking three upstream signals of capacitation that is the cholesterol efflux from sperm plasma membranes, extracellular calcium ion influx into sperm, and increases in intracellular cAMP. Moreover, SPINKL also inhibited downstream signal transduction of capacitation since it suppressed dbcAMP/IBMX and N6‐phenyl cAMP (6‐Phe‐cAMP)‐activated cAMP‐dependent protein kinase‐associated protein tyrosine phosphorylation. Such inhibition is probably mediated by attenuation of SRC tyrosine kinase activity. Furthermore, SPINKL could not reverse capacitation once sperm had been capacitated by capacitation‐enhancing agents or capacitated in vivo in the oviduct. SPINKL bound to sperm existed in the uterus but had disappeared from sperm in the oviduct during the sperm's transit through the female reproductive tract. Therefore, SPINKL may serve as an uncapacitation factor in the uterus to prevent sperm from precocious capacitation and the subsequent acrosome reaction and thus preserve the fertilization ability of sperm. J. Cell. Biochem. 114: 888–898, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Capacitation confers on the spermatozoa the competence to fertilize the oocyte. At the molecular level, a cyclic adenosine monophosphate (cAMP) dependent protein tyrosine phosphorylation pathway operates in capacitated spermatozoa, thus resulting in tyrosine phosphorylation of specific proteins. Identification of these tyrosine‐phosphorylated proteins and their function with respect to hyperactivation and acrosome reaction, would unravel the molecular basis of capacitation. With this in view, 21 phosphotyrosine proteins have been identified in capacitated hamster spermatozoa out of which 11 did not identify with any known sperm protein. So, in the present study attempts have been made to ascertain the role of one of these eleven proteins namely glycerol‐3‐phosphate dehydrogenase 2 (GPD2) in hamster sperm capacitation. GPD2 is phosphorylated only in capacitated hamster spermatozoa and is noncanonically localized in the acrosome and principal piece in human, mouse, rat, and hamster spermatozoa, though in somatic cells it is localized in the mitochondria. This noncanonical localization may imply a role of GPD2 in acrosome reaction and hyperactivation. Further, enzymatic activity of GPD2 during capacitation correlates positively with hyperactivation and acrosome reaction thus demonstrating that GPD2 may be required for sperm capacitation.  相似文献   

4.
We have previously demonstrated the presence of active epidermal growth factor receptor (EGFR) and its involvement in sperm capacitation and the acrosome reaction; however, the mechanism of EGFR activation was not clear. We show here that the sperm EGFR can be transactivated by angiotensin II or by lysophosphatydic acid, two ligands which activate specific G-protein-coupled receptors (GPCR), or by directly activating protein kinase A using 8Br-cAMP. This transactivation occurs in noncapacitated sperm and is mediated by PKA, SRC and a metalloproteinase. We also show that the EGFR is activated in sperm incubated under in vitro capacitation conditions, without any added ligand, but not in bicarbonate-deficient medium or when PKA is blocked. Despite the fact that EGFR is activated in capacitated sperm, this state is not sufficient to induce the acrosome reaction. We conclude that the EGFR is stimulated during capacitation via PKA activation, while further activation of the EGFR in capacitated sperm is required in order to induce the acrosome reaction. The acrosome reaction can be induced by GPCR via the transactivation of the EGFR by a signaling pathway involving PKA, SRC and metalloproteinase and the EGFR down-stream effectors PI3K, PLC and PKC.  相似文献   

5.
Ejaculated spermatozoa must undergo physiological priming as they traverse the female reproductive tract before they can bind to the egg’s extracellular coat, the zona pellucida (ZP), undergo the acrosome reaction, and fertilize the egg. The preparatory changes are the net result of a series of biochemical and functional modifications collectively referred to as capacitation. Accumulated evidence suggests that the event that initiates capacitation is the efflux of cholesterol from the sperm plasma membrane (PM). The efflux increases permeability and fluidity of the sperm PM and causes influx of Ca2+ ions that starts a signaling cascade and result in sperm capacitation. The binding of capacitated spermatozoa to ZP further elevates intrasperm Ca2+ and starts a new signaling cascade which open up Ca2+ channels in the sperm PM and outer acrosomal membrane (OAM) and cause the sperm to undergo acrosomal exocytosis. The hydrolytic action of the acrosomal enzymes released at the site of sperm-egg (zona) binding, along with the hyperactivated beat pattern of the bound spermatozoon, are important factors in directing the sperm to penetrate the ZP and fertilize the egg. The role of Ca2+-signaling in sperm capacitation and induction of the acrosome reaction (acrosomal exocytosis) has been of wide interest. However, the precise mechanism(s) of its action remains elusive. In this article, we intend to highlight data from this and other laboratories on Ca2+ signaling cascades that regulate sperm functions.  相似文献   

