首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the crystal structure at 2.0 A resolution of the AGR_C_4470p protein from the Gram-negative bacterium Agrobacterium tumefaciens. The protein is a tightly associated dimer, each subunit of which bears strong structural homology with the two domains of the heme utilization protein ChuS from Escherichia coli and HemS from Yersinia enterocolitica. Remarkably, the organization of the AGR_C_4470p dimer is the same as that of the two domains in ChuS and HemS, providing structural evidence that these two proteins evolved by gene duplication. However, the binding site for heme, while conserved in HemS and ChuS, is not conserved in AGR_C_4470p, suggesting that it probably has a different function. This is supported by the presence of two homologs of AGR_C_4470p in E. coli, in addition to the ChuS protein.  相似文献   

2.
Bacterial pathogens require iron for proliferation and pathogenesis. Pseudomonas aeruginosa is a prevalent Gram-negative opportunistic human pathogen that takes advantage of immunocompromised hosts and encodes a number of proteins for uptake and utilization of iron. Here we report the crystal structures of PhuS, previously known as the cytoplasmic heme-trafficking protein from P. aeruginosa, in both the apo- and the holo-forms. In comparison to its homologue ChuS from Escherichia coli O157:H7, the heme orientation is rotated 180° across the α-γ axis, which may account for some of the unique functional properties of PhuS. In contrast to previous findings, heme binding does not result in an overall conformational change of PhuS. We employed spectroscopic analysis and CO measurement by gas chromatography to analyze heme degradation, demonstrating that PhuS is capable of degrading heme using ascorbic acid or cytochrome P450 reductase-NADPH as an electron donor and produces five times more CO than ChuS. Addition of catalase slows down but does not stop PhuS-catalyzed heme degradation. Through spectroscopic and mass spectrometry analysis, we identified the enzymatic product of heme degradation to be verdoheme. These data taken together suggest that PhuS is a potent heme-degrading enzyme, in addition to its proposed heme-trafficking function.  相似文献   

3.
Heme oxygenases catalyze the oxidation of heme to biliverdin, CO, and free iron. For pathogenic microorganisms, heme uptake and degradation are critical mechanisms for iron acquisition that enable multiplication and survival within hosts they invade. Here we report the first crystal structure of the pathogenic Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme at 1.45 A resolution. When compared with other heme oxygenases, ChuS has a unique fold, including structural repeats and a beta-sheet core. Not surprisingly, the mode of heme coordination by ChuS is also distinct, whereby heme is largely stabilized by residues from the C-terminal domain, assisted by a distant arginine from the N-terminal domain. Upon heme binding, there is no large conformational change beyond the fine tuning of a key histidine (His-193) residue. Most intriguingly, in contrast to other heme oxygenases, the propionic side chains of heme are orientated toward the protein core, exposing the alpha-meso carbon position where O(2) is added during heme degradation. This unique orientation may facilitate presentation to an electron donor, explaining the significantly reduced concentration of ascorbic acid needed for the reaction. Based on the ChuS-heme structure, we converted the histidine residue responsible for axial coordination of the heme group to an asparagine residue (H193N), as well as converting a second histidine to an alanine residue (H73A) for comparison purposes. We employed spectral analysis and CO measurement by gas chromatography to analyze catalysis by ChuS, H193N, and H73A, demonstrating that His-193 is the key residue for the heme-degrading activity of ChuS.  相似文献   

4.
Transmembrane b-type cytochromes, which are crucially involved in electron transfer chains, bind one or more heme (Fe-protoporphyrin IX) molecules non-covalently. Similarly, chlorophylls are typically also non-covalently bound by several membrane integral polypeptides involved in photosynthesis. While both, chlorophyll and heme, are tetrapyrrole macrocycles, they have different substituents at the tetrapyrrole ring moiety. Furthermore, the central metal ion is Mg2+ in chlorophyll and Fe2+/3+ in heme. As heme and chlorophyll a have similar structures and might both be ligated by two histidine residues of a polypeptide chain, and as the local concentration of chlorophyll a might be up to 100-times higher than the concentration of heme, the question arises, as to how an organism ensures specific binding of heme, but not of chlorophyll, to transmembrane apo-cytochromes involved in photosynthetic electron transfer reactions. As shown here, Fe-protoporphyrin IX derivatives with modified substituents at the tetrapyrrole ring moiety still bind to an apo-cytochrome; however, association appears to be reduced. This indicates that hydrophobic and polar interactions of the ring substituents with the protein moiety stabilize the protein/heme-complex but are not essential per se. However, removal or replacement of the central Fe-ion completely abolishes formation of a holo-protein complex, and thus the central iron ion appears to determine heme binding to apo-cytochrome b6.  相似文献   

