首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 926 毫秒
1.
2.
Over the last years virus–host cell interactions were investigated in numerous studies. Viral strategies for evasion of innate immune response, inhibition of cellular protein synthesis and permission of viral RNA and protein production were disclosed. With quantitative proteome technology, comprehensive studies concerning the impact of viruses on the cellular machinery of their host cells at protein level are possible. Therefore, 2‐D DIGE and nanoHPLC‐nanoESI‐MS/MS analysis were used to qualitatively and quantitatively determine the dynamic cellular proteome responses of two mammalian cell lines to human influenza A virus infection. A cell line used for vaccine production (MDCK) was compared with a human lung carcinoma cell line (A549) as a reference model. Analyzing 2‐D gels of the proteomes of uninfected and influenza‐infected host cells, 16 quantitatively altered protein spots (at least ±1.7‐fold change in relative abundance, p<0.001) were identified for both cell lines. Most significant changes were found for keratins, major components of the cytoskeleton system, and for Mx proteins, interferon‐induced key components of the host cell defense. Time series analysis of infection processes allowed the identification of further proteins that are described to be involved in protein synthesis, signal transduction and apoptosis events. Most likely, these proteins are required for supporting functions during influenza viral life cycle or host cell stress response. Quantitative proteome‐wide profiling of virus infection can provide insights into complexity and dynamics of virus–host cell interactions and may accelerate antiviral research and support optimization of vaccine manufacturing processes.  相似文献   

3.
We characterized the proteomes of murine N2a cells following infection with three rabies virus (RV) strains, characterized by distinct virulence phenotypes (i.e., virulent BD06, fixed CVS-11, and attenuated SRV9 strains), and identified 35 changes to protein expression using two-dimensional gel electrophoresis in whole-cell lysates. The annotated functions of these proteins are involved in various cytoskeletal, signal transduction, stress response, and metabolic processes. Specifically, a-enolase, prx-4, vimentin, cytokine-induced apoptosis inhibitor 1 (CIAPIN1) and prx-6 were significantly up-regulated, whereas Trx like-1 and galectin-1 were down-regulated following infection of N2a cells with all three rabies virus strains. However, comparing expressions of all 35 proteins affected between BD06-, CVS-11-, and SRV9-infected cells, specific changes in expression were also observed. The up-regulation of vimentin, CIAPIN1, prx-4, and 14-3-3 theta/delta, and downregulation of NDPK-B and HSP-1 with CVS and SRV9 infection were ≥ 2 times greater than with BD06. Meanwhile, Zfp12 protein, splicing factor, and arginine/serine-rich 1 were unaltered in the cells infected with BD06 and CVS- 11, but were up-regulated in the group infected with SRV9. The proteomic alterations described here may suggest that these changes to protein expression correlate with the rabies virus' adaptability and virulence in N2a cells, and hence provides new clues as to the response of N2a host cells to rabies virus infections, and may also aid in uncovering new pathways in these cells that are involved in rabies infections. Further characterization of the functions of the affected proteins may contribute to our understanding of the mechanisms of RV infection and pathogenesis.  相似文献   

4.
The rabies virus (RV) phosphoprotein P is a multifunctional protein involved in viral RNA synthesis and in counteracting host innate immune responses. We have previously shown that RV P gene expression levels can be regulated by using picornavirus internal ribosome entry site (IRES) elements. Here we exploited a particular feature of the foot-and-mouth disease virus (FMDV) IRES, namely, preferential initiation at a downstream initiation codon, to address the role of N-terminally truncated RV phosphoproteins usually generated in RV-infected cells through ribosomal leaky scanning. Recombinant RVs in which P synthesis was directed by the poliovirus or FMDV IRES produced full-length P (P1) or a truncated form (P2), as the dominant product, respectively. While the P2 overexpressing virus showed attenuated growth in interferon-incompetent cells, it was superior to the P1 overexpressing virus in preventing expression of host interferon-stimulated genes. This indicates that in RV infected cells the availability of the truncated P2 protein is critical for viral resistance to interferon.  相似文献   

5.
During infection by herpes simplex virus type‐1 (HSV‐1) the host cell undergoes widespread changes in gene expression and morphology in response to viral replication and release. However, relatively little is known about the specific proteome changes that occur during the early stages of HSV‐1 replication prior to the global damaging effects of virion maturation and egress. To investigate pathways that may be activated or utilised during the early stages of HSV‐1 replication, 2‐DE and LC‐MS/MS were used to identify cellular proteome changes at 6 h post infection. Comparative analysis of multiple gels representing whole cell extracts from mock‐ and HSV‐1‐infected HEp‐2 cells revealed a total of 103 protein spot changes. Of these, 63 were up‐regulated and 40 down‐regulated in response to infection. Changes in selected candidate proteins were verified by Western blot analysis and their respective cellular localisations analysed by confocal microscopy. We have identified differential regulation and modification of proteins with key roles in diverse cellular pathways, including DNA replication, chromatin remodelling, mRNA stability and the ER stress response. This work represents the first global comparative analysis of HSV‐1 infected cells and provides an important insight into host cell proteome changes during the early stages of HSV‐1 infection.  相似文献   

