共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Self‐assembling biological materials increasingly serve as templates for the binding of inorganic materials and fabrication of composite nanowires, tubes, etc. with important applications in nanobiotechnology. We have previously reported the use of a self‐assembling octapeptide building block as scaffold for the systematic introduction of metal‐binding residues, namely cysteines, at the first two amino acids within the sequence (Kasotakis et al., Biopolymers 2009, 92, 164‐172). We have also reported unexpected behavior of serine within the octapeptide NH2 NSGAITIG CONH2 (Asparagine‐Serine‐Glycine‐Alanine‐Isoleucine‐Threonine‐Isoleucine‐Glycine) in nucleating gold and platinum nanoparticles. Herein, we report that this serine residue is instrumental in nucleating silica nanoparticles on the surface of the self‐assembled fibrils from TEOS (tetraethyl orthosilicate) precursors. We carried out a systematic investigation of the adjacent functionalities and we propose that this serine residue is rendered abnormally nucleophilic through proton abstraction by the N‐terminal amino group of the peptide. Peptides with a threonine or a cysteine residue at position 2 are also able to nucleate silica nanoparticles. We propose that rationally designed self‐assembling peptides bearing hydroxyl groups adjacent to free amine functionalities could be used for targeted templating of biogenic and even nonbiogenic oxides. © 2012 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 98: 501–509, 2012. 相似文献
4.
Emmanouil Kasotakis Estelle Mossou Lihi Adler‐Abramovich Edward P. Mitchell V. Trevor Forsyth Ehud Gazit Anna Mitraki 《Peptide Science》2009,92(3):164-172
The ability to develop a rational basis for the binding of inorganic materials to specific binding sites within self‐assembling biological scaffolds has important applications in nanobiotechnology. Amyloid‐forming peptides are a class of such scaffolds and show enormous potential as templates for the fabrication of low resistance, conducting nanowires. Here we report the use of a self‐assembling peptide building block as scaffold for the systematic introduction of metal‐binding residues at specific locations within the structure. The octapeptide NSGAITIG (Asparagine‐Serine‐Glycine‐Alanine‐Isoleucine‐Threonine‐Isoleucine‐Glycine) from the fiber protein of adenovirus has been identified in previous structural studies as an elementary fibril‐forming building block. Using this building block as a scaffold, we have designed three new cysteine‐containing octa‐peptides to study their eventual fibril‐forming ability and potential templating of metal nanoparticles. We find that the cysteine substitutions do not alter the fibril‐forming potential of the peptides, and that the fibrils formed bind efficiently to silver, gold, and platinum nanoparticles; furthermore, we report unexpected behavior of serine in nucleating gold and platinum nanoparticles. We find that combination of cysteine and serine residues projecting from adjacent sites on a peptide scaffold represents a potentially useful strategy in nucleating inorganic materials. The ability to reliably produce metal‐coated fibrils is a vital first step towards the exploitation of these fibrils as conducting nanowires with applications in nano‐circuitry. Short, biologically inspired self‐assembling peptide scaffolds derived from natural fibrous proteins with known three‐dimensional structure may provide a viable approach towards the rational design of inorganic nanowires. © 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 164–172, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com 相似文献
5.
Fabricating various nanostructures based on the self-assembly of diverse biological molecules is now of great interest to the field of bionanotechnology. In this study, we report a de novo designed peptide (T1) with a preferential beta-hairpin forming property that can spontaneously assemble into nanofibrils in ultrapure water. The nanofibrils assembled by T1 could grow up to tens of microns in length with a left-handed helical twist and an average height of 4.9 +/- 0.9 nm. Moreover, protofilaments and nucleus structures both with a similar height of 1.4 +/- 0.2 nm were observed during fibrilization as well as via sonication of the mature nanofibrils. A typical conformational transition from random coil to beta-structure was observed in association with the fibrilization. Molecular modeling of T1 assemblies displayed that the beta-hairpin molecules organize in a parallel fashion in which the beta-strands align in an antiparallel fashion and each adjoining beta-strand runs left-handed twist at about 2.9 degrees with respect to the one located before it along the fibrillar axis. It also revealed that the maximum thickness of the assembly intermediate, the helical tape structure, is about 1.4 nm and four tapes can further assemble into a fibril with a diameter of about 4.1 nm. Taken together the results obtained by AFM, CD, and molecular modeling, T1 fibrilization probably undergoes a hierarchy approach, in which the aromatic stacking and the electrostatic interactions between the assembled structures are most likely the two major factors directing the one-dimensional self-assembly. Based on these studies, we propose T1 can be used as a model peptide to investigate the beta-sheet based self-assembly process and could be a potential bioorganic template to develop functional materials. 相似文献
6.