5.
Xu J  Yin G  Du W 《Proteins》2011,79(1):191-202
Neuroglobin (Ngb), a hexa‐coordinated hemoprotein primarily expressed in the brain and retina, is thought to be involved in neuroprotection and signal transduction. Ngb can reversibly bind small ligands such as O2 and CO to the heme iron by replacing the distal histidine which is bound to the iron as the endogenous ligand. In this work, molecular dynamics (MD) simulations were performed to investigate the functionally related structural properties and dynamical characteristics in carboxy mouse neuroglobin and three distal mutants including single mutants H64V, K67T and double mutant H64V/K67T. MD simulations suggest that the heme sliding motion induced by the binding of exogenous ligand is affected by the distal mutation obviously. Accompanying changes in loop flexibility and internal cavities imply the structural rearrangement of Ngb. Moreover, the solvent accessibility of heme and some crucial residues are influenced revealing an interactive network on the distal side. The work elucidates that the key residues K67 at E10 and H64 at E7 are significant in modulating the heme sliding and hence the structural and physiological function of Ngb. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
We report a novel affinity‐based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an L ‐histidine‐immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme‐tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200–500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag‐HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination.  相似文献   

7.
Heme‐containing catalases and catalase‐peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase‐peroxidase led us to investigate the enzyme for comparison with other catalase‐peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s?1). In addition, the enzyme supported a much slower (kcat = 20 s?1) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2‐chlorophenol were identified in crystal structures at 1.65–1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low‐spin conversion of the FeIII high‐spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. Proteins 2015; 83:853–866. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Native human adult hemoglobin (Hb A) has mostly normal orientation of heme, whereas recombinant Hb A (rHb A) expressed in E. coli contains both normal and reversed orientations of heme. Hb A with the normal heme exhibits positive circular dichroism (CD) bands at both the Soret and 260‐nm regions, while rHb A with the reversed heme shows a negative Soret and decreased 260‐nm CD bands. In order to examine involvement of the proximal histidine (His F8) of either α or β subunits in determining the heme orientation, we prepared two cavity mutant Hbs, rHb(αH87G) and rHb(βH92G), with substitution of glycine for His F8 in the presence of imidazole. CD spectra of both cavity mutant Hbs did not show a negative Soret band, but instead exhibited positive bands with strong intensity at the both Soret and 260‐nm regions, suggesting that the reversed heme scarcely exists in the cavity mutant Hbs. We confirmed by 1H NMR and resonance Raman (RR) spectroscopies that the cavity mutant Hbs have mainly the normal heme orientation in both the mutated and native subunits. These results indicate that the heme Fe‐His F8 linkage in both α and β subunits influences the heme orientation, and that the heme orientation of one type of subunit is related to the heme orientation of the complementary subunits to be the same. The present study showed that CD and RR spectroscopies also provided powerful tools for the examination of the heme rotational disorder of Hb A, in addition to the usual 1H NMR technique. Chirality 28:585–592, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Lin YW 《Proteins》2011,79(3):679-684
Rational design of functional enzymes is a powerful strategy to gain deep insights into more complex native enzymes, such as nitric oxide reductase (NOR). Recently, we engineered a functional model of NOR by creating a two His and one Glu (2‐His‐1‐Glu) non‐heme iron center in sperm whale myoglobin (swMb L29E, F43H, H64, called FeBMb(‐His)). It was found that FeBMb(‐His) adopts a low‐spin state with bis‐His coordination in the absence of metal ions binding to the designed metal center. However, no structural information was available for the variant in this special spin state. We herein performed molecular modeling of FeBMb(‐His) and compared with the X‐ray structure of its copper bound derivative, Cu(II)‐CN?‐FeBMb(‐His), resolved recently at a high resolution (1.65 Å) (PDB entry 3MN0). The simulated structure shows that mutation of Leu to Glu at position 29 in the hydrophobic heme pocket alters the folding behavior of Mb. The hydrogen bond between Glu29 and His64 further plays a role in stabilizing the bis‐His (His64/His93) coordination structure. This study offers an excellent example of using molecular modeling to gain insights in rational design of both structural and functional proteins. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
In the genome of the untypical cyanobacterium Gloeobacter violaceus PCC 7421 two potential cytochrome b 6 proteins PetB1 and PetB2 are encoded. Such a situation has not been observed in cyanobacteria, algae and higher plants before, and both proteins are not characterized at all yet. Here, we show that both apo-proteins bind heme with high affinity and the spectroscopic characteristics of both holo-proteins are distinctive for cytochrome b 6 proteins. However, while in PetB2 one histidine residue, which corresponds to H100 and serves as an axial ligand for heme b H in PetB1, is mutated, both PetB proteins bind two heme molecules with different midpoint potentials. To recreate the canonical heme b H binding cavity in PetB2 we introduced a histidine residue at the position corresponding to H100 in PetB1 and subsequently characterized the generated protein variant. The presented data indicate that two bona fide cytochrome b 6 proteins are encoded in Gloeobacter violaceus. Furthermore, the two petB genes of Gloeobacter violaceus are each organized in an operon together with a petD gene. Potential causes and consequences of the petB and petD gene heterogeneity are discussed.  相似文献   

