首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ants use their venom for predation, defense, and communication. The venom of these insects is rich in peptides and proteins, and compared with other animal venoms, ant venoms remain poorly explored. The objective of this study was to evaluate the protein content of the venom in the Ponerinae ant Pachycondyla striata. Venom samples were collected by manual gland reservoir dissection, and samples were submitted to two‐dimensional gel electrophoresis and separation by ion‐exchange and reverse‐phase high‐performance liquid chromatography followed by mass spectrometry using tanden matrix‐assisted laser desorption/ionization with time‐of‐flight (MALDI‐TOF/TOF) mass spectrometry and electrospray ionization‐quadrupole with time‐of‐flight (ESI‐Q/TOF) mass spectrometry for obtaining amino acid sequence. Spectra obtained were searched against the NCBInr and SwissProt database. Additional analysis was performed using PEAKS Studio 7.0 (Sequencing de novo). The venom of P. striata has a complex mixture of proteins from which 43 were identified. Within the identified proteins are classical venom proteins (phospholipase A, hyaluronidase, and aminopeptidase N), allergenic proteins (different venom allergens), and bioactive peptides (U10‐ctenitoxin Pn1a). Venom allergens are among the most expressed proteins, suggesting that P. striata venom has high allergenic potential. This study discusses the possible functions of the proteins identified in the venom of P. striata.  相似文献   

2.
This study illustrates multifunctionality of proteins of honeybee royal jelly (RJ) and how their neofunctionalization result from various PTMs of maternal proteins. Major proteins of RJ, designated as apalbumins belong to a protein family consisting of nine members with Mr of 49–87 kDa and they are accompanied by high number of minority homologs derived from maternal apalbumins. In spite of many data on diversity of apalbumins, the molecular study of their individual minority homologous is still missing. This work is a contribution to functional proteomics of second most abundant protein of RJ apalbumin2 (Mr 52.7 kDa). We have purified a minority protein from RJ; named as apalbumin2a, differ from apalbumin2 in Mr (48.6 kDa), in N‐terminal amino acids sequences – ENSPRN and in N‐linked glycans. Characterization of apalbumin2a by LC‐MALDI TOF/TOF MS revealed that it is a minority homolog of the major basic royal jelly protein, apalbumin2, carrying two fully occupied N‐glycosylation sites, one with high‐mannose structure, HexNAc2Hex9, and another carrying complex type antennary structures, HexNAc4Hex3 and HexNAc5Hex4. We have found that apalbumin2a inhibit growth of Paenibacillus larvae. The obtained data call attention to functional plasticity of RJ proteins with potential impact on functional proteomics in medicine.  相似文献   

3.
The in vivo perfusion of rodent models of disease with biotin derivatives and the subsequent comparative proteomic analysis of healthy and diseased tissues represent a promising methodology for the identification of vascular accessible biomarkers. A novel, triply charged biotinylation reagent, NHS‐β‐Ala‐(L ‐Asp)3‐biotin, was synthesized and validated in terms of its applicability for in vivo protein biotinylation. Compared to sulfo‐NHS‐LC‐biotin, NHS‐β‐Ala‐(L ‐Asp)3‐biotin exhibited a reduced membrane permeability and a preferential labeling of proteins localized in compartments readily accessible in vivo from the vasculature.  相似文献   

4.
Aims: Vibrio identification by means of traditional microbiological methods is time consuming because of the many biochemical tests that have to be performed to distinguish closely related species. This work aimed at evaluating the use of MALDI‐TOF mass spectrometry for the rapid identification of Vibrio (V.) spp. as an advantageous application to rapidly discriminate the most important Vibrio spp. and distinguish Vibrio spp. from closely related bacterial species like Photobacterium damselae and Grimontia hollisae and other aquatic bacteria like Aeromonas spp. Methods and Results: Starting from sub‐colony amounts of pure cultures grown on agar plates, a very simple sample preparation procedure was established and combined with a rapid and automated measurement protocol that allowed species identification within minutes. Closely related species like Vibrio alginolyticus and Vibrio parahaemolyticus or Vibrio cholerae and Vibrio mimicus could thus be differentiated by defining signatures of species‐identifying biomarker ions (SIBIs). As a reference method for species designation and for determination of relationships between strains with molecular markers, partial rpoB gene sequencing was applied. Conclusions: The MALDI‐TOF MS‐based method as well as the rpoB sequence‐based approach for Vibrio identification described in this study produced comparable classification results. The construction of phylogenetic trees from MALDI‐TOF MS and rpoB sequences revealed a very good congruence of both methods. Significance and Impact of the Study: Our results suggest that whole‐cell MALDI‐TOF MS‐based proteometric characterization represents a powerful tool for rapid and accurate classification and identification of Vibrio spp. and related species.  相似文献   