6.
Several authors have demonstrated the involvement of tyrosine kinases during sperm capacitation and acrosome reaction. Shc proteins (p46Shc, p52Shc, and p66Shc) are cytoplasmic substrates of activated tyrosine kinases and are widely expressed in mammalian somatic tissues. Experiments were designed to demonstrate the presence of Shc in spermatozoa and to study its involvement in the signal transduction events leading to acrosome reaction. Anti-Shc antibodies strongly reacted with the acrosomal region of methanol-fixed human sperm. Only one Shc isoform (p52Shc) was detected on Western blot. To study the degree of phosphorylation of Shc during capacitation and acrosome reaction, sperm samples were divided into two groups: noncapacitated and capacitated/progesterone treated. Lysates from both groups were immunoprecipitated with anti-phosphotyrosine antibodies and the precipitated (ie, phosphorylated) proteins were tested with anti-Shc antibodies. The intensity of p52Shc was clearly increased in capacitated/progesterone-stimulated cells. Mol. Reprod. Dev. 50:113–120, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Proprotein convertase subtilisin/kexin 4 (PCSK4) is implicated for sperm fertilizing ability, based on studies using Pcsk4‐null mice. Herein we demonstrated proprotein convertase (PC) activity in intact sperm and acrosomal vesicles. To determine whether this activity was important for sperm fertilizing ability, a peptide inhibitor was designed based on PCSK4 prodomain sequence (proPC475–90), which contains its primary autocatalytic cleavage site. ProPC475–90 inhibited recombinant PCSK4's activity with a Ki value of 5.4 µM, and at 500 µM, it inhibited sperm PC activity almost completely. Treatment of sperm with proPC475–90 inhibited their egg fertilizing ability in a dose dependent manner. Correlation between sperm PC activity and fertilizing ability showed a high co‐efficient value (>0.9), indicating the importance of sperm PC activity in fertilization. In particular, sperm PC activity was important for capacitation and zona pellucida (ZP)‐induced acrosome reaction, since proPC475–90‐treated sperm showed markedly decreased rates in these two events. These results were opposite to those observed in Pcsk4‐null sperm, which contained higher PC activity than wild type sperm, possibly due to overcompensation by PCSK7, the other PCSK enzyme found in sperm. ADAM2 (45 kDa), a sperm plasma membrane protein, involved in sperm–egg plasma membrane interaction, was also processed into a smaller form (27 kDa) during capacitation at a much reduced level in proPC475–90‐treated sperm. This result suggested that ADAM2 may be a natural substrate of sperm PCSK4 and its cleavage by the enzyme during acrosome reaction may be relevant to the fertilization process. J. Cell. Physiol. 226: 2817–2826, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
Incubation of bovine sperm with ouabain, an endogenous cardiac glycoside that inhibits both the ubiquitous (ATP1A1) and testis‐specific α4 (ATP1A4) isoforms of Na+/K+ATPase, induces tyrosine phosphorylation and capacitation. The objectives of this study were to investigate: (1) fertilizing ability of bovine sperm capacitated by incubating with ouabain; (2) involvement of ATP1A4 in this process; and (3) signaling mechanisms involved in the regulation of sperm capacitation induced by inhibition of Na+/K+ATPase activity. Fresh sperm capacitated by incubating with ouabain (inhibits both ATP1A1 and ATP1A4) or with anti‐ATP1A4 immunoserum fertilized bovine oocytes in vitro. Capacitation was associated with