6.
We showed that, unlike pathogenic rabies virus (RV) strain CVS, attenuated RV strain ERA triggers the caspase-dependent apoptosis of human cells. Furthermore, we observed that the induction of apoptosis is correlated with a particular virus antigen distribution: the overexpression of the viral G protein on the cell surface, with continuous localization on the cytoplasmic membrane, and large cytoplasmic inclusions of the N protein. To determine whether one of these two major RV proteins (G and N proteins) triggers apoptosis, we constructed transgenic Jurkat T-cell lines that drive tetracycline-inducible gene expression to produce the G and N proteins of ERA and CVS individually. The induction of ERA G protein (G-ERA) expression but not of ERA N protein expression resulted in apoptosis, and G-ERA was more efficient at triggering apoptosis than was CVS G protein. To test whether other viral proteins participated in the induction of apoptosis, human cells were infected with recombinant RV in which the G protein gene from the attenuated strain had been replaced by its virulent strain counterpart (CVS). Only RV containing the G protein from the nonpathogenic RV strain was able to trigger the apoptosis of human cells. Thus, the ability of RV strains to induce apoptosis is largely determined by the viral G protein.  相似文献   

7.
Many steps of viral replication are dependent on the interaction of viral proteins with host cell components. To identify rhinovirus proteins involved in such interactions, human rhinovirus 39 (HRV39), a virus unable to replicate in mouse cells, was adapted to efficient growth in mouse cells producing the viral receptor ICAM-1 (ICAM-L cells). Amino acid changes were identified in the 2B and 3A proteins of the adapted virus, RV39/L. Changes in 2B were sufficient to permit viral growth in mouse cells; however, changes in both 2B and 3A were required for maximal viral RNA synthesis in mouse cells. Examination of infected HeLa cells by electron microscopy demonstrated that human rhinoviruses induced the formation of cytoplasmic membranous vesicles, similar to those observed in cells infected with other picornaviruses. Vesicles were also observed in the cytoplasm of HRV39-infected mouse cells despite the absence of viral RNA replication. Synthesis of picornaviral nonstructural proteins 2C, 2BC, and 3A is known to be required for formation of membranous vesicles. We suggest that productive HRV39 infection is blocked in ICAM-L cells at a step posttranslation and prior to the formation of a functional replication complex. The observation that changes in HRV39 2B and 3A proteins lead to viral growth in mouse cells suggests that one or both of these proteins interact with host cell proteins to promote viral replication.  相似文献   

8.
RNA interference (RNAi) is an evolutionary ancient innate immune response in plants, nematodes, and arthropods providing natural protection against viral infection. Viruses have also gained counter‐defensive measures by producing virulence determinants called viral‐suppressors‐of‐RNAi (VSRs). Interestingly, in spite of dominance of interferon‐based immunity over RNAi in somatic cells of higher vertebrates, recent reports are accumulating in favour of retention of the antiviral nature of RNAi in mammalian cells. The present study focuses on the modulation of intracellular RNAi during infection with rotavirus (RV), an enteric virus with double‐stranded RNA genome. Intriguingly, a time point‐dependent bimodal regulation of RNAi was observed in RV‐infected cells, where short interfering RNA (siRNA)‐based RNAi was rendered non‐functional during early hours of infection only to be reinstated fully beyond that early infection stage. Subsequent investigations revealed RV nonstructural protein 1 to serve as a putative VSR by associating with and triggering degradation of Argonaute2 (AGO2), the prime effector of siRNA‐mediated RNAi, via ubiquitin–proteasome pathway. The proviral significance of AGO2 degradation was further confirmed when ectopic overexpression of AGO2 significantly reduced RV infection. Cumulatively, the current study presents a unique modulation of host RNAi during RV infection, highlighting the importance of antiviral RNAi in mammalian cells.  相似文献   