Currently there is increasing interest in nanostructures and their design. Nanostructure design involves the ability to predictably manipulate the properties of the self-assembly of autonomous units. Autonomous units have preferred conformational states. The units can be synthetic material science-based or derived from functional biological macromolecules. Autonomous biological building blocks with available structures provide an extremely rich and useful resource for design. For proteins, the structural databases contain large libraries of protein molecules and their building blocks with a range of shapes, surfaces, and chemical properties. The introduction of engineered synthetic residues or short peptides into these can expand the available chemical space and enhance the desired properties. Here we focus on the principles of nanostructure design with protein building blocks. 相似文献
7.
Zlotnick A 《Journal of molecular recognition : JMR》2005,18(6):479-490
A virus capsid is constructed from many copies of the same protein(s). Molecular recognition is central to capsid assembly. The capsid protein must polymerize in order to create a three-dimensional protein polymer. More than structure is required to understand this self-assembly reaction: one must understand how the pieces come together in solution. 相似文献
8.
Collagen mimetic peptides (CMPs) provide critical insight into the assembly, stability, and structure of the triple helical collagen protein. The majority of natural fibrous collagens are aab or abc heterotrimers, yet few examples of heterotrimeric CMPs have been reported. Previously, CMP heterotrimers have only been accessible by total syntheses or by introducing complementary interstrand electrostatic or steric interactions. Here, we describe an abc CMP heterotrimer in which each contributing CMP consists of only three amino acids: glycine, proline and 4-hydroxyproline. Assembly of the heterotrimeric triple helix is directed by a combination of metal-ion coordination to set the relative register of the CMPs, and minimization of valence frustration to direct heterotrimerization. Assembly of the four-component mixture is facile and extremely rapid, and equilibration to the abc heterotrimer occurs within a few hours at modestly elevated temperatures. The melting temperatures of the metal-assembled collagen trimers are higher by some 30°C than the apopeptide assemblies. Two iterations of the design are described, and the outcomes suggest possibilities for designing self-assembling abc and abb heterotrimers. 相似文献
9.
Fangfang Chen Rebecca Strawn Yujia Xu 《Protein science : a publication of the Protein Society》2019,28(9):1640-1651
Collagen fibrils represent a unique case of protein folding and self‐association. We have recently successfully developed triple‐helical peptides that can further self‐assemble into collagen‐mimetic mini‐fibrils. The 35 nm axially repeating structure of the mini‐fibrils, which is designated the d‐period, is highly reminiscent of the well‐known 67 nm D‐period of native collagens when examined using TEM and atomic force spectroscopy. We postulate that it is the pseudo‐identical repeating sequence units in the primary structure of the designed peptides that give rise to the d‐period of the quaternary structure of the mini‐fibrils. In this work, we characterize the self‐assembly of two additional designed peptides: peptide Col877 and peptide Col108rr. The triple‐helix domain of Col877 consists of three pseudo‐identical amino acid sequence units arranged in tandem, whereas that of Col108rr consists of three sequence units identical in amino acid composition but different in sequence. Both peptides form stable collagen triple helices, but only triple helices Col877 self‐associate laterally under fibril forming conditions to form mini‐fibrils having the predicted d‐period. The Co108rr triple helices, however, only form nonspecific aggregates having no identifiable structural features. These results further accentuate the critical involvement of the repeating sequence units in the self‐assembly of collagen mini‐fibrils; the actual amino acid sequence of each unit has only secondary effects. Collagen is essential for tissue development and function. This novel approach to creating collagen‐mimetic fibrils can potentially impact fundamental research and have a wide range of biomedical and industrial applications. 相似文献
10.
The Sarcolipin (SLN) is a single trans‐membrane protein that can self‐assembly to dimer and oligomer for playing importantphysiological function. In this work, we addressed the dimerization of wild type SLN (wSLN) and its mutants (mSLNs) – I17A and I20A, using both coarse‐grained (CG) and atomistic (AT) molecular dynamics (MD) simulations. Our results demonstrated that wSLN homodimer assembled as a left‐handed helical complex, while mSLNs heterodimers assembled as right‐handed complexes. Analysis of residue‐residue contacts map indicated that isoleucine (Ile)‐leucione (Leu) zipper domain played an important role in dimerization. The potential of mean force (PMF) demonstrated that wSLN homodimer was more stable than mSLNs heterodimers. Meanwhile, the mSLNs heterodimers preferred right‐handed rather than left‐handed helix. AT‐MD simulations for wSLN and mSLNs were also in line with CG‐MD simulations. These results provided the insights for understanding the mechanisms of SLNs self‐assembling. Proteins 2017; 85:1065–1077. © 2017 Wiley Periodicals, Inc. 相似文献
11.