5.
We present here the results from MS peptide profiling experiments of prostate carcinoma patients and controls with a specific focus on protease activity‐related protein fragments. After purification with surface‐active magnetic beads, MALDI‐TOF profiling experiments were performed on tryptic digests of serum samples of prostate cancer patients with metastases (n=27) and controls (n=30). This resulted in the reproducible detection of eight differentially expressed peptides, which were then identified by nanoLC‐MALDI‐TOF/TOF and confirmed by MALDI‐FTMS exact mass measurements. All differentially expressed peptides are derived from two homologous parts of human serum albumin; two of the eight peptides were tryptic and six were nontryptic. The presence of the nontryptic fragments indicates that a proteolysis process occurs which is not mediated by trypsin. Since the nontryptic fragments were found at significantly higher levels in control samples compared with metastases samples, it is proposed that a specific proteolytic inhibition process is in effect in the serum of prostate cancer patients. Experiments using synthetic peptides showed that this proteolytic activity occurs ex vivo and is sequence specific. Importantly, the observed prostate carcinoma‐related inhibition of the proteolysis was reproduced ex vivo using synthetic peptides.  相似文献   

6.
Members of the genus Cronobacter are opportunistic pathogens for neonates and are often associated with contaminated milk powder formulas. At present little is known about the virulence mechanisms or the natural reservoir of these organisms. The proteome of Cronobacter turicensis 3032, which has recently caused two deaths, was mapped aiming at a better understanding of physiology and putative pathogenic traits of this clinical isolate. Our analyses of extracellular, surface‐associated and whole‐cell proteins by two complementary proteomics approaches, 1D‐SDS‐PAGE combined with LC‐ESI‐MS/MS and 2D‐LC‐MALDI‐TOF/TOF MS, lead to the identification of 832 proteins corresponding to a remarkable 19% of the theoretically expressed protein complement of C. turicensis. The majority of the identified proteins are involved in central metabolic pathways, translation, protein folding and stability. Several putative virulence factors, whose expressions were confirmed by phenotypic assays, could be identified: a macrophage infectivity potentiator involved in C. turicensis persistence in host cells, a superoxide dismutase protecting the pathogen against reactive oxygen species and an enterobactin‐receptor protein for the uptake of siderophore‐bound iron. Most interestingly, a chitinase and a metalloprotease that might act against insects and fungi but no casein hydrolysing enzymes were found, suggesting that there is an environmental natural habitat of C. turicensis 3032.  相似文献   

7.
Flea identification is a significant issue because some species are considered as important vectors of several human pathogens that have emerged or re‐emerged recently, such as Bartonella henselae (Rhizobiales: Bartonellaceae) and Rickettsia felis (Rickettsiales: Rickettsiaceae). Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) has been evaluated in recent years for the identification of multicellular organisms, including arthropods. A preliminary study corroborated the usefulness of this technique for the rapid identification of fleas, creating a preliminary database containing the spectra of five species of flea. However, longterm flea preservation in ethanol did not appear to be an adequate method of storage in the context of specimen identification by MALDI‐TOF MS profiling. The goal of the present work was to assess the performance of MALDI‐TOF MS in the identification of seven flea species [Ctenocephalides felis (Siphonaptera: Pulicidae), Ctenocephalides canis, Pulex irritans (Siphonaptera: Pulicidae), Archaeopsylla erinacei (Siphonaptera: Pulicidae), Leptopsylla taschenbergi (Siphonaptera: Ceratophyllidae), Stenoponia tripectinata (Siphonaptera: Stenoponiidae) and Nosopsyllus fasciatus (Siphonaptera: Ceratophyllidae)] collected in the field and stored in ethanol for different periods of time. The results confirmed that MALDI‐TOF MS can be used for the identification of wild fleas stored in ethanol. Furthermore, this technique was able to discriminate not only different flea genera, but also the two congeneric species C. felis and C. canis.  相似文献   