11.
Nitric oxide reductase (NOR) catalyzes the generation of nitrous oxide (N2O) via the reductive coupling of two nitric oxide (NO) molecules at a heme/non‐heme Fe center. We report herein on the structures of the reduced and ligand‐bound forms of cytochrome c‐dependent NOR (cNOR) from Pseudomonas aeruginosa at a resolution of 2.3–2.7 Å, to elucidate structure‐function relationships in NOR, and compare them to those of cytochrome c oxidase (CCO) that is evolutionarily related to NOR. Comprehensive crystallographic refinement of the CO‐bound form of cNOR suggested that a total of four atoms can be accommodated at the binuclear center. Consistent with this, binding of bulky acetaldoxime (CH3‐CH=N‐OH) to the binuclear center of cNOR was confirmed by the structural analysis. Active site reduction and ligand binding in cNOR induced only ~0.5 Å increase in the heme/non‐heme Fe distance, but no significant structural change in the protein. The highly localized structural change is consistent with the lack of proton‐pumping activity in cNOR, because redox‐coupled conformational changes are thought to be crucial for proton pumping in CCO. It also permits the rapid decomposition of cytotoxic NO in denitrification. In addition, the shorter heme/non‐heme Fe distance even in the bulky ligand‐bound form of cNOR (~4.5 Å) than the heme/Cu distance in CCO (~5 Å) suggests the ability of NOR to maintain two NO molecules within a short distance in the confined space of the active site, thereby facilitating N‐N coupling to produce a hyponitrite intermediate for the generation of N2O. Proteins 2014; 82:1258–1271. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The periplasmic binding protein HmuT from Yersinia pestis (YpHmuT) is a component of the heme uptake locus hmu and delivers bound hemin to the inner-membrane-localized, ATP-binding cassette (ABC) transporter HmuUV for translocation into the cytoplasm. The mechanism of this process, heme transport across the inner membrane of pathogenic bacteria, is currently insufficiently understood at the molecular level. Here we describe the crystal structures of the substrate-free and heme-bound states of YpHmuT, revealing two lobes with a central binding cleft. Superposition of the apo and holo states reveals a minor tilting motion of the lobes surrounding concomitant with heme binding. Unexpectedly, YpHmuT binds two stacked hemes in a central binding cleft that is larger than those of the homologous periplasmic heme-binding proteins ShuT and PhuT, both of which bind only one heme. The hemes bound to YpHmuT are coordinated via a tyrosine side chain that contacts the Fe atom of one heme and a histidine that contacts the Fe atom of the other heme. The coordinating histidine is only conserved in a subset of periplasmic heme binding proteins suggesting that its presence predicts the ability to bind two heme molecules simultaneously. The structural data are supported by spectroscopic binding studies performed in solution, where up to two hemes can bind to YpHmuT. Isothermal titration calorimetry suggests that the two hemes are bound in discrete, sequential steps and with dissociation constants (KD) of ∼ 0.29  and ∼ 29 nM, which is similar to the affinities observed in other bacterial substrate binding proteins. Our findings suggest that the cognate ABC transporter HmuUV may simultaneously translocate two hemes per reaction cycle.  相似文献   

