首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we report different protocols used to obtain highly enriched and well-characterized protein fractions that could be used to determine the subcellular localization of proteins. Different protein fractions (total, cytosolic, total membrane, sarcolemmal, and nuclear) were isolated from mouse heart by a combination of either polytron homogenization or liquid nitrogen pulverization followed by density gradient centrifugation. Triton X-100 was used in specific fractions to help in the solubilization of proteins obtained with fractionation protocols. Following the isolation, enzymatic assays and Western blot analysis were used to evaluate the enrichment and/or cross-contamination of these protein fractions. Glucose-6-phosphate dehydrogenase, Na+/K+-ATPase, mitochondrial Ca2+-ATPase, sarco-endoplasmic reticulum Ca2+-ATPase, glucose-regulated protein, and nucleoporin P62 were used as specific markers for the cytosol, sarcolemma, mitochondria, sarco-endoplasmic reticulum, endoplasmic reticulum, and nucleus, respectively. The results show that we obtained enriched protein fractions with little to no cross-contamination. These purification protocols allow us to obtain different protein fractions that could be used in a wide variety of studies.  相似文献   

2.
A 92-kDa polypeptide present in rabbit and dog cardiac muscle was purified to homogeneity and some of its properties were investigated using biochemical and cytochemical approaches. The protein was found to be similar, if not identical to macrophage gelsolin; it cross-reacts immunologically with anti-rabbit macrophage gelsolin antibody, has a Ca2+-sensitive shortening effect on the actin filaments as judged by the high shear viscometry and sedimentation experiments, and has a similar amino acid composition. In addition, immunoblot and SDS polyacrylamide gel analysis of cardiac muscle extracts obtained at high and low ionic strength showed that this protein is tightly bound to myofibrils, both in the absence and presence of Ca2+, in ventricular as well as in atrial muscle cells. Indirect immunofluorescence microscopy revealed a striated gelsolin staining pattern analogous to that previously observed for the skeletal muscle gelsolin, suggesting that in the muscle cell this protein is sharing the same localisation as actin. Because of its severing and nucleating properties the gelsolin may play a major role in the organization, assembly and turnover of the thin filaments within the muscle cells.  相似文献   

3.
Substantial improvements of cellular fractionation in ionic conditions allowing preservation of polysome structure and polysome-membrane interactions are reported. They consist primarily in minimizing the lysosomal content of fractions containing endoplasmic reticulum by isolating a lysosome-rich fraction with little loss (6%) of RNA. Endoplasmic reticulum membranes were recovered in high yield, mainly in association with mitochondria, the remainder being found in the post-lysosomal supernatant. The latter also contained practically all the free polysomes, as judged by metrizamide gradient analyses. The distributions of various constituents (RNA, DNA, protein and marker enzymes) among cell fractions is presented.  相似文献   

4.
Zhang J  Xu X  Gao M  Yang P  Zhang X 《Proteomics》2007,7(4):500-512
The current "shotgun" proteomic analysis, strong cation exchange-RPLC-MS/MS system, is a widely used method for proteome research. Currently, it is not suitable for complicated protein sample analysis, like mammal tissues or cells. To increase the protein identification confidence and number, an additional separation dimension for sample fractionation is necessary to be coupled prior to current multi-dimensional protein identification technology (MudPIT). In this work, SEC was elaborately selected and applied for sample prefractionation in consideration of its non-bias against sample and variety of choice of mobile phases. The analysis of the global lysate of normal human liver tissue sample provided by the China Human Liver Proteome Project, were performed to compare the proteome coverage, sequence coverage (peptide per protein identification) and protein identification efficiency in MudPIT, 3-D LC-MS/MS identification strategy with preproteolytic and postproteolytic fractionation. It was demonstrated that 3-D LC-MS/MS utilizing protein level fractionation was the most effective method. A MASCOT search using the MS/MS results acquired by QSTAR(XL) identified 1622 proteins from 3-D LC-MS/MS identification approaches. A primary analysis on molecular weight, pI and grand average hydrophobicity value distribution of the identified proteins in different approaches was made to further evaluate the 3-D LC-MS/MS analysis strategy.  相似文献   