Is the order in which biomolecular subunits self‐assemble into functional macromolecular complexes imprinted in their sequence‐space? Here, we demonstrate that the temporal order of macromolecular complex self‐assembly can be efficiently captured using the landscape of residue‐level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high‐affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183–1189. © 2017 Wiley Periodicals, Inc. 相似文献
12.
This article features a new production technology for nanoparticles comprised of multicomponent polymeric complexes that are candidates for delivery vehicles of biological molecules such as proteins and drugs. Biocompatible and mostly natural polymers are fabricated into thermodynamically stable nanoparticles insoluble in water and buffered media, in the absence of organic solvents, using two types of processing: batch and continuous. Careful choice of construction materials and the superposition of several interacting principles during their production allow for the customization of the physicochemical properties of the structures. Detailed experiments in batch and continuous systems allowed time-dependent stoichiometric characterization of the production process and an understanding of fundamental assembly principles of such supramolecular structures. Continuous-flow production is shown to provide more consistent data in terms of product quality and consistency, with further possibility of process development and commercialization. The development of nanoparticles using the described methodology is expected to lead to a flexible nanoparticle drug delivery system for medical applications, which has particular bearing to the slow release of drugs, antigens (for vaccine design), and genes (for gene therapy). Several chemistries of particles are presented. Copyright John Wiley & Sons, Inc. 相似文献
13.
An experimental system is described, permitting a detailed and systematic analysis of the factors governing self-assembly of amphipathic helices, e.g. to a four-helical bundle, a subject of major relevance for tertiary structure formation, protein folding and design. Following the Template Assembled Synthetic Proteins (TASP) approach, helices of different packing potential are competitively assembled in solution with a preformed two-helix TASP molecule, and after equilibration are covalently attached ('template trapping') via chemoselective thioether formation. The quantitative analysis of the individual TASP molecules by high performance liquid chromatography (HPLC) and electrospray mass spectrometry (ES-MS) allows the delineation of the role of complementary packing in helix bundle formation. The procedure established represents a general tool for the experimental verification of modern concepts in molecular recognition. 相似文献
14.
Yong Ding Yap Pang Chuan Lizhong He Anton P.J. Middelberg 《Biotechnology and bioengineering》2010,107(3):550-560
Understanding and controlling aggregation is an essential aspect in the development of pharmaceutical proteins to improve product yield, potency and quality consistency. Even a minute quantity of aggregates may be reactogenic and can render the final product unusable. Self‐assembly processing of virus‐like particles (VLPs) is an efficient method to quicken the delivery of safe and efficacious vaccines to the market at low cost. VLP production, as with the manufacture of many biotherapeutics, is susceptible to aggregation, which may be minimized through the use of accurate and practical mathematical models. However, existing models for virus assembly are idealized, and do not predict the non‐native aggregation behavior of self‐assembling viral subunits in a tractable nor useful way. Here we present a mechanistic mathematical model describing VLP self‐assembly that accounts for partitioning of reactive subunits between the correct and aggregation pathways. Our results show that unproductive aggregation causes up to 38% product loss by competing favorably with the productive nucleation of self‐assembling subunits, therefore limiting the availability of nuclei for subsequent capsid growth. The protein subunit aggregation reaction exhibits an apparent second‐order concentration dependence, suggesting a dimerization‐controlled agglomeration pathway. Despite the plethora of possible assembly intermediates and aggregation pathways, protein aggregation behavior may be predicted by a relatively simple yet realistic model. More importantly, we have shown that our bioengineering model is amenable to different reactor formats, thus opening the way to rational scale‐up strategies for products that comprise biomolecular assemblies. Biotechnol. Bioeng. 2010;107: 550–560. © 2010 Wiley Periodicals, Inc. 相似文献
15.
16.
An enticing possibility in nanotechnology is to use proteins as templates for the positioning of molecules in regular patterns with nanometer precision over large surface areas. However, the ability to redesign protein quaternary structure to construct new shapes remains underdeveloped. In the present work, we have engineered the dimensions of a filamentous protein, the γ prefoldin (γ PFD) from the hyperthermophile Methanocaldococcus jannaschii, and have achieved controllable attachment of filaments in a specific orientation on a carbon surface. Four different constructs of γ PFD were generated in which the coiled coils extending from the association domain are progressively truncated. Three of the truncation constructs form well‐defined filaments with predictable dimensions according to transmission electron microscopy. Two of these constructs had 2D persistence lengths similar to that of γ PFD at 300–740 nm. In contrast, the 2D persistence length of the shortest truncation mutant was 3500 nm, indicating that the filament adsorbs along a different axis than the other constructs with its two rows of coiled coils facing out from the surface. The elastic moduli of the filaments range from 0.7–2.1 GPa, similar to rigid plastics and within the lower limit for proteins whose primary intermolecular interaction is hydrogen bonding. These results demonstrate a versatile approach for controlling the overall dimensions and surface orientation of protein filaments, and expand the toolbox by which to tune two overall dimensions in protein space for the creation of templated materials over a wide variety of conditions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 496–503, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com 相似文献
17.