13.
The recombinant product of the hemoglobin gene of the cyanobacterium Synechocystis sp. PCC 6803 forms spontaneously a covalent bond linking one of the heme vinyl groups to a histidine located in the C-terminal helix (His117, or H16). The present report describes the 1H, 15N, and 13C NMR spectroscopy experiments demonstrating that the recombinant hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002, a protein sharing 59% identity with Synechocystis hemoglobin, undergoes the same facile heme adduct formation. The observation that the extraordinary linkage is not unique to Synechocystis hemoglobin suggests that it constitutes a noteworthy feature of hemoglobin in non-N2-fixing cyanobacteria, along with the previously documented bis-histidine coordination of the heme iron. A qualitative analysis of the hyperfine chemical shifts of the ferric proteins indicated that the cross-link had modest repercussions on axial histidine ligation and heme electronic structure. In Synechocystis hemoglobin, the unreacted His117 imidazole had a normal pK a whereas the protonation of the modified residue took place at lower pH. Optical experiments revealed that the cross-link stabilized the protein with respect to thermal and acid denaturation. Replacement of His117 with an alanine yielded a species inert to adduct formation, but inspection of the heme chemical shifts and ligand binding properties of the variant identified position 117 as important in seating the cofactor in its site and modifying the dynamic properties of the protein. A role for bis-histidine coordination and covalent adduct formation in heme retention is proposed.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations DQF-COSY double-quantum-filtered correlated spectroscopy - GlbN cyanoglobin - Hb hemoglobin - hx hexacoordinate - MALDI matrix-assisted laser desorption ionization - NOE nuclear Overhauser effect - NOESY two-dimensional nuclear Overhauser effect spectroscopy - rHb recombinant hemoglobin - rHb-A recombinant hemoglobin with covalently attached heme - rHb-R recombinant heme-reconstituted hemoglobin - S6803 Synechocystis sp. PCC 6803 - S7002 Synechococcus sp. PCC 7002 - TOCSY totally correlated two-dimensional spectroscopy - TPPI time-proportional phase incrementation - trHb truncated hemoglobin - WATERGATE water suppression by gradient-tailored excitation - WEFT water elimination Fourier transform  相似文献   

14.
Makino M  Sawai H  Shiro Y  Sugimoto H 《Proteins》2011,79(4):1143-1153
Cytoglobin (Cgb) is a vertebrate heme‐containing globin‐protein expressed in a broad range of mammalian tissues. Unlike myoglobin, Cgb displays a hexa‐coordinated (bis‐hystidyl) heme iron atom, having the heme distal His81(E7) residue as the endogenous sixth ligand. In the present study, we crystallized human Cgb in the presence of a reductant Na2S2O4 under a carbon monoxide (CO) atmosphere, and determined the crystal structure at 2.6 Å resolution. The CO ligand occupies the sixth axial position of the heme ferrous iron. Eventually, the imidazole group of His81(E7) is expelled from the sixth position and swings out of the distal heme pocket. The flipping motion of the His81 imidazole group accompanies structural readjustments of some residues (Gln62, Phe63, Gln72, and Ser75) in both the CD‐corner and D‐helix regions of Cgb. On the other hand, no significant structural changes were observed in other Cgb regions, for example, on the proximal side. These structural alterations that occurred as a result of exogenous ligand (CO) binding are clearly different from those observed in other vertebrate hexa‐coordinated globins (mouse neuroglobin, Drosophila melanogaster hemoglobin) and penta‐coordinated sperm whale myoglobin. The present study provides the structural basis for further discussion of the unique ligand‐binding properties of Cgb. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
The two products from the reaction of horse heart ferricytochrome c with Chloramine-T, the FIII and FII CT-cytochromes, contain modification of the methionines to methionine sulfoxides, but they are distinct in their physiological functions. Conformational and heme-configurational characterization of the two CT-cytochromes has been carried out by using absorption, circular dichroism, fluorescence, proton magnetic resonance, and resonance Raman spectroscopy. The pH-absorption spectroscopic behavior, thermal stability, and ionization of the phenolic hydroxyls have also been reported. Spectroscopic studies of the heme c fragment, H8, in the presence of dimethylsulfoxide, as a model for CT-cytochrome heme configuration, were also conducted. The ferric and the ferrous CT-cytochromes above pH 7.5 have similar, yet distinct, spectroscopic properties, absorption, CD, resonance Raman, and PMR spectra, typical of low-spin hexacoordinated hemes, but distinct from those of the unmodified protein. The ferric spectrum lacks the 695-nm band, and the reduced spectrum contains an additional inflection at about 400 nm, a feature also observed in the spectra of ferrous H8-DMSO systems. The CD, resonance Raman, and PMR spectra are typical of a cytochrome with a loosened heme crevice and altered coordination configuration. The Methionine-80 proton resonances are absent in the uupfield PMR spectra of both the CT-ferricytochromes. The ferrous spectra, on the other hand, contain all the Met-80 resonances, but with smaller upfield shifts than those of the native protein. Both CT-ferric cytochromes are less stable in the acid region and convert to high-spin forms with a two-step transition and with a distinct set of pK a values. The overall conformation is nearly identical to that of the native protein, but it is less stable to thermal unfolding. All the factors differentiating the modified preparations from the unmodified protein are more pronunced in the case of FII, with FIII being the closest to the unmodified form. The two functionally distinct CT-cytochromes are two conformational isomers; conformationally and heme configurationally, they are spectroscopically very similar, yet distinct. Both contain an altered heme iron coordination configuration. The sulfur of Met-80 is repalced by the oxygen of Met-80 sulfoxide of a different configuration, R or S. Both contain a loosened heme crevice and are conformationally less stable than the native protein, FII CT-cytochrome c being the most deranged.  相似文献   