5.
Han G  Ye M  Zhou H  Jiang X  Feng S  Jiang X  Tian R  Wan D  Zou H  Gu J 《Proteomics》2008,8(7):1346-1361
The mixture of phosphopeptides enriched from proteome samples are very complex. To reduce the complexity it is necessary to fractionate the phosphopeptides. However, conventional enrichment methods typically only enrich phosphopeptides but not fractionate phosphopeptides. In this study, the application of strong anion exchange (SAX) chromatography for enrichment and fractionation of phosphopeptides was presented. It was found that phosphopeptides were highly enriched by SAX and majority of unmodified peptides did not bind onto SAX. Compared with Fe(3+) immobilized metal affinity chromatography (Fe(3+)-IMAC), almost double phosphopeptides were identified from the same sample when only one fraction was generated by SAX. SAX and Fe(3+)-IMAC showed the complementarity in enrichment and identification of phosphopeptides. It was also demonstrated that SAX have the ability to fractionate phosphopeptides under gradient elution based on their different interaction with SAX adsorbent. SAX was further applied to enrich and fractionate phosphopeptides in tryptic digest of proteins extracted from human liver tissue adjacent to tumorous region for phosphoproteome profiling. This resulted in the highly confident identification of 274 phosphorylation sites from 305 unique phosphopeptides corresponding to 168 proteins at false discovery rate (FDR) of 0.96%.  相似文献   

6.
The liver plays an important role in metabolism and elimination of xenobiotics, including drugs. Determination of concentrations of proteins involved in uptake, distribution, metabolism, and excretion of xenobiotics is required to understand and predict elimination mechanisms in this tissue. In this work, we have fractionated homogenates of snap-frozen human liver by differential centrifugation and performed quantitative mass spectrometry-based proteomic analysis of each fraction. Concentrations of proteins were calculated by the “total protein approach”. A total of 4586 proteins were identified by at least five peptides and were quantified in all fractions. We found that the xenobiotics transporters of the canalicular and basolateral membranes were differentially enriched in the subcellular fractions and that phase I and II metabolizing enzymes, the cytochrome P450s and the UDP–glucuronyl transferases, have complex subcellular distributions. These findings show that there is no simple way to scale the data from measurements in arbitrarily selected membrane fractions using a single scaling factor for all the proteins of interest. This study also provides the first absolute quantitative subcellular catalog of human liver proteins obtained from frozen tissue specimens. Our data provide quantitative insights into the subcellular distribution of proteins and can be used as a guide for development of fractionation procedures.  相似文献   

7.
Laser microdissection (LMD), a method of isolating specific microscopic regions of interest from a tissue that has been sectioned, is increasingly being applied to study proteomics. LMD generally requires tissues to be fixed and histologically stained, which can interfere with protein recovery and subsequent analysis. We evaluated the compatibility and reproducibility of protein extractions from laser microdissected human colon mucosa using a subcellular fractionation kit (ProteoExtract®, Calbiochem). Four protein fractions corresponding to cytosol (fraction 1), membrane/organelle (fraction 2), nucleus (fraction 3) and cytoskeleton (fraction 4) were extracted, saturation labeled with Cy5 and 5 μg separated by both acidic (pH 4–7) and basic (pH 6–11) 2‐DE. The histological stains and fixation required for LMD did not interfere with the accurate subcellular fractionation of proteins into their predicted fraction. The combination of subcellular fractionation and saturation CyDye labeling produced very well resolved, distinct protein spot maps by 2‐DE for each of the subcellular fractions, and the total number of protein spots consistently resolved between three independent extractions for each fraction was 893, 1128, 1245 and 1577 for fractions 1, 2, 3 and 4, respectively. Although significant carryover of protein did occur between fractions, this carryover was consistent between experiments, and very low inter‐experimental variation was observed. In summary, subcellular fractionation kits are very compatible with saturation labeling DIGE of LMD tissues and provide greater coverage of proteins from very small amounts of microdissected material.  相似文献   

8.
Type 2 diabetes mellitus is the most common type of diabetes, and insulin resistance (IR) is its core pathological mechanism. Proteomics is an ingenious and promising Omics technology that can comprehensively describe the global protein expression profiling of body or specific tissue, and is widely applied to the study of molecular mechanisms of diseases. In this paper, we focused on insulin target organs: adipose tissue, liver, and skeletal muscle, and analyzed the different pathological processes of IR in these three tissues based on proteomics research. By literature studies, we proposed that the main pathological processes of IR among target organs were diverse, which showed unique characteristics and focuses. We further summarized the differential proteins in target organs which were verified to be related to IR, and discussed the proteins that may play key roles in the emphasized pathological processes, aiming at discovering potentially specific differential proteins of IR, and providing new ideas for pathological mechanism research of IR.  相似文献   

