首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been proposed that the anti-inflammatory effects of intravenous immunoglobulin (IVIG) might be due to the small fraction of Fc-sialylated IgG. In this study we biochemically and functionally characterized sialic acid-enriched IgG obtained by Sambucus nigra agglutinin (SNA) lectin fractionation. Two main IgG fractions isolated by elution with lactose (E1) or acidified lactose (E2) were analyzed for total IgG, F(ab')(2) and Fc-specific sialic acid content, their pattern of specific antibodies and anti-inflammatory potential in a human in vitro inflammation system based on LPS- or PHA-stimulated whole blood. HPLC and LC-MS testing revealed an increase of sialylated IgG in E1 and more substantially in the E2 fraction. Significantly, the increased amount of sialic acid residues was primarily found in the Fab region whereas only a minor increase was observed in the Fc region. This indicates preferential binding of the Fab sialic acid to SNA. ELISA analyses of a representative range of pathogen and auto-antigens indicated a skewed antibody pattern of the sialylated IVIG fractions. Finally, the E2 fraction exerted a more profound anti-inflammatory effect compared to E1 or IVIG, evidenced by reduced CD54 expression on monocytes and reduced secretion of MCP-1 (CCL2); again these effects were Fab- but not Fc-dependent. Our results show that SNA fractionation of IVIG yields a minor fraction (approx. 10%) of highly sialylated IgG, wherein the sialic acid is mainly found in the Fab region. The tested anti-inflammatory activity was associated with Fab not Fc sialylation.  相似文献   

2.
Plants can provide a cost‐effective and scalable technology for production of therapeutic monoclonal antibodies, with the potential for precise engineering of glycosylation. Glycan structures in the antibody Fc region influence binding properties to Fc receptors, which opens opportunities for modulation of antibody effector functions. To test the impact of glycosylation in detail, on binding to human Fc receptors, different glycovariants of VRC01, a broadly neutralizing HIV monoclonal antibody, were generated in Nicotiana benthamiana and characterized. These include glycovariants lacking plant characteristic α1,3‐fucose and β1,2‐xylose residues and glycans extended with terminal β1,4‐galactose. Surface plasmon resonance‐based assays were established for kinetic/affinity evaluation of antibody–FcγR interactions, and revealed that antibodies with typical plant glycosylation have a limited capacity to engage FcγRI, FcγRIIa, FcγRIIb and FcγRIIIa; however, the binding characteristics can be restored and even improved with targeted glycoengineering. All plant‐made glycovariants had a slightly reduced affinity to the neonatal Fc receptor (FcRn) compared with HEK cell‐derived antibody. However, this was independent of plant glycosylation, but related to the oxidation status of two methionine residues in the Fc region. This points towards a need for process optimization to control oxidation levels and improve the quality of plant‐produced antibodies.  相似文献   

3.
Immunoglobin G with α‐2,6 sialylation has been reported to have an impact on antibody‐dependent cellular cytotoxicity and anti‐inflammatory efficacy. However, production of antibodies with α‐2,6 sialylation from Chinese hamster ovary cells is challenging due to the inaccessibility of sialyltransferases for the heavy chain N‐glycan site and the presence of exclusively α‐2,3 sialyltransferases. In this study, combining mutations on the Fc regions to allow sialyltransferase accessibility with overexpression of α‐2,6 sialyltransferase produced IgG with significant levels of both α‐2,6 and α‐2,3 sialylation. Therefore, ST3GAL4 and ST3GAL6 genes were disrupted by CRISPR/Cas9 to minimize the α‐2,3 sialylation. Sialidase treatment and SNA lectin blot indicated greatly increased α‐2,6 sialylation level relative to α‐2,3 sialylation for the α‐2,3 sialyltransferase knockouts when combined with α‐2,6 sialyltransferase overexpression. Indeed, α‐2,3 linked sialic acids were not detected on IgG produced from the α‐2,3 sialyltransferase knockout‐α‐2,6 sialyltransferase overexpression pools. Finally, glycoprofiling of IgG with four amino acid substitutions expressed from an α‐2,3 sialyltransferase knockout‐α‐2,6 sialyltransferase stable clone resulted in more than 77% sialylated glycans and more than 62% biantennary disialylated glycans as indicated by both MALDI‐TOF and LC‐ESI‐MS. Engineered antibodies from these modified Chinese hamster ovary cell lines will provide biotechnologists with IgGs containing N‐glycans with different structural variations for examining the role of glycosylation on protein performance.  相似文献   