16.
The protein from Arabidopsis thaliana gene locus At1g79260.1 is comprised of 166‐residues and is of previously unknown function. Initial structural studies by the Center for Eukaryotic Structural Genomics (CESG) suggested that this protein might bind heme, and consequently, the crystal structures of apo and heme‐bound forms were solved to near atomic resolution of 1.32 Å and 1.36 Å, respectively. The rate of hemin loss from the protein was measured to be 3.6 × 10?5 s?1, demonstrating that it binds heme specifically and with high affinity. The protein forms a compact 10‐stranded β‐barrel that is structurally similar to the lipocalins and fatty acid binding proteins (FABPs). One group of lipocalins, the nitrophorins (NP), are heme proteins involved in nitric oxide (NO) transport and show both sequence and structural similarity to the protein from At1g79260.1 and two human homologues, all of which contain a proximal histidine capable of coordinating a heme iron. Rapid‐mixing and laser photolysis techniques were used to determine the rate constants for carbon monoxide (CO) binding to the ferrous form of the protein (k′CO = 0.23 μM?1 s?1, kCO = 0.050 s?1) and NO binding to the ferric form (k′NO = 1.2 μM–1 s–1, kNO = 73 s?1). Based on both structural and functional similarity to the nitrophorins, we have named the protein nitrobindin and hypothesized that it plays a role in NO transport. However, one of the two human homologs of nitrobindin contains a THAP domain, implying a possible role in apoptosis. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
We have used density functional methods to calculate fully relaxed potential energy curves of the seven lowest electronic states during the binding of O(2) to a realistic model of ferrous deoxyheme. Beyond a Fe-O distance of approximately 2.5 A, we find a broad crossing region with five electronic states within 15 kJ/mol. The almost parallel surfaces strongly facilitate spin inversion, which is necessary in the reaction of O(2) with heme (deoxyheme is a quintet and O(2) a triplet, whereas oxyheme is a singlet). Thus, despite a small spin-orbit coupling in heme, the transition probability approaches unity. Using reasonable parameters, we estimate a transition probability of 0.06-1, which is at least 15 times larger than for the nonbiological Fe-O(+) system. Spin crossing is anticipated between the singlet ground state of bound oxyheme, the triplet and septet dissociation states, and a quintet intermediate state. The fact that the quintet state is close in energy to the dissociation couple is of biological importance, because it explains how both spin states of O(2) may bind to heme, thereby increasing the overall efficiency of oxygen binding. The activation barrier is estimated to be <15 kJ/mol based on our results and M?ssbauer experiments. Our results indicate that both the activation energy and the spin-transition probability are tuned by the porphyrin as well as by the choice of the proximal heme ligand, which is a histidine in the globins. Together, they may accelerate O(2) binding to iron by approximately 10(11) compared with the Fe-O(+) system. A similar near degeneracy between spin states is observed in a ferric deoxyheme model with the histidine ligand hydrogen bonded to a carboxylate group, i.e. a model of heme peroxidases, which bind H(2)O(2) in this oxidation state.  相似文献   