relocalization of ATP1A4 from the entire sperm head to the post‐acrosomal region. To investigate signaling mechanisms involved in oubain‐induced regulation of sperm capacitation, sperm preparations were pre‐incubated with inhibitors of specific signaling molecules, followed by incubation with ouabain. The phosphotyrosine content of sperm preparations was determined by immunoblotting, and capacitation status of these sperm preparations were evaluated through an acrosome reaction assay. We inferred that Na+/K+ATPase was involved in the regulation of tyrosine phosphorylation in sperm proteins through receptor tyrosine kinase, nonreceptor type protein kinase, and protein kinases A and C. In conclusion, inhibition of Na+/K+ATPase induced tyrosine phosphorylation and capacitation through multiple signal transduction pathways, imparting fertilizing ability in bovine sperm. To our knowledge, this is the first report documenting both the involvement of ATP1A4 in the regulation of bovine sperm capacitation and that fresh bovine sperm capacitated by the inhibition of Na+/K+ATPase can fertilize oocytes in vitro. Mol. Reprod. Dev. 77: 136–148, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
In mammals, the starting point of development is the fusion between sperm and egg. It is well established that sperm fuse with the egg through the equatorial/post‐acrosomal region. Apart from this observation and the requirement of two proteins (CD9 in the egg and IZUMO1 in the sperm) very little is known about this fundamental process. Actin polymerization correlates with sperm capacitation in different mammalian species and it has been proposed that F‐actin breakdown is needed during the acrosome reaction. Recently, we have presented evidence that actin polymerization inhibitors block the movement of IZUMO1 that accompany the acrosome reaction. These results suggest that actin dynamics play a role in the observed changes in IZUMO1 localization. This finding is significant because IZUMO1 localization in acrosome‐intact sperm is not compatible with the known location of the initiation of the fusion between the sperm and the egg. To further understand the actin‐mediated changes in protein localization during the acrosome reaction, the distribution of the sperm‐specific plus‐end actin capping protein CAPZA3 was analyzed. Like IZUMO1, CAPZA3 shows a dynamic pattern of localization; however, these movements follow a different temporal pattern than the changes observed with IZUMO1. In addition, the actin polymerization inhibitor latrunculin A was unable to alter CAPZA3 movement. J. Cell. Physiol. 224: 575–580, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
During mammalian fertilization sperm bind to the egg's zona pellucida (ZP) after undergoing capacitation. Capacitated mouse sperm bind to mZP3 (one of three ZP glycoproteins), undergo the acrosome reaction, penetrate the ZP, and fuse with egg plasma membrane. Sperm protein 56 (sp56), a member of the C3/C4 superfamily of binding proteins, was identified nearly 20 years ago as a binding partner for mZP3 by photoaffinity cross‐linking of acrosome‐intact sperm. However, subsequent research revealed that sp56 is a component of the sperm's acrosomal matrix and, for sperm with an intact acrosome, should be unavailable for binding to mZP3. Recently, this dilemma was resolved when it was recognized that some acrosomal matrix (AM) proteins, including sp56, are released to the sperm surface during capacitation. This may explain why uncapacitated mammalian sperm are unable to bind to the unfertilized egg ZP.  相似文献   