4.
With mice being the top model organism in immunology and with Fc glycosylation being increasingly recognized as important modulator of antibody function, the time has come to take a look at the glycosylation of mouse IgG isotypes. Tryptic glycopeptides of mouse IgG1, IgG2, and IgG3 differ in mass and so these three isoforms can be easily discriminated by MS. Commercial IgG contained a rare IgG1 variant but no IgG3, which, however, was found in sera of C57BL/6 and BALB/c mice. These strains deviated with regard to IgG2a and IgG2b alleles. The Ig2a B allele was not observed in any of the four samples investigated. All a/c isotypes contain the same glycopeptide sequence, which deviates from that of IgG2b by containing Leu instead of Ile. The Leu/Ile glycopeptide variants were separated by RP chromatography and the order of elution was determined. The major glycoforms on all isotypes were fucosylated with no and one galactose (GnGnF and GnAF) followed by fully galactosylated AAF and smaller amounts of mono‐ and disialylated N‐glycans. In the commercial serum pool, the relative ratios of glycans differed between isotypes. Sialic acid exclusively occurred as N‐glycolylneuraminic acid. Fucosylation was essentially complete. No bisected and no α1,3‐galactosylated glycans were found.  相似文献   

5.
Human IgG comprises four subclasses with different biological functions. The IgG3 subclass has a unique character, exhibiting high effector function and Fab arm flexibility. However, it is not used as a therapeutic drug owing to an enhanced susceptibility to proteolysis. Antibody aggregation control is also important for therapeutic antibody development. To date, there have been few reports of IgG3 aggregation during protein expression and the low pH conditions needed for purification and virus inactivation. This study explored the potential of IgG3 antibody for therapeutics using anti‐CD20 IgG3 as a model to investigate aggregate formation. Initially, anti‐CD20 IgG3 antibody showed substantial aggregate formation during expression and low pH treatment. To circumvent this phenomenon, we systematically exchanged IgG3 constant domains with those of IgG1, a stable IgG. IgG3 antibody with the IgG1 CH3 domain exhibited reduced aggregate formation during expression. Differential scanning calorimetric analysis of individual amino acid substitutions revealed that two amino acid mutations in the CH3 domain, N392K and M397V, reduced aggregation and increased CH3 transition temperature. The engineered human IgG3 antibody was further improved by additional mutations of R435H to obtain IgG3KVH to achieve protein A binding and showed similar antigen binding as wild‐type IgG3. IgG3KVH also exhibited high binding activity for FcγRIIIa and C1q. In summary, we have successfully established an engineered human IgG3 antibody with reduced aggregation during bioprocessing, which will contribute to the better design of therapeutic antibodies with high effector function and Fab arm flexibility.  相似文献   

6.
The discovery of broadly neutralizing antibodies (bNAbs) has been a major step towards better prophylactic and therapeutic agents against human immunodeficiency virus type 1 (HIV‐1). However, effective therapy will likely require a combination of anti‐HIV agents to avoid viral evasion. One possible solution to this problem is the creation of bispecific molecules that can concurrently target two vulnerable sites providing synergistic inhibitory effects. Here, we describe the production in plants and anti‐HIV activity of a novel bispecific fusion protein consisting of the antigen‐binding fragment (Fab) of the CD4 binding site‐specific bNAb VRC01 and the antiviral lectin Avaren, which targets the glycan shield of the HIV‐1 envelope (VRC01Fab‐Avaren). This combination was justified by a preliminary experiment demonstrating the synergistic HIV‐1 neutralization activity of VRC01 and Fc‐fused Avaren dimer (Avaren‐Fc). Using the GENEWARE® tobacco mosaic virus vector, VRC01Fab‐Avaren was expressed in Nicotiana benthamiana and purified using a three‐step chromatography procedure. Surface plasmon resonance and ELISA demonstrated that both the Avaren and VRC01Fab moieties retain their individual binding specificities. VRC01Fab‐Avaren demonstrated enhanced neutralizing activity against representative HIV‐1 strains from A, B and C clades, compared to equimolar combinations of VRC01Fab and Avaren. Notably, VRC01Fab‐Avaren showed significantly stronger neutralizing effects than the bivalent parent molecules VRC01 IgG and Avaren‐Fc, with IC50 values ranging from 48 to 310 pm . These results support the continued development of bispecific anti‐HIV proteins based on Avaren and bNAbs, to which plant‐based transient overexpression systems will provide an efficient protein engineering and production platform.  相似文献   