8.
Aims: To propose a universal workflow of sample preparation method for the identification of highly pathogenic bacteria by MALDI‐TOF MS. Methods and Results: Fifteen bacterial species, including highly virulent Gram‐positive (Bacillus anthracis and Clostridium botulinum) and Gram‐negative bacteria (Brucella melitensis, Burkholderia mallei, Francisella tularensis, Shigella dysenteriae, Vibrio cholerae, Yersinia pestis and Legionella pneumophila), were employed in the comparative study of four sample preparation methods compatible with MALDI‐TOF MS. The yield of bacterial proteins was determined by spectrophotometry, and the quality of the mass spectra, recorded in linear mode in the range of 2000–20 000 Da, was evaluated with respect to the information content (number of signals) and quality (S/N ratio). Conclusions: Based on the values of protein concentration and spectral quality, the method using combination of ethanol treatment followed by extraction with formic acid and acetonitrile was the most efficient sample preparation method for the identification of highly pathogenic bacteria using MALDI‐TOF MS. Significance and Impact of the Study: The method using ethanol/formic acid generally shows the highest extraction efficacy and the spectral quality with no detrimental effect caused by storage. Thus, this can be considered as a universal sample preparation method for the identification of highly virulent micro‐organisms by MALDI‐TOF mass spectrometry.  相似文献   

9.
Calanoid copepods play an important role in the pelagic ecosystem making them subject to various taxonomic and ecological studies, as well as indicators for detecting changes in the marine habitat. For all these investigations, valid identification, mainly of sibling and cryptic species as well as early life history stages, represents a central issue. In this study, we compare species identification methods for pelagic calanoid copepod species from the North Sea and adjacent regions in a total of 333 specimens. Morphologically identified specimens were analysed on the basis of nucleotide sequences (i.e. partial mitochondrial cytochrome c oxidase subunit I (COI) and complete 18S rDNA) and on proteome fingerprints using the technology of matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). On all three molecular approaches, all specimens were classified to species level indicated by low intraspecific and high interspecific variability. Sequence divergences in both markers revealed a second Pseudocalanus species for the southern North Sea identified as Pseudocalanus moultoni by COI sequence comparisons to GenBank. Proteome fingerprints were valid for species clusters irrespective of high intraspecific variability, including significant differences between early developmental stages and adults. There was no effect of sampling region or time; thus, trophic effect, when analysing the whole organisms, was observed in species‐specific protein mass spectra, underlining the power of this tool in the application on metazoan species identification. Because of less sample preparation steps, we recommend proteomic fingerprinting using the MALDI‐TOF MS as an alternative or supplementary approach for rapid, cost‐effective species identification.  相似文献   

10.
Maslinic acid (MA) is a pentacyclic triterpene used as a feed additive to stimulate growth, protein‐turnover rates, and hyperplasia in fish. To further our understanding of cellular mechanisms underlying the action of MA, we have used 2‐DE coupled with MS to identify proteins differentially expressed in the livers of juvenile gilthead sea bream (Sparus aurata) grown under fish‐farm conditions and fed with a 100 mg/kg MA‐enriched diet (MA100). After the comparison of the protein profiles from MA100 fed fish and from control, 49 protein spots were found to be altered in abundance (≥2‐fold). Analysis by MALDI‐TOF/TOF allowed the unambiguous identification of 29 spots, corresponding to 19 different proteins. These proteins were: phosphoglucomutase, phosphoglucose isomerase, S‐adenosyl methionine‐dependent methyltransferase class I, aldehyde dehydrogenase, catalase, 6‐phosphogluconate dehydrogenase, fumarylacetoacetate hydrolase, 4‐hydroxyphenylpyruvic dioxygenase, methylmalonate‐semialdehyde dehydrogenase, lysozyme, urate oxidase, elongation factor 2, 60 kDa heat‐shock protein, 58 kDa glucose‐regulated protein, cytokeratin E7, type‐II keratin, intermediate filament proteins, 17‐β‐hydroxysteroid dehydrogenase type 4, and kinase suppressor of Ras1. Western blot analysis of kinase suppressor of Ras1, glucose 6‐phosphate dehydrogenase, elongation factor 2, 60 kDa heat‐shock protein, and catalase supported the proteome evidence. Based on the changes found in the protein‐expression levels of these proteins, we proposed a cellular‐signalling pathway to explain the hepatic‐cell response to the intake of a diet containing MA.  相似文献   

11.
Rapid, cost‐effective, efficient, and reliable helminth species identification is of considerable importance to understand host–parasite interactions, clinical disease, and drug resistance. Cyathostomins (Nematoda: Strongylidae) are considered to be the most important equine parasites, yet research on this group is hampered by the large number of 50 morphologically differentiated species, their occurrence in mixed infections with often more than 10 species and the difficulties associated with conventional identification methods. Here, MALDI‐TOF MS, previously successfully applied to identify numerous organisms, is evaluated and compared with conventional and molecular genetic approaches. A simple and robust protocol for protein extraction and subsequent DNA isolation allowing molecular confirmation of proteomic findings is developed, showing that MALDI‐TOF MS can discriminate adult stages of the two closely related cyathostomin species Cylicostephanus longibursatus and Cylicostephanus minutus. Intraspecific variability of proteomic profiles within morphospecies demonstrated an identification of morphospecies with an accuracy of close to 100%. In contrast, three genospecies within C. minutus and sex‐specific profiles within both morphospecies could not be reliably discriminated using MALDI‐TOF MS. In conclusion, MALDI‐TOF MS complemented by the molecular protocol is a reliable and efficient approach for cyathostomin species identification.  相似文献   

12.
13.
Sandflies (Diptera: Psychodidae) (Newstead, 1911) are blood‐feeding insects that transmit human pathogens including Leishmania (Trypanosomatida: Trypanosomatidae) parasites, causative agents of the leishmaniases. To elucidate Leishmania transmission cycles, conclusive identification of vector species is essential. Molecular approaches including matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) protein profiling have recently emerged to complement morphological identification. The aim of this study was to evaluate the effect of the trap type used to collect sandflies, specifically Centers for Disease Control (CDC) light or sticky traps, the two most commonly used in sandfly surveys, on subsequent MALDI‐TOF MS protein profiling. Specimens of five species (Phlebotomus ariasi, Phlebotomus papatasi, Phlebotomus perniciosus, Phlebotomus sergenti, Sergentomyia minuta) collected in periurban and agricultural habitats in southeast Spain were subjected to protein profiling. Acquired protein spectra were queried against an in‐house reference database and their quality assessed to evaluate the trap type effect. The results indicate that trap choice can substantially affect the quality of protein spectra in collected sandflies. Whereas specimens retrieved from light traps produced intense and reproducible spectra that allowed reliable species determination, profiles of specimens from sticky traps were compromised and often did not enable correct identification. Sticky traps should therefore not be used in surveys that deploy MALDI‐TOF MS protein profiling for species identification.  相似文献   

14.
15.
The von Hippel‐Lindau (VHL) tumour suppressor gene plays a central role in development of clear cell renal cell carcinoma (RCC). Using a cell line pair generated from the VHL‐defective RCC cell line UMRC2 by transfection with vector control or VHL (?/+VHL) and stable isotope labelling with amino acids in cell culture (SILAC) followed by enrichment of plasma membrane proteins by cell surface biotinylation/avidin‐affinity chromatography and analysis by GeLC‐MS/MS, VHL‐associated changes in plasma membrane proteins were analysed. Comparative analysis of ‐/+VHL cells identified 19 differentially expressed proteins which were confirmed by reciprocal SILAC labelling. These included several proteins previously reported to be VHL targets, such as transferrin receptor 1 and the α3 and β1 integrin subunits and novel findings including upregulation of CD166 and CD147 in VHL‐defective cells. Western blotting confirmed these changes and also revealed VHL‐dependent alterations in protein form for CD147 and CD166, which in the case of CD166 was shown to be due to differential glycosylation. Analysis of patient‐matched normal and malignant renal tissues confirmed these differences were also present in vivo in a subset of clear cell RCCs. These results illustrate the potential of this approach for identifying VHL‐dependent proteins that may be important in tumorigenesis.  相似文献   

16.
In this study, lethal concentration (LC50) values of chlorpyrifos‐methyl (CPM) were determined for two Korean strains (CBNU and KNU) of Sitophilus zeamais. The two strains had similar susceptibilities (1.70 and 1.86 μg a.i./cm2, respectively) to CPM. Carboxylesterase (CE) activity was twice as high in the CBNU strain as in the KNU strain. Lower acetylcholinesterase (AChE) activity was also noted in the latter; however, the activity of glutathione S‐transferase (GST) was twice as high as in the CBNU strain. Gel electrophoresis of CE of crude extracts from adults of the two strains of S. zeamais showed clearly different band patterns, with molecular weights of 60 kDa and 71 kDa in the CBNU and KNU strains, respectively. MALDI‐TOF MS/MS was used to profile small proteins (less than 10 kDa), with results indicating that 206 proteins are expressed differently in the two strains. The peak of interest of 2247.7 m/z was applied to TOF‐TOF MS and its de novo peptide sequence was identified as a tyrosine phosphatase fragment. Phospholipids from the two strains were analyzed and 34 phospholipids were found to be significantly different between strains. Results suggest that the two strains collected from Korea showed different biochemical results, presumably differences in insecticide selection by different living locations.  相似文献   

17.
Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity / virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI‐TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host‐derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity / virulence factors homologs that were further subjected to sequence‐ and structure‐based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity / virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies.  相似文献   

18.
19.
Grapes are commercially grown worldwide for fresh fruit and wine. They are mainly classified into bunch and muscadine grapes. These species differ in their sugar content and composition, photosynthetic efficiency and tolerance to abiotic and biotic stresses. Grape berry relies on carbohydrates produced during photosynthesis to support its development and composition. In view of the unique physiology and genetic make‐up of muscadine grape, a proteomics study was performed to increase our knowledge of Vitis leaf proteome in order to improve enological and disease tolerance characteristics of grape species. A high throughput two‐dimensional gel electrophoresis (2‐DE) was conducted on muscadine, bunch and hybrid bunch leaf proteins. The differentially expressed proteins were excised from 2‐DE gels, subjected to in‐gel trypsin digestion, and analysed in MALDI/TOF mass spectrometer. The mass spectra were collected and protein identification was performed by searching against Viridiplantae database using Matrix Science algorithm. Proteins were mapped to universal protein resource to study gene ontology. We have discovered >255 proteins with pIs between 3.5 and 8.0 and molecular weight between 12 and 100 kDa among the Vitis species. Comparative analysis of leaf proteome showed that 54 polypeptides varied qualitatively and quantitatively among the three Vitis species studied. Of these, seven proteins were unique to muscadine, two proteins were present in both muscadine and bunch, while 28 proteins were common to all the three species. Bioinformatic analysis of these proteins showed that they are involved in signal transduction pathway, transport of metabolites, energy metabolism, protein trafficking, photosynthesis and defence. We have also identified proteins unique to muscadine grape that are involved in defence and stress tolerance. In addition, photosynthesis‐related proteins were found to be more abundant in Vitis vinifera grape compared to other Vitis species.  相似文献   

20.
N‐glycosylation is critical for recombinant glycoprotein production as it influences the heterogeneity of products and affects their biological function. In most eukaryotes, the oligosaccharyltransferase is the central‐protein complex facilitating the N‐glycosylation of proteins in the lumen of the endoplasmic reticulum (ER). Not all potential N‐glycosylation sites are recognized in vivo and the site occupancy can vary in different expression systems, resulting in underglycosylation of recombinant glycoproteins. To overcome this limitation in plants, we expressed LmSTT3D, a single‐subunit oligosaccharyltransferase from the protozoan Leishmania major transiently in Nicotiana benthamiana, a well‐established production platform for recombinant proteins. A fluorescent protein‐tagged LmSTT3D variant was predominately found in the ER and co‐located with plant oligosaccharyltransferase subunits. Co‐expression of LmSTT3D with immunoglobulins and other recombinant human glycoproteins resulted in a substantially increased N‐glycosylation site occupancy on all N‐glycosylation sites except those that were already more than 90% occupied. Our results show that the heterologous expression of LmSTT3D is a versatile tool to increase N‐glycosylation efficiency in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号