11.
Human sperm cryopreservation in assisted reproductive technology is the only proven method that enables infertile men to father their own children. However, freezing and thawing reduces spermatozoon motility, viability, and fertilizing ability. An association between dysfunctional spermatozoa due to cryoinjury and protein changes has not been established. We investigated through proteomic analysis the differential protein characteristics between freeze‐thawed and fresh sperm samples obtained from nine normozoospermic donors. Twenty‐seven proteins differed in abundance between the two groups, and results were verified for four proteins via Western blot and immunofluorescent staining. These proteins are putatively involved in sperm motility, viability, acrosomal integrity, ATP and isocitrate content, mitochondrial membrane potential, capacitation, acrosome reaction, and intracellular calcium concentration. These marked differences suggest that dysfunctional spermatozoon after cryopreservation may be due to protein degradation and protein phosphorylation.  相似文献   

12.
To fertilize the oocyte, mammalian spermatozoa must undergo capacitation and acrosome reaction. These events are believed to be associated with various biochemical changes primarily mediated by cAMP, Ca2+ and protein kinases. But the precise signaling mechanisms governing sperm function are not clear. To study this, we used pentoxifylline (PF), a sperm motility stimulant and a cAMP-phosphodiesterase inhibitor, during capacitation and acrosome reaction of hamster spermatozoa. PF induced an early onset of sperm capacitation and its action involved modulation of sperm cell signaling molecules viz, cAMP, [Ca2+]i and protein kinases. The PF-induced capacitation was associated with an early and increased total protein phosphorylation coupled with changes in the levels of reactive oxygen species. Protein kinase (PK)-A inhibitor (H-89) completely inhibited phosphorylation of a 29 kDa protein while PK-C inhibitor (staurosporine) did not inhibit phosphorylation. Interestingly, PF induced protein tyrosine phosphorylation of a set of proteins (Mr 45-80 K) and a greater proportion of PF-treated spermatozoa exhibited protein tyrosine phosphorylation, compared to untreated controls (82 + 9% vs 34 +/- 10%; p < 0.001); tyrosine-phosphorylated proteins were localized specifically to the mid-piece of the sperm. The profile of protein tyrosine phosphorylation was inhibitable by higher concentrations (> 0.5 mM) of tyrosine kinase inhibitor, tyrphostin A47. However, at lower (0.1-0.25 mM) concentrations, the compound interestingly induced early sperm capacitation and protein tyrosine phosphorylation, like PF. These results show that protein tyrosine phosphorylation in the mid-piece segment (mitochondrial sheath) appears to be an early and essential event during PF-induced capacitation and a regulated level of tyrosine phosphorylation of sperm proteins is critical for capacitation of hamster spermatozoa.  相似文献   

13.
Suspensions of nearly 100% viable golden hamster sperm were prepared by passing washed cauda epididymal sperm through a column of 0.25–0.3 mm glass beads. Incubations of these viable sperm under in vitro capacitation conditions in volumes of 0.1 or 1 ml (2–2.5 × 106/ml) resulted in 85–92% viable sperm after four hours and 45 minutes of incubation. More than 70% of these sperm were judged to have been capacitated after four hours and 45 minutes of incubation on the basis of their having undergone acrosome reactions and the presence of high numbers of sperm exhibiting the activated motility characteristic of capacitated hamster sperm. Thus, for the first time, procedures are available that will yield large numbers of viable capacitated sperm for biochemical analysis and that will also allow other studies of hamster sperm capacitation with minimum interference from molecules released from dead sperm.  相似文献   

14.
The sperm acrosome reaction and penetration of the egg follow zona pellucida binding only if the sperm has previously undergone the poorly understood maturation process known as capacitation. We demonstrate here that in vitro capacitation of bull, ram, mouse, and human sperm was accompanied by a time-dependent increase in actin polymerization. Induction of the acrosome reaction in capacitated cells initiated fast F-actin breakdown. Incubation of sperm in media lacking BSA or methyl-beta-cyclodextrin, Ca(2+), or NaHCO(3), components that are all required for capacitation, prevented actin polymerization as well as capacitation, as assessed by the ability of the cells to undergo the acrosome reaction. Inhibition of F-actin formation by cytochalasin D blocked sperm capacitation and reduced the in vitro fertilization rate of metaphase II-arrested mouse eggs. It has been suggested that protein tyrosine phosphorylation may represent an important regulatory pathway that is associated with sperm capacitation. We show here that factors known to stimulate sperm protein tyrosine phosphorylation (i.e., NaHCO(3), cAMP, epidermal growth factor, H(2)O(2), and sodium vanadate) were able to enhance actin polymerization, whereas inhibition of tyrosine kinases prevented F-actin formation. These data suggest that actin polymerization may represent an important regulatory pathway in with sperm capacitation, whereas F-actin breakdown occurs before the acrosome reaction.  相似文献   

15.
Proteinase inhibitors are present in the various glands, tissues, and secretions of the male reproductive tract. Some of these inhibitors bind to the acrosomal region of the sperm, and their release during in vitro or in utero incubation suggests that they may play a role in capacitation. In the mouse, the binding site for a trypsin-acrosin inhibitor, the acceptor, has been implicated in capacitation, zona binding, and the acrosome reaction. This presentation demonstrates that a component, molecular weight ?T20,000, on the human sperm head may recognize the murine inhibitor. Furthermore, the acrosome reaction can be induced in capacitated human sperm by immunoaggregation of bound murine inhibitor. The data indicate that the proteinase inhibitor binding site on the human sperm head may, as with a similar site on murine sperm, play a role in the early events of fertilization. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The aim of the present study was to investigate whether the generation of nitric oxide by human spermatozoa is associated with human sperm capacitation and with the tyrosine phosphorylation of sperm proteins. Human spermatozoa were capacitated in the presence or absence of nitric oxide-releasing compounds or nitric oxide synthase inhibitors, and then the percentage of acrosome loss induced by human follicular fluid or by calcium ionophore was determined. The presence of the nitric oxide-releasing compounds primed spermatozoa to respond earlier to human follicular fluid whereas nitric oxide synthase inhibitors decreased the percentage of acrosome reaction. Moreover, nitric oxide modulated tyrosine phosphorylation of sperm proteins. A tight correlation between capacitation and tyrosine phosphorylation regulated by nitric oxide was observed. Results indicate that nitric oxide is involved in human sperm capacitation and emphasize the importance of oxidoreduction reactions in the fine control of sperm physiology.  相似文献   