7.
A key question in immunology is whether antigen recognition and Fc receptor (FcR) binding are allosterically linked. This question is also relevant for therapeutic antibody design. Antibody Fab and Fc domains are connected by flexible unstructured hinge region. Fc chains have conserved glycosylation sites at Asn297, with each conjugated to a core heptasaccharide and forming biantennary Fc glycan. The glycans modulate the Fc conformations and functions. It is well known that the antibody Fab and Fc domains and glycan affect antibody activity, but whether these elements act independently or synergistically is still uncertain. We simulated four antibody complexes: free antibody, antigen-bound antibody, FcR-bound antibody, and an antigen-antibody-FcR complex. We found that, in the antibody’s “T/Y” conformation, the glycans, and the Fc domain all respond to antigen binding, with the antibody population shifting to two dominant clusters, both with the Fc-receptor binding site open. The simulations reveal that the Fc-glycan-receptor complexes also segregate into two conformational clusters, one corresponding to the antigen-free antibody-FcR baseline binding, and the other with an antigen-enhanced antibody-FcR interaction. Our study confirmed allosteric communications in antibody-antigen recognition and following FcR activation. Even though we observed allosteric communications through the IgG domains, the most important mechanism that we observed is the communication via population shift, stimulated by antigen binding and propagating to influence FcR recognition.  相似文献   

8.
Variable (Fv) domain N-glycosylation sites are found in approximately 20% of human immunoglobulin Gs (IgGs) in addition to the conserved N-glycosylation sites in the C(H)2 domains. The carbohydrate structures of the Fv glycans and their impact on in vivo half-life are not well characterized. Oligosaccharide structures in a humanized anti-Abeta IgG1 monoclonal antibody (Mab) with an N-glycosylation site in the complementary determining region (CDR2) of the heavy chain variable region were elucidated by LC/MS analysis following sequential exoglycosidase treatments of the endoproteinase Lys-C digest. Results showed that the major N-linked oligosaccharide structures in the Fv region have three characteristics (core-fucosylated biantennary oligosaccharides with one or two N-glycolylneuraminic acid [NeuGc] residues, zero or one alpha-linked Gal residue, and zero or one beta-linked GalNAc residue), whereas N-linked oligosaccharides in the Fc region contained typical Fc glycans (core-fucosylated, biantennary oligosaccharides with zero to two Gal residues). To elucidate the contribution of Fv glycans to the half-life of the antibody, a method that allows capture of the Mab and determination of its glycan structures at various time points after administration to mice was developed. Anti-Abeta antibody in mouse serum was immunocaptured by immobilized goat anti-human immunoglobulin Fc(gamma) antibody resin, and the captured material was treated with papain to generate Fab and Fc for LC/MS analysis. Different glycans in the Fc region showed the same clearance rate as demonstrated previously. In contrast to many other non-antibody glycosylated therapeutics, there is no strong correlation between oligosaccharide structures in the Fv region and their clearance rates in vivo. Our data indicated that biantennary oligosaccharides lacking galactosylation had slightly faster clearance rates than other structures in the Fv domain.  相似文献   

9.
IgG2 subclass antibodies have unique properties that include low effector function and a rigid hinge region. Although some IgG2 subclasses have been clinically tested and approved for therapeutic use, they have a higher propensity than IgG1 for aggregation, which can curtail or abolish their biological activity and enhance their immunogenicity. In this regard, acid‐induced aggregation of monoclonal antibodies during purification and virus inactivation must be prevented. In the present study, we replaced the constant domain of IgG2 with that of IgG1, using anti‐2,4‐dinitrophenol (DNP) IgG2 as a model antibody, and investigated whether that would confer greater stability. While the anti‐DNP IgG2 antibody showed significant aggregation at low pH, this was reduced for the IgG2 antibody containing the IgG1 CH2 domain. Substituting three amino acids within the CH2 domain—namely, F300Y, V309L, and T339A (IgG2_YLA)—reduced aggregation at low pH and increased CH2 transition temperature, as determined by differential scanning calorimetric analysis. IgG2_YLA exhibited similar antigen‐binding capacity to IgG2, low affinity for FcγRIIIa, and low binding ability to C1q. The same YLA substitution also reduced the aggregation of panitumumab, another IgG2 antibody, at low pH. Our engineered human IgG2 antibody showed reduced aggregation during bioprocessing and provides a basis for designing improved IgG2 antibodies for therapeutic applications.  相似文献   