9.
Summary The sympathetic innervation of the liver of monkey and man has been investigated in a combined fluorescence histochemical, chemical and electron microscopical study. By means of the Falck-Hillarp fluorescence method a dense network of monoamine-containing nerve fibers was visualized in liver tissue of monkey and man. The nerve fibers ran in close contact to both hepatocytes and blood vessels. Chemical quantitations showed high concentrations of noradrenaline in both human and monkey liver. Microspectrofluorometry of the intraneuronal monoamine resulted in spectra characteristic of a catecholamine. For the electron microscopical study the dopamine analogue, 5-hydroxydopamine, was used to label the catecholamine terminals in both human and monkey liver. The nerve profiles, identified as catecholamine-containing, were demonstrated in a perivascular location and in close contact to hepatocytes. No synaptic membrane specializations were present between nerve fibers and hepatocytes. The general ultramorphology and intralobular distribution pattern of nerves in the liver of monkey and man were similar. The present results prove the existence of a sympathetic innervation of hepatocytes and blood vessels in the liver of man and monkey.  相似文献   

10.
11.
We have developed a new method for the simultaneous measurements of stable isotopic tracer enrichments and concentrations of individual long-chain fatty acyl-carnitines in muscle tissue using ion-pairing high-performance liquid chromatography-electrospray ionization quadrupole mass spectrometry in the selected ion monitoring (SIM) mode. Long-chain fatty acyl-carnitines were extracted from frozen muscle tissue samples by acetonitrile/methanol. Baseline separation was achieved by reverse-phase HPLC in the presence of the volatile ion-pairing reagent heptafluorobutyric acid. The SIM capability of a single quadrupole mass analyzer allows further separation of the ions of interest from the sample matrixes, providing very clean total and selected ion chromatograms that can be used to calculate the stable isotopic tracer enrichment and concentration of long-chain fatty acyl-carnitines in a single analysis. The combination of these two separation techniques greatly simplifies the sample preparation procedure and increases the detection sensitivity. Applying this protocol to biological muscle samples proves it to be a very sensitive, accurate, and precise analytical tool.  相似文献   

12.
13.
Intravenous injection of gelonin and deglycosylated gelonin led to rapid clearance from the blood. Both molecules distributed similarly in liver and kidney suggesting that they followed the same pathway. Deglycosylation reduced the uptake by a third in liver, but did not affect uptake by kidney. Studies with Triton WR1339 showed a classical lysosomal pathway for both molecules. The deglycosylated molecule was degraded to a greater extent than native gelonin as seen by the presence of acid soluble radioactivity. Cell separation showed that while endothelial cells mainly took up native gelonin, Kupffer cells took up the deglycosylated molecule.  相似文献   

14.
15.
l ‐Theanine is a specialized metabolite in the tea (Camellia sinensis) plant which can constitute over 50% of the total amino acids. This makes an important contribution to tea functionality and quality, but the subcellular location and mechanism of biosynthesis of l ‐theanine are unclear. Here, we identified five distinct genes potentially capable of synthesizing l ‐theanine in tea. Using a nonaqueous fractionation method, we determined the subcellular distribution of l ‐theanine in tea shoots and roots and used transient expression in Nicotiana or Arabidopsis to investigate in vivo functions of l ‐theanine synthetase and also to determine the subcellular localization of fluorescent‐tagged proteins by confocal laser scanning microscopy. In tea root tissue, the cytosol was the main site of l ‐theanine biosynthesis, and cytosol‐located CsTSI was the key l ‐theanine synthase. In tea shoot tissue, l ‐theanine biosynthesis occurred mainly in the cytosol and chloroplasts and CsGS1.1 and CsGS2 were most likely the key l ‐theanine synthases. In addition, l ‐theanine content and distribution were affected by light in leaf tissue. These results enhance our knowledge of biochemistry and molecular biology of the biosynthesis of functional tea compounds.  相似文献   