9.
We have investigated virus-lymphocyte interactions by using cloned subpopulations of interleukin-2-dependent effector lymphocytes maintained in vitro. Cloned lines of H-2-restricted hapten- or virus-specific cytotoxic T lymphocytes (CTL) and alloantigen-specific CTL were resistant to productive infection by vesicular stomatitis virus (VSV). In contrast, cloned lines of natural killer (NK) cells were readily and persistently infected by VSV, a virus which is normally highly cytolytic. VSV-infected NK cells continued to proliferate, express viral surface antigen, and produce infectious virus. Furthermore, persistently infected NK cells showed no marked alteration of normal cellular morphology and continued to lyse NK-sensitive target cells albeit at a slightly but significantly reduced level. The persistence of VSV in NK cells did not appear to be caused by the generation of temperature-sensitive viral mutants, defective interfering particles, or interferon. Consequently, studies comparing the intracellular synthesis and maturation of VSV proteins in infected NK and mouse L cells were conducted. In contrast to L cells, in which host cell protein synthesis was essentially totally inhibited by infection, the infection of NK cells caused no marked diminution in the synthesis of host cell proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of viral proteins from infected cells showed that the maturation rate and size of VSV surface G glycoprotein were comparable in L cells and NK cells. Nucleocapsid (N) protein synthesis also appeared to be unaffected in NK cells. In contrast, the viral proteins NS and M appeared to be selectively degraded in NK cell extracts. Mixing experiments suggested that a protease in NK cells was responsible for the selective breakdown of VSV NS protein. Finally, VSV-infected NK cells were resistant to lysis by virus-specific CTL, suggesting that persistently infected NK cells may harbor virus and avoid cell-mediated immune destruction in an immunocompetent host.  相似文献   

10.
Bombyx mori is one of the key lepidopteran model species, and is economically important for silk production and proteinaceous drug expression. Baculovirus and insect host are important natural biological models for studying host–pathogen interactions. The impact of Bombyx mori nucleopolyhedrovirus (BmNPV) infection on the proteome and acetylome of Bombyx mori ovarian (BmN) cells are explored to facilitate a better understanding of infection‐driven interactions between BmNPV and host in vitro. The proteome and acetylome are profiled through six‐plex Tandem mass tag (TMT) labeling‐based quantitative proteomics. A total of 4194 host proteins are quantified, of which 33 are upregulated and 47 are downregulated in BmN cells at 36 h post‐infection. Based on the proteome, quantifiable differential Kac proteins are identified and functionally annotated to gene expression regulation, energy metabolism, substance synthesis, and metabolism after BmNPV infection. Altogether, 644 Kac sites in 431 host proteins and 39 Kac sites in 22 viral proteins are identified and quantified in infected BmN cells. Our study demonstrates that BmNPV infection globally impacts the proteome and acetylome of BmN cells. The viral proteins are also acetylated by the host acetyltransferase. Protein acetylation is essential for cellular self‐regulation and response to virus infection. This study provides new insights for understanding the host–virus interaction mechanisms, and the role of acetylation in BmN cellular response to viral infection.  相似文献   

11.
Measles virus-directed protein synthesis was examined in two HeLa cell lines (K11 and K11A) that are persistently infected with wild-type measles virus. Four viral proteins (H, hemagglutination protein; P, nucleocapsid-associated protein; NP, the major nucleocapsid protein; and M, the matrix protein) were readily detected in both cell lines by immune precipitation of [(35)S]methionine-labeled cell extracts followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, three (H, NP, and M) of the four viral proteins in both K11 and K11A cells differed from the corresponding viral proteins synthesized in HeLa cells acutely infected with the parental wild-type virus. In addition, the M protein from K11A cells migrated significantly more slowly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the M protein from K11 cells, and there appeared to be slight differences in the H and NP proteins between these two persistently infected cell lines. The altered viral proteins detected in K11 and K11A cells appeared to be the result of viral mutations rather than changes in the host cell, since virus recovered from these cells directed the synthesis of similar aberrant viral proteins in HeLa cells. Virus recovered from K11 cells and virus recovered from K11A cells were both temperature sensitive and grew more slowly than wild-type virus. HeLa cells infected with virus recovered from K11 cells readily became persistently infected, resembling the original persistently infected K11 cells. Thus, viral mutations are associated with persistent measles virus infections in cell cultures.  相似文献   

12.
A wide variety of in vitro models have been used for studying rabies infection, however, currently, no central nervous system (CNS) adult neuron cultures are available. The current study determined the susceptibility to rabies infection in an adult CNS neuron cell line (CAD-R1). Cultures of CAD-R1 cells were held for 5 days in medium containing serum (undifferentiated CAD-R1 cells) or in serum-free medium (differentiated CAD-R1 cells). They were then infected with highly neurotropic rabies virus (RV) strain (CVS), obtained from fibroblastic cells (CVS-BHK) or from adult mouse brain (CVS-MB). Undifferentiated and differentiated cells were infected with the two RV strains, but the percentage of infected cells in differentiated cultures was significantly greater (83% and 79%, respectively) than in undifferentiated cells (51% and 60%) (Student's t test<0.05). Susceptibility to infection apparently depended on cellular differentiation state, possibly due to acquisition of additional morphological and biochemical characteristics during the differentiation process that made them more susceptible to RV infection. Therefore, CAD R1 cells may represent a good model for RV infection, making them a useful tool for studying RV neurotropism, infection pathogeny, isolation of street virus or producing safer and most potent vaccines.  相似文献   