10.
Guinea pig polymorphonuclear leukocytes (PMNs) possess two distinct types of Fc gamma receptor (Fc gamma R): Fc gamma 1/gamma 2R for both IgG1 and IgG2, and Fc gamma 2R for IgG2 alone. The Fc gamma 2R was previously shown to differ antigenically from homologous macrophage (M phi) Fc gamma 2R by the use of a monoclonal antibody to M phi Fc gamma 2R (VIIAI IgG1), though the Fc gamma 1/gamma 2R cross-reacts with a monoclonal antibody to homologous M phi Fc gamma 1/gamma 2R (VIA2 IgG1). Recently, we obtained a monoclonal antibody (MP-2) secreted by a hybridoma prepared by fusion of the splenic cells of mice immunized with guinea pig PMNs with a myeloma cell line. This antibody completely inhibited both the Fc gamma 2R-mediated rosette formation of PMNs with IgG2 antibody-sensitized sheep erythrocytes and the Fc gamma 2R-mediated binding of ovalbumin (OA)-complexed IgG2 antibody to PMNs. When the antigen of MP-2 was isolated by affinity chromatography with the antibody-Sepharose, it gave a single band with a molecular weight of 120,000 on SDS-PAGE. The number of antigen molecules per PMN was estimated to be 9 X 10(4) by measuring the binding of 125I-MP-2 Fab. This value was essentially the same as that obtained by measuring the binding of OA-complexed IgG2 antibody to the PMNs treated with the Fab' of VIA2 IgG1. These results strongly suggest that MP-2 is a monoclonal antibody to PMN Fc gamma 2R.  相似文献   

11.
Endoglycosidase S (EndoS) is a glycoside-hydrolase secreted by the bacterium Streptococcus pyogenes. EndoS preferentially hydrolyzes the N-linked glycans from the Fc region of IgG during infection. This hydrolysis impedes Fc functionality and contributes to the immune evasion strategy of S. pyogenes. Here, we investigate the mechanism of human serum IgG deactivation by EndoS. We expressed fragments of IgG1 and demonstrated that EndoS was catalytically active against all of them including the isolated CH2 domain of the Fc domain. Similarly, we sought to investigate which domains within EndoS could contribute to activity. Bioinformatics analysis of the domain organization of EndoS confirmed the previous predictions of a chitinase domain and leucine-rich repeat but also revealed a putative carbohydrate binding module (CBM) followed by a C-terminal region. Using expressed fragments of EndoS, circular dichroism of the isolated CBM, and a CBM-C-terminal region fusion revealed folded domains dominated by β sheet and α helical structure, respectively. Nuclear magnetic resonance analysis of the CBM with monosaccharides was suggestive of carbohydrate binding functionality. Functional analysis of truncations of EndoS revealed that, whereas the C-terminal of EndoS is dispensable for activity, its deletion impedes the hydrolysis of IgG glycans.  相似文献   

12.
To engineer a host cell line that produces defucosylated mAbs with superior antibody‐dependent cellular cytotoxicity, we disrupted α‐1, 6 fucosyltransferase (FUT8 ) gene in CHO‐S (CHO is Chinese hamster ovary) cells by clustered regularly interspaced short palindromic repeats‐CRISPR associated nuclease 9. The gene knockout cell line was evaluated for growth, stability, and product quality. The growth profile of FUT8 gene knockout CHO‐S (FUT8 ?/?) cells was comparable with wild type CHO‐S cells. FUT8 catalyzes the transfer of a fucose residue from GDP‐fucose to N‐glycans residue. Defucosylated IgG1 antibodies produced by FUT8 ?/? cells showed increased binding affinities to human FcγRIIIa and higher activities in mediating antibody‐dependent cellular cytotoxicity, comparing with conventional fucosylated IgG1. Our results demonstrated the potential of using the clustered regularly interspaced short palindromic repeats‐CRISPR associated nuclease 9 technology in cell line engineering for biopharmaceutical industrial applications.  相似文献   