16.
A detailed subfractionation of the non-pregnant porcine corpus luteum (CL) was performed employing differential centrifugation. Marker enzyme assays (i.e., lactate dehydrogenase for the cytosol, NADPH-cytochrome P450 reductase for the endoplasmatic reticulum, catalase (CAT) for peroxisomes, glutamate dehydrogenase for the mitochondrial matrix and acid phosphatase for lysosomes) in all subfractions obtained exhibited a pattern of distribution similar to that observed with rat liver. These subfractions should be useful in connection with many types of future studies. In disagreement with previous biochemical and morphological studies, peroxisomes (identified on the basis of catalase activity and by Western blotting of catalase and of the major peroxisomal membrane protein (PMP-70)) sedimented together with mitochondria (i.e., at 5000 x g(av) for 10 min) and not in the post-mitochondrial fraction prepared at 30,000 x g(av) for 20 min by Peterson and Stevensson. No other classical peroxisomal enzymes were detectable in the porcine ovary, raising questions concerning the function of peroxisomes in this organ. Furthermore, UDP-glucuronosyltransferase (UGT), generally considered to be an integral membrane protein anchored in the endoplasmatic reticulum, was recovered in both the cytosolic (i.e., the supernatant after centrifugation at 50,000 x g(av) for 1h) and the microsomal fraction of the porcine corpus luteum, even upon further centrifugation of the former. In contrast, UGT sediments exclusively in the microsomal fraction upon subfractionation of the liver and ovary from rat.  相似文献   

17.
18.
There is great interest in the therapeutic potential of non-hematopoietic stem cells obtained from bone marrow called mesenchymal stem cells (MSCs). Rare myogenic progenitor cells in MSC cultures have been shown to convert into skeletal muscle cells in vitro and also in vivo after transplantation of bone marrow into mice. To be clinically useful, however, isolation and expansion of myogenic progenitor cells is important to improve the efficacy of cell transplantation in generating normal skeletal muscle cells. We introduced into MSCs obtained from mouse bone marrow, a plasmid vector in which an antibiotic (Zeocin) resistance gene is driven by MyoD and Myf5 enhancer elements, which are selectively active in skeletal muscle progenitor cells. Myogenic precursor cells were then isolated by antibiotic selection, expanded in culture, and shown to differentiate appropriately into multinucleate myotubes in vitro. Our results show that using a genetic selection strategy, an enriched population of myogenic progenitor cells, which will be useful for cell transplantation therapies, can be isolated from MSCs.  相似文献   

19.
A new technique for single-step subcellular fractionation of adipose tissue homogenates by analytical sucrose density gradient centrifugation in a vertical pocket reorientating rotor is described. The density gradient distributions of mitochondrial and peroxisomal marker enzymes in brown and white adipose tissue of control and cold exposed rats are compared. The equilibrium density of brown fat mitochondria was found to be significantly increased compared with white fat mitochondria. GDP binding activity was localized solely to the mitochondria in both control and cold-adapted brown adipose tissue. Brown and white fat mitochondria fractions were isolated by differential centrifugation and the specific activities of various enzymes in the homogenate and mitochondrial preparations determined. The specific activity of creatine kinase in brown adipose tissue was found to be ten-fold higher than in white fat and subcellular fractionation studies showed the activity to have an exclusively cytosolic distribution in both tissues. GDP binding activity and some of the mitochondrial enzymes showed, in brown adipose, a striking increase in total activity in cold adapted rats compared to control animals. For some enzyme activities there was a small increase when expressed per mg tissue or per mg mitochondrial protein. When expressed per mg DNA i.e. per cell, there was a reduced specific activity of the mitochondrial and peroxisomal enzymes in both brown and white adipose tissue on cold adaptation.  相似文献   

20.
Employing subcellular membrane fractionation methods it has been shown that insulin induces a 2-fold increase in the Glut 4 protein content in the plasma membrane of skeletal muscle from rats. Data based upon this technique are, however, impeded by poor plasma membrane recovery and cross-contamination with intracellular membrane vesicles. The present study was undertaken to compare the subcellular fractionation technique with the technique using [3H]ATB-BMPA exofacial photolabelling and immunoprecipitation of Glut 4 on soleus muscles from 3-week-old Wistar rats. Maximal insulin stimulation resulted in a 6-fold increase in 3-O-methylglucose uptake, and studies based on the subcellular fractionation method showed a 2-fold increase in Glut 4 content in the plasma membrane, whereas the exofacial photolabelling demonstrated a 6- to 7-fold rise in cell surface associated Glut 4 protein. Glucose transport activity was positively correlated with cell surface Glut 4 content as estimated by exofacial labelling. In conclusion: (1) the increase in glucose uptake in muscle after insulin exposure is caused by an augmented concentration of Glut 4 protein on the cell surface membrane, (2) at maximal insulin stimulation (20 mU/ml) approximately 40% of the muscle cell content of Glut 4 is at the cell surface, and (3) the exofacial labelling technique is more sensitive than the subcellular fractionation technique in measuring the amount of glucose transporters on muscle cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号