13.
The nucleolus is a dynamic subnuclear compartment involved in ribosome subunit biogenesis, regulation of cell stress and modulation of cellular growth and the cell cycle, among other functions. The nucleolus is composed of complex protein/protein and protein/RNA interactions. It is a target of virus infection with many viral proteins being shown to localize to the nucleolus during infection. Perturbations to the structure of the nucleolus and its proteome have been predicted to play a role in both cellular and infectious disease. Stable isotope labeling with amino acids in cell culture coupled to LC‐MS/MS with bioinformatic analysis using Ingenuity Pathway Analysis was used to investigate whether the nucleolar proteome altered in virus‐infected cells. In this study, the avian nucleolar proteome was defined in the absence and presence of virus, in this case the positive strand RNA virus, avian coronavirus infectious bronchitis virus. Data sets, potential protein changes and the functional consequences of virus infection were validated using independent assays. These demonstrated that specific rather than generic changes occurred in the nucleolar proteome in infectious bronchitis virus‐infected cells.  相似文献   

14.
Herpes simplex virus 1 (HSV‐1) envelope glycoprotein H (gH) is important for viral entry into cells and nuclear egress of nucleocapsids. To clarify additional novel roles of gH during HSV‐1 replication, host cell proteins that interact with gH were screened for by tandem affinity purification coupled with mass spectrometry‐based proteomics in 293T cells transiently expressing gH. This screen identified 123 host cell proteins as potential gH interactors. Of these proteins, general control nonderepressive‐1 (GCN1), a trans‐acting positive effector of GCN2 kinase that regulates phosphorylation of the α subunit of translation initiation factor 2 (eIF2α), was subsequently confirmed to interact with gH in HSV‐1‐infected cells. eIF2α phosphorylation is known to downregulate protein synthesis, and various viruses have evolved mechanisms to prevent the accumulation of phosphorylated eIF2α in infected cells. Here, it was shown that GCN1 knockdown reduces phosphorylation of eIF2α in HSV‐1‐infected cells and that the gH‐null mutation increases eIF2α in HSV‐1‐infected cells, whereas gH overexpression in the absence of other HSV‐1 proteins reduces eIF2α phosphorylation. These findings suggest that GCN1 can regulate eIF2α phosphorylation in HSV‐1‐infected cells and that the GCN1‐binding viral partner gH is necessary and sufficient to prevent the accumulation of phosphorylated eIF2α. Our database of 123 host cell proteins potentially interacting with gH will be useful for future studies aimed at unveiling further novel functions of gH and the roles of cellular proteins in HSV‐1‐infected cells.  相似文献   

15.
16.
17.
Rotavirus (RV) infection is the main cause of acute dehydrating diarrhea in infants and young children below 5 years old worldwide. RV infection causes a global shutoff of host proteins as many other viruses do. However, previous studies revealed that RV could selectively upregulated the expression of some host proteins that then played important roles in RV infection. To globally explor such host proteins that were upregulated in early human rotavirus (HRV) infection, proteomic methods were used and a total of ten upregulated host proteins were unambiguously identified. Cyclophilin A (CYPA), a peptidyl‐prolyl cis‐trans isomerase, was among these upregulated host proteins. Following infection, CYPA was recruited to the viroplasm and interacted with HRV structural protein VP2; CYPA reduced host susceptibility to HRV infection and inhibited replication of HRV by repressing the expression of viral proteins. Furthermore, we found that the increased expression of CYPA in enterocytes of small intestine correlated to the period when BALB/c mice became resistant to RV diarrhea. Together, we identified CYPA as a novel host restriction factor that confered protection against RV infection and might contribute to host susceptibility to RV diarrhea.  相似文献   

18.
Porcine epidemic diarrhea virus (PEDV) causes an acute, highly contagious, and devastating viral enteric disease with a high mortality rate in suckling pigs. A large‐scale outbreak of PED occurred in China in 2010, with PEDV emerging in the United States in 2013 and spreading rapidly, posing significant economic and public health concerns. In this study, LC–MS/MS coupled to iTRAQ labeling was used to quantitatively identify differentially expressed cellular proteins in PEDV‐infected Vero cells. We identified 49 differentially expressed cellular proteins, of which 8 were upregulated and 41 downregulated. These differentially expressed proteins were involved in apoptosis, signal transduction, and stress responses. Based on these differentially expressed proteins, we propose that PEDV might utilize apoptosis and extracellular signal regulated kinases pathways for maximum viral replication. Our study is the first attempt to analyze the protein profile of PEDV‐infected cells by quantitative proteomics, and we believe our findings provide valuable information with respect to better understanding the host response to PEDV infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号