13.
Engineered human IgG antibodies with longer serum half-lives in primates   总被引:3,自引:0,他引:3  
The neonatal Fc receptor (FcRn) plays an important role in regulating the serum half-lives of IgG antibodies. A correlation has been established between the pH-dependent binding affinity of IgG antibodies to FcRn and their serum half-lives in mice. In this study, molecular modeling was used to identify Fc positions near the FcRn binding site in a human IgG antibody that, when mutated, might alter the binding affinity of IgG to FcRn. Following mutagenesis, several IgG2 mutants with increased binding affinity to human FcRn at pH 6.0 were identified at Fc positions 250 and 428. These mutants do not bind to human FcRn at pH 7.5. A pharmacokinetics study of two mutant IgG2 antibodies with increased FcRn binding affinity indicated that they had serum half-lives in rhesus monkeys approximately 2-fold longer than the wild-type antibody.  相似文献   

14.
Effector Fc gamma receptors (FcγRs) are expressed on the surface of a variety of cells of hematopoietic lineage and serve as a bridge between adaptive and innate immune responses. The interaction between immune complexes, formed by IgG class antibodies that are crosslinked with antigen, and FcγRs triggers signaling cascades that result in numerous cellular responses including the activation or donwregulation of cytotoxic responses, cytokine release, and antibody synthesis. Here, the extracellular domains of the human type I transmembrane FcγRs were expressed in Escherichia coli and their interactions to subclass IgGs (IgG1, IgG2, IgG3, and IgG4) antibodies were analyzed. Expression using fully synthetic E. coli codon optimized FcγR genes and optimization of sequences for N‐terminal translation initiation region through mRNA secondary structure prediction enabled us to achieve high yield of purified, bacterially expressed receptors, including FcγRI and FcγRIIIa which have not been successfully expressed in bacteria until now. The aglycosylated FcγRs showed similar IgG subclass binding selectivity compared to the respective glycosylated FcγRs expressed in mammalian cells. Biotechnol. Bioeng. 2010;107: 21–30. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
Tumor-associated antibodies of human IgG1 subclass were eluted from cell-surface antigens of human carcinoma cells and studied by differential scanning calorimetry and binding to local conformational probes, protein A from Staphylococcus aureus and a monoclonal antibody targeted to the CH2 domain of the Fc fragment. At pH 2.0-7.0, we observed virtually identical enthalpies of thermal unfolding for IgG1 from normal human sera and tumor-associated IgG1. The exact values of calorimetric enthalpy (h) at pH 7.0 were 6.1 and 6.2-6.3 cal/g for IgG1 from normal serum and IgG1 from carcinoma cells, respectively. The affinity constants of protein A binding to the CH2–CH3 domain interface demonstrated differences between serum IgG1 and tumor associated IgG1 that did not exceed 3-8-fold. The binding affinity toward the anti-CH2 monoclonal antibody determined for serum IgG1 and IgG1 from carcinoma cells differed not more than 2.5-fold. The thermodynamic parameters of IgG1 from carcinoma cells strongly suggest that protein conformational stability was essentially unaltered and that the Fc fragment of the tumor-derived IgG1 preserved its structural integrity.  相似文献   