18.
血红素氧合酶HugZ是幽门螺旋杆菌(Helicobacter pylori)利用宿主血红素作为铁源的关键蛋白.HugZ的His245残基侧链咪唑基与血红素中心铁配位结合,是酶活中心的重要组成部分.用定点突变的方法构建HugZ突变体H245A、H249A和H245A/H249A基因,并将突变体蛋白表达纯化.通过X射线晶体学途径解析了突变体H245A与血红素复合物的2.55Å分辨率晶体结构.结构解析表明,HugZ的His249残基侧链咪唑基团与血红素的铁原子结合,从而补偿了His245侧链缺失.这种结构特征在已知血红素氧合酶中未曾发现.Val238 ψ平面的可翻转和Gly239的柔性是His249能与血红素配位结合的关键原因,二者的共同作用改变了C端肽链的走向,使Val238与His249之间的柔性回折与α1螺旋的相互作用发生解离,并向远离血红素的方向伸展.HugZ蛋白与血红素结合的光谱实验证明HugZ柔性C端上的组氨酸残基有利于HugZ与血红素的结合.研究结果表明,含多个组氨酸残基柔性C端的存在有利于血红素氧合酶HugZ结合和分解血红素.  相似文献   

19.
In addition to its catalytic roles, the nitric oxide synthase (NOS) cofactor tetrahydrobiopterin (H4B) is required for substrate binding and for stabilization of the dimeric structure. We expressed and purified the core of the iNOS oxygenase domain consisting of residues 75-500 (CODiNOS) in the presence (H4B+) and absence (H4B-) of this cofactor. Both forms bound stoichiometric amounts of heme (>0.9 heme per protein subunit). H4B- CODiNOS was unable to bind arginine, gave an unstable ferrous carbonyl adduct, and was a mixture of monomer and dimer. H4B+ CODiNOS bound arginine, gave a stable ferrous carbonyl adduct, and was exclusively dimeric. The H4B cofactor content of this species was only one per dimer yet this was sufficient to form two competent arginine binding sites as determined by optical stoichiometric titrations.  相似文献   

20.
The effects of histidine residue placement in a de novo-designed four-alpha-helix bundle are investigated by placement of histidine residues at coiled coil heptad a positions in two distinct heptads and at each position within a single heptad repeat of our prototype heme protein maquette, [H10H24]2 [[Ac-CGGGELWKL x HEELLKK x FEELLKL x HEERLKK x L-CONH2]2]2 composed of a generic (alpha-SS-alpha)2 peptide architecture. The heme to peptide stoichiometry of variants of [H10H24]2 with either or both histidines on each helix replaced with noncoordinating alanine residues ([H10A24]2, [A10H24]2, and [A10A24]2) demonstrates the obligate requirement of histidine for biologically significant heme affinity. Variants of [A10A24]2, [[Ac-CGGGELWKL x AEELLKK x FEELLKL x AEERLKK x L-CONH2]2]2, containing a single histidine per helix in positions 9 to 15 were evaluated to verify the design based on molecular modeling. The bis-histidine site formed between heptad positions a at 10 and 10' bound ferric hemes with the highest affinity, Kd1 and Kd2 values of 1.5 and 800 nM, respectively. Placement of histidine at position 11 (heptad position b) resulted in a protein that bound a single heme with moderate affinity, Kd1 of 9.5 microM, whereas the other peptides had no measurable apparent affinity for ferric heme with Kd1 values >200 microM. The bis-histidine ligation of heme to [H10A24]2 and [H11A24]2 was confirmed by electron paramagnetic resonance spectroscopy. The protein design rules derived from this study, together with the narrow tolerances revealed, are applicable for improving future heme protein designs, for analyzing the results of randomized heme protein combinatorial libraries, as well as for implementation in automated protein design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号