17.
Our objectives were to incorporate ATP-gamma-(32)P into boar sperm to radiolabel endogenous phosphoproteins and compare phosphorylation patterns from sperm incubated in capacitating (CM) and non-capacitating conditions (NCM). Sperm were electroporated (1000 V/cm, 125 microF/cm, 65 Omega/cm, 0.3 msec) with ATP-gamma-(32)P which moderately decreased sperm viability (P < 0.01), but did not affect motility (P = 0.34) or the appearance of spontaneous acrosome reactions (P = 0.49). Sperm incubated in CM for 3 hr underwent capacitation, determined by the ability to undergo ionophore-induced acrosome reactions (P 0.05) and the 57 kDa phosphoprotein increased after capacitation (P /= 0.02). ATP-gamma-(32)P can, therefore, be incorporated into porcine sperm to radiolabel endogenous phosphoproteins, and the different profiles from sperm incubated in NCM versus CM suggest that capacitation is mediated by signaling events involving protein phosphorylation.  相似文献   

18.
The development of successful methods of in vitro fertilization for bovine oocytes has advanced the bovine as a model for reproductive technology. The discovery of heparin as a capacitating agent has made it possible for investigators to have an inexpensive, readily available supply of bovine gametes for experimentation in reproductive biotechnologies such as gene transfer and cloning. The central event that mammalian sperm must undergo before being able to fertilize an oocyte is capacitation. Although we have methods which lead to efficient in vitro fertilization, we still lack understanding about the molecular mechanisms of capacitation. While numerous events occur during capacitation, it appears that regulation of intracellular Ca2+ (Ca(i)) is one of the most important. We found that the influx of Ca2+ into sperm during the first 2 hours of incubation is critical to heparin-induced capacitation. This is a period during capacitation when Ca(i) has not yet increased. We propose that during capacitation, the initial influx of Ca2+ into sperm is used to fill an intracellular Ca2+ store located in the acrosome. We found that thapsigargin, an inhibitor of an acrosomal Ca2+-ATPase, can stimulate capacitated sperm to acrosome react, trigger the opening of a store-operated calcium channel in the plasma membrane and has greater effects on capacitated sperm compared to noncapacitated sperm. An increase in intracellular Ca2+ was also detected in the anterior sperm head during capacitation, suggesting the loading of the acrosome with Ca2+. These observations may be important in the development of new methods for capacitation and understanding the death of sperm after cryopreservation.  相似文献   

19.
Mammalian sperm are unable to fertilize the egg immediately after ejaculation; they acquire this capacity during migration in the female reproductive tract. This maturational process is called capacitation and in mouse sperm it involves a plasma membrane reorganization, extensive changes in the state of protein phosphorylation, increases in intracellular pH (pHi) and Ca2+ ([Ca2+]i), and the appearance of hyperactivated motility. In addition, mouse sperm capacitation is associated with the hyperpolarization of the cell membrane potential. However, the functional role of this process is not known. In this work, to dissect the role of this membrane potential change, hyperpolarization was induced in noncapacitated sperm using either the ENaC inhibitor amiloride, the CFTR agonist genistein or the K+ ionophore valinomycin. In this experimental setting, other capacitation-associated processes such as activation of a cAMP-dependent pathway and the consequent increase in protein tyrosine phosphorylation were not observed. However, hyperpolarization was sufficient to prepare sperm for the acrosome reaction induced either by depolarization with high K+ or by addition of solubilized zona pellucida (sZP). Moreover, K+ and sZP were also able to increase [Ca2+]i in non-capacitated sperm treated with these hyperpolarizing agents but not in untreated cells. On the other hand, in conditions that support capacitation-associated processes blocking hyperpolarization by adding valinomycin and increasing K+ concentrations inhibited the agonist-induced acrosome reaction as well as the increase in [Ca2+]i. Altogether, these results suggest that sperm hyperpolarization by itself is key to enabling mice sperm to undergo the acrosome reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号