16.
Affinity chromatography with synthetic ligands has been focused as the potential alternative to protein A‐based chromatography for antibody capture because of its comparable selectivity and efficiency. Better understanding on the molecular interactions between synthetic ligand and antibody is crucial for improving and designing novel ligands. In this work, the molecular interaction mechanism between Fc fragment of IgG and a synthetic ligand (DAAG) was studied with molecular docking and dynamics simulation. The docking results on the consensus binding site (CBS) indicated that DAAG could bind to the CBS with the favorable orientation like a tripod for the top‐ranked binding complexes. The ligand‐Fc fragment complexes were then tested by molecular dynamics simulation at neutral condition (pH 7.0) for 10 ns. The results indicated that the binding of DAAG on the CBS of Fc fragment was achieved by the multimodal interactions, combining the hydrophobic interaction, electrostatic interaction, hydrogen bond, and so on. It was also found that multiple secondary interactions endowed DAAG with an excellent selectivity to Fc fragment. In addition, molecular dynamics simulation conducted at acidic condition (pH 3.0) showed that the departure of DAAG ligand from the surface of Fc fragment was the result of reduced interaction energies. The binding modes between DAAG and CBS not only shed light on the molecular mechanisms of DAAG for antibody purification but also provide useful information for the improvement of ligand design. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Antibodies and antibody-based drugs are currently the fastest-growing class of therapeutics. Over the last three decades, more than 30 therapeutic monoclonal antibodies and derivatives thereof have been approved for and successfully applied in diverse indication areas including cancer, organ transplants, autoimmune/inflammatory disorders, and cardiovascular disease. The isotype of choice for antibody therapeutics is human IgG, whose Fc region contains a ubiquitous asparagine residue (N297) that acts as an acceptor site for N-linked glycans. The nature of these glycans can decisively influence the therapeutic performance of a recombinant antibody, and their absence or modification can lead to the loss of Fc effector functions, greater immunogenicity, and unfavorable pharmacokinetic profiles. However, recent studies have shown that aglycosylated antibodies can be genetically engineered to display novel or enhanced effector functions and that favorable pharmacokinetic properties can be preserved. Furthermore, the ability to produce aglycosylated antibodies in lower eukaryotes and bacteria offers the potential to broaden and simplify the production platforms and avoid the problem of antibody heterogeneity, which occurs when mammalian cells are used for production. In this review, we discuss the importance of Fc glycosylation focusing on the use of aglycosylated and glyco-engineered antibodies as therapeutic proteins.  相似文献   

18.
The IgG Fc glycans strongly influence the Fcγ receptor interactions and Fc-mediated effector mechanisms. Changes in the structure of IgG glycans are associated with various diseases, such as infections and autoimmunity. However, the possible role of Fc glycans in tumor immunity is not yet fully understood. The aim of this study was to profile the Fc N-glycans of IgG samples from patients with gastric cancer (n = 80) and controls (n = 51) using LC-ESI-MS method to correlate the findings with stage of cancer and patients survival. Analysis of 32 different IgG N-glycans revealed significant increase of agalactosylated (GnGnF, GnGn(bi)F), and decrease of galactosylated (AGn(bi), AGn(bi)F, AA(bi), AAF) and monosialylated IgG glycoforms (NaAF, NaA(bi)) in cancer patients. A statistically significant increase of Fc fucosylation was observed in tumor stage II and III whereas reverse changes were found for the presence of bisecting GlcNAc. Higher level of fully sialylated glycans and elevated expression of glycans with bisecting GlcNAc were associated with better survival rate. Our findings provide the first evidence that the changes in Fc glycan profile may predict the survival of patients with gastric cancer. Cancer stage-dependent changes in Fc fucosylation and the bisecting N-acteylglucosamine expression as well as an association of several IgG glycoforms with the survival suggest that IgG glycosylation is related to pathogenesis of cancer and progression of the disease.  相似文献   

19.
A 90 kDa protein of Mycoplasma salivarium was released from cell membranes of the organism with Triton X-100 and purified by ion-exchange chromatography and chromatofocusing. The protein was eluted at pH 5.5 by chromatofocusing. The protein was shown to react with the Fc fragments of IgG from human and nine different animal species and did not distinguish between IgG from different species, while protein A, tested for comparative purposes, displayed a strong specificity for human and swine IgG. Furthermore, the protein reacted with antigen specific goat IgG (specific for gamma chains of human IgG), sheep red blood cells (SRBC) sensitized with rabbit antiserum to SRBC, that is, the Fc part of rabbit IgG, and concanavalin A as well. These findings may suggest that the protein is a lectin which binds the carbohydrate moiety of the Fc part of IgG.  相似文献   

20.
《MABS-AUSTIN》2013,5(3):562-570
Accurate measurement and functional characterization of antibody Fc domain N-linked glycans is critical to successful biosimilar development. Here, we describe the application of methods to accurately quantify and characterize the N-linked glycans of 2 IgG1 biosimilars with effector function activity, and show the potential pitfalls of using assays with insufficient resolution. Accurate glycan assessment was combined with glycan enrichment using lectin chromatography or production with glycosylation inhibitors to produce enriched pools of key glycan species for subsequent assessment in cell-based antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity effector function assays. This work highlights the challenges of developing high-quality biosimilar candidates and the need for modern biotechnology capabilities. These results show that high-quality analytics, combined with sensitive cell-based assays to study in vivo mechanisms of action, is an essential part of biosimilar development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号