Wolf H. Rombouts Natalia E. Domeradzka Marc W.T. Werten Frans A.M. Leermakers Renko J. de Vries Frits A. de Wolf Jasper van der Gucht 《Biopolymers》2016,105(11):795-801
We study the self‐assembly of protein polymers consisting of a silk‐like block flanked by two hydrophilic blocks, with a cysteine residue attached to the C‐terminal end. The silk blocks self‐assemble to form fibers while the hydrophilic blocks form a stabilizing corona. Entanglement of the fibers leads to the formation of hydrogels. Under oxidizing conditions the cysteine residues form disulfide bridges, effectively connecting two corona chains at their ends to form a loop. We find that this leads to a significant increase in the elastic modulus of the gels. Using atomic force microscopy, we show that this stiffening is due to an increase of the persistence length of the fibers. Self‐consistent‐field calculations indicate a slight decrease of the lateral pressure in the corona upon loop formation. We argue that this small decrease in the repulsive interactions affects the stacking of the silk‐like blocks in the core, resulting in a more rigid fiber. 相似文献
18.
Fluorescence techniques have drawn increasing attention because they provide crucial information about molecular interactions in protein–ligand systems beyond that obtained by other methods. The advantage of fluorescence spectroscopy stems from the fact that the majority of molecules in biological systems do not exhibit fluorescence, making fluorescent probes useful with high sensitivity. Also, the fluorescence emission is highly sensitive to the local environment, providing a valuable tool to investigate the nature of binding sites in macromolecules. In this review, we discuss some of the important applications of a class of molecules that have been used as fluorescent probes in a variety of studies. Hydroxyphenyl benzazoles (HBXs) show distinct spectroscopic features that make them suitable probes for the study of certain biological mechanisms in DNA, protein and lipid. In particular, the complex photophysics of 2‐(2′‐hydroxyphenyl)benzoxazole (HBO) and the distinguished fluorescence signatures of its different tautomeric forms make this molecule a useful probe in several applications. Among these are probing the DNA local environment, study of the flexibility and specificity of protein‐binding sites, and detecting the heterogeneity and ionization ability of the head groups of different lipidic phases. The spectroscopy of HBX molecules and some of their chemically modified structures is also reviewed. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
19.
Per-O-methylated β-cyclodextrin (CD) bearing an iodoacetamide group at the 6-position was synthesized to functionalize protein surfaces. Bovine serum albumin (BSA) was quantitatively modified with the CD derivative by the S(N) 2 reaction of iodoacetamide with a cysteine residue (Cys34) on the BSA surface. The resultant CD-functionalized BSA (BSA-CD) spontaneously dimerized upon addition of an anionic tetraarylporphyrin (TPPS) through the supramolecular 1:2 complexation between TPPS and CD on the protein surface. The BSA-CD/TPPS complex further complexed with ferric protoporphyrin IX (hemin) in the hydrophobic pockets of albumin to form a hemin/BSA-CD/TPPS ternary complex in which static fluorescence quenching occurred owing to intramolecular electron transfer from the photoexcited TPPS to hemin. 相似文献
20.
Members of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily share a common fold and are involved in a variety of functions, such as generalized defense mechanisms against foreign agents, discrimination between healthy and pathogen-infected cells, and endocytosis and blood coagulation. In this work we used ConSurf, a computer program recently developed in our lab, to perform an evolutionary analysis of this superfamily in order to further identify characteristics of all or part of its members. Given a set of homologous proteins in the form of multiple sequence alignment (MSA) and an inferred phylogenetic tree, ConSurf calculates the conservation score in every alignment position, taking into account the relationships between the sequences and the physicochemical similarity between the amino acids. The scores are then color-coded onto the three-dimensional structure of one of the homologous proteins. We provide here and at http://ashtoret.tau.ac.il/ approximately sharon a detailed analysis of the conservation pattern obtained for the entire superfamily and for two subgroups of proteins: (a) 21 CTLs and (b) 11 heterodimeric CTLD toxins. We show that, in general, proteins of the superfamily have one face that is constructed mostly of conserved residues and another that is not, and we suggest that the former face is involved in binding to other proteins or domains. In the CTLs examined we detected a region of highly conserved residues, corresponding to the known calcium- and carbohydrate-binding site of the family, which is not conserved throughout the entire superfamily, and in the CTLD toxins we found a patch of highly conserved residues, corresponding to the known dimerization region of these proteins. Our analysis also detected patches of conserved residues with yet unknown function(s). 相似文献