首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Non‐heading Chinese cabbage (Brassica campestris L. ssp. chinensis Makino), an important vegetable crop in China, exhibits a typical sporophytic self‐incompatibility (SI) system. To better understand the mechanism of SI response and identify potential candidate proteins involved in the SI system of this vegetable crop, the proteomic approach was taken to identify differential accumulating pistil proteins. Pistils were collected at 0 h and 2 h after self‐pollination at anthesis in self‐incompatible and compatible lines of non‐heading Chinese cabbage, and total proteins were extracted and separated by two‐dimensional gel electrophoresis (2‐DE). A total of 25 protein spots that displayed differential abundance were identified by matrix‐assisted laser desorption/ionisation‐time of flight mass spectrometry (MALDI–TOF/TOF MS) and peptide mass fingerprinting (PMF). Among them, 22 protein spots were confidently established. The mRNA levels of the corresponding genes were detected by quantitative RT‐PCR. The 22 identified protein spots are involved in energy metabolism (four), protein biosynthesis (three), photosynthesis (six), stress response and defence (five), and protein degradation (four). Among these potential candidate proteins, UDP‐sugar pyrophosphorylase could be involved in sucrose degradation to influence pollen germination and growth. Glutathione S–transferases could be involved in pollen maturation, and affect pollen fertility. Senescence‐associated cysteine protease, which is related to programmed cell death, could be mainly related to self pollen recognition of non‐heading Chinese cabbage. The study will contribute to further investigations of molecular mechanism of sporophytic SI in Brassicaceae.  相似文献   

3.
Carissa spinarum is one of the secondary advantage plants grown in dry‐hot valleys in China, which can survive under stress conditions of high temperature and extreme low humidity. Here, we studied the physiological and proteomic changes of C. spinarum in response to 42°C heat stress treatment in combination with drought stress. Dynamic changes in the leaf proteome were analyzed at four time points during the stress treatment and recovery stages. Approximately, 650 protein spots were reproducibly detected in each gel. Forty‐nine spots changed their expression levels upon heat and drought treatment, and 30 proteins were identified by MS and 2‐D Western blot. These proteins were classified into several categories including HSP, photosynthesis‐related protein, RNA‐processing protein and proteins involved in metabolism and energy production. The potential roles of these stress‐responsive proteins are discussed.  相似文献   

4.
5.
Aging is a time‐dependent complex biological phenomenon observed in various organs and organelles of all living organisms. To understand the molecular mechanism of age‐associated functional loss in aging kidneys, we have analyzed the expression of proteins in the kidneys of young (19–22 wk) and old (24 months) C57/BL6 male mice using 2‐DE followed by LC‐MS/MS. We found that expression levels of 49 proteins were upregulated (p ≤ 0.05), while that of only ten proteins were downregulated (p ≤ 0.05) due to aging. The proteins identified belong to three broad functional categories: (i) metabolism (e.g., aldehyde dehydrogenase family, ATP synthase β‐subunit, malate dehydrogenase, NADH dehydrogenase (ubiquinone), hydroxy acid oxidase 2), (ii) transport (e.g., transferrin), and (iii) chaperone/stress response (e.g., Ig‐binding protein, low density lipoprotein receptor‐related protein associated protein 1, selenium‐binding proteins (SBPs)). Some proteins with unknown functions were also identified as being differentially expressed. ATP synthase β subunit, transferrin, fumarate hydratase, SBPs, and albumin are present in multiple forms, possibly arising due to proteolysis or PTMs. The above functional categories suggest specific mechanisms and pathways for age‐related kidney degeneration.  相似文献   

6.
7.
Protein expression patterns were compared in a Japan and Taiwan population of Haliotis diversicolor and in a hybrid between them using 2DE and MALDI‐TOF‐TOF analyses. Using the software PDQuest, 924 ± 7 protein spots were detected in the Japan population (RR), 861 ± 11 in the Taiwan population (TT), and 882 ± 9 in the F1 hybrid (TR). RR and TR were clustered together, but the distance between RR and TT was the maximum using hierarchical cluster analysis. A total of 46 gel spots were identified and a total of 15 spots matched with abalone proteins (a 33.6% identification rate). Hybrid exhibiting additivity or overdominance accounted for 73.9% of these 46 identified proteins. The 46 differentially expressed proteins were shown to be involved in major biological processes, including muscle contraction and regulation, energy metabolism, and stress response. The proteins involved in energy metabolism included adenosine triphosphate (ATP) synthase β subunit, fructose 1, 6‐bisphosphate aldolase, triosephosphate isomerase, enolase, arginine kinase, and tauropine dehydrogenase. These proteins exhibited additivity in their offspring. The proteins involved in stress responses included HSP Hsp70 (exhibiting overdominance in the offspring) and Cu/Zn‐superoxide dismutase (exhibiting additivity). These results suggested that proteomic approach is suitable for analysis of heterosis and functional prediction of abalone hybridization.  相似文献   

8.
Ana Cañuelo  Juan Peragón 《Proteomics》2013,13(20):3064-3075
Tyrosol (TYR, 2‐(4‐hydroxyphenyl)ethanol), one of the main phenols in olive oil and olive fruit, significantly strengthens resistance to thermal and oxidative stress in the nematode Caenorhabditis elegans and extends its lifespan. To elucidate the cellular functions regulated by TYR, we have used a proteomic procedure based on 2DE coupled with MS with the aim to identify the proteins differentially expressed in nematodes grown in a medium containing 250 μM TYR. After the comparison of the protein profiles from 250 μM TYR and from control, 28 protein spots were found to be altered in abundance (≥twofold). Analysis by MALDI‐TOF/TOF and PMF allowed the unambiguous identification of 17 spots, corresponding to 13 different proteins. These proteins were as follows: vitellogenin‐5, vitellogenin‐2, bifunctional glyoxylate cycle protein, acyl CoA dehydrogenase‐3, alcohol dehydrogenase 1, adenosylhomocysteinase, elongation factor 2, GTP‐binding nuclear protein ran‐1, HSP‐4, protein ENPL‐1 isoform b, vacuolar H ATPase 12, vacuolar H ATPase 13, GST 4. Western‐blot analysis of yolk protein 170, ras‐related nuclear protein, elongation factor 2, and vacuolar H ATPase H subunit supported the proteome evidence.  相似文献   

9.
Protein pattern changes in tomato under in vitro salt stress   总被引:2,自引:0,他引:2  
The investigation of salt-induced changes in the proteome would highlight important genes because of a high resolution of protein separation by two-dimensional gel electrophoresis (2-DE) and protein identification by mass spectrometry and database search. Tomato (Lycopersicon esculentum Mill.) is a model plant for studying the mechanisms of plant salt tolerance. Seeds of tomato cv. Shirazy were germinated on water-agar medium. After germination, seedlings were transferred to Murashige and Skoog nutrient medium supplemented with 0, 40, 80, 120, and 160 mM NaCl. After 24 days, leaf and root samples were collected for protein extraction and shoot dry weight measurement. Alterations induced in leaf and root proteins under salt stress treatments were studied by one-dimensional SDS-PAGE. Leaf proteins were also analyzed by 2-DE. With increasing salt concentration in the medium, shoot dry weight decreased. SDS-PAGE showed induction of at least five proteins with mol wts of 30, 62, and 75 kD in roots and 38 and 46 kD in leaves. On the 2-DE gel, more than 400 protein spots were reproducibly detected. At least 18 spots showed significant changes under salt stress. Three of them corresponded to new proteins, while six proteins were up-regulated and five proteins were down-regulated by salt stress. In addition, salinity inhibited the synthesis of four leaf proteins. Ten spots were analyzed by matrix-assistant laser desorption/ionization-time of flight (MALDI-TOF), which led to the identification of some proteins, which could play a physiological role under salt stress. The expression of new proteins(enoyl-CoA hydratase, EGF receptor-like protein, salt tolerance protein, phosphoglycerate mutase-like protein, and M2D3.3 protein) under salt stress indicates that tomato leaf cells respond to salt stress by changes in different physiological processes. All identified proteins are somehow related to various salt stress responses, such as cell proliferation. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 526–533. The text was submitted by the authors in English.  相似文献   

10.
Maslinic acid (MA) is a pentacyclic triterpene used as a feed additive to stimulate growth, protein‐turnover rates, and hyperplasia in fish. To further our understanding of cellular mechanisms underlying the action of MA, we have used 2‐DE coupled with MS to identify proteins differentially expressed in the livers of juvenile gilthead sea bream (Sparus aurata) grown under fish‐farm conditions and fed with a 100 mg/kg MA‐enriched diet (MA100). After the comparison of the protein profiles from MA100 fed fish and from control, 49 protein spots were found to be altered in abundance (≥2‐fold). Analysis by MALDI‐TOF/TOF allowed the unambiguous identification of 29 spots, corresponding to 19 different proteins. These proteins were: phosphoglucomutase, phosphoglucose isomerase, S‐adenosyl methionine‐dependent methyltransferase class I, aldehyde dehydrogenase, catalase, 6‐phosphogluconate dehydrogenase, fumarylacetoacetate hydrolase, 4‐hydroxyphenylpyruvic dioxygenase, methylmalonate‐semialdehyde dehydrogenase, lysozyme, urate oxidase, elongation factor 2, 60 kDa heat‐shock protein, 58 kDa glucose‐regulated protein, cytokeratin E7, type‐II keratin, intermediate filament proteins, 17‐β‐hydroxysteroid dehydrogenase type 4, and kinase suppressor of Ras1. Western blot analysis of kinase suppressor of Ras1, glucose 6‐phosphate dehydrogenase, elongation factor 2, 60 kDa heat‐shock protein, and catalase supported the proteome evidence. Based on the changes found in the protein‐expression levels of these proteins, we proposed a cellular‐signalling pathway to explain the hepatic‐cell response to the intake of a diet containing MA.  相似文献   

11.
In Central and Southern Italy, where durum wheat represents one of the most widely cultivated crops, grain filling occurs during Spring, a period characterized by sudden increases in temperature. Wheat grain proteins are classified into albumins, globulins, and prolamins. The nonprolamin fractions include proteins with metabolic activity or structural function. In order to investigate the consequences of heat stress on the accumulation of nonprolamin proteins in mature durum wheat kernels, the Italian cultivar Svevo was subjected to two thermal regimes (heat stress versus control). The 2‐D patterns of nonprolamin proteins were monitored to identify polypeptides affected by heat stress during grain fill. This study shows that heat stress alters significantly the durum wheat seed proteome, although the changes range is only between 1.2‐ and 2.2‐fold. This analysis revealed 132 differentially expressed polypeptides, 47 of which were identified by MALDI‐TOF and MALDI‐TOF‐TOF MS and included HSPs, proteins involved in the glycolysis and carbohydrate metabolism, as well as stress‐related proteins. Many of the heat‐induced polypeptides are considered to be allergenic for sensitive individuals.  相似文献   

12.
To understand the olfactory mechanisms of Holotrichia parallela antennae in detecting volatile compounds in the environment, protein profiles of H. parallela antennae were analyzed using two‐dimensional electrophoresis followed by mass spectrometry and bioinformatics analyses. Approximately 1,100 protein spots in silver staining gel were detected. Quantitative image analysis revealed that in total 47 protein spots showed significant changes in different genders of adult antennae. Thirty‐five differentially expressed proteins were identified by Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI‐TOF/TOF) tandem mass spectrometer, among which 65.7% are involved in carbohydrate and energy metabolism, antioxidant system, transport, and amino acid/nucleotide metabolism. Some proteins identified here have not been reported previously in insect antennae. Identified male‐biased proteins included odorant‐binding protein 4, pheromone‐binding protein‐related protein 2, odorant‐binding protein 14, prophenoloxidase‐I, acyl‐CoA dehydrogenase, aldo‐keto reductase‐like, carbamoyl phosphate synthetase, etc. whereas some proteins are female biased, such as antennae‐rich cytochrome P450, aldehyde dehydrogenase, and putative glutamine synthetase. Alterations in the levels of some proteins were further confirmed by real time polymerase chain reaction (RT‐PCR). The proteomic resources displayed here are valuable for the discovery of proteins from H. parallela antennae.  相似文献   

13.
Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2‐DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI‐TOF‐MS and LC‐ESI‐MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour.  相似文献   

14.
Sengupta D  Kannan M  Reddy AR 《Planta》2011,233(6):1111-1127
To understand the complex drought response mechanism in crop plants, a systematic root proteomics approach was adopted to identify and analyze the expression patterns of differentially expressed major root proteins of Vigna radiata during short-term (3 days) and consecutive long-term water-deficit (6 days) as well as during recovery (6 days after re-watering). Photosynthetic gas exchange parameters of the plant were measured simultaneously during the stress treatment and recovery period. A total of 26 major protein spots were successfully identified by mass spectrometry, which were grouped according to their expression pattern during short-term stress as significantly up-regulated (9), down-regulated (10), highly down-regulated, beyond detection level of the software (2) and unchanged (5). The subsequent changes in the expression patterns of these proteins during long-term stress treatment and recovery period was analyzed to focus on the dynamic regulation of these functionally important proteins during progressive drought and recovery period. Cytoskeleton-related proteins were down-regulated initially (3d) but regained their expression levels during subsequent water-deficit (6d) while glycoprotein like lectins, which were primarily known to be involved in legume–rhizobia symbiosis, maintained their enhanced expression levels during both short and long-term drought treatment indicating their possible role in drought stress response of legumes. Oxidative stress-related proteins including Cu/Zn superoxide dismutase, oxidoreductase and aldehyde reductase were also up-regulated. The analyses of the dynamic regulation of these root proteins during short- and long-term water-deficit as well as recovery period may prove crucial for further understanding of drought response mechanisms in food legumes.  相似文献   

15.
We identified an efficient protocol for extracting proteins from whole earthworm, Eisenia fetida, for 2‐DE. Sample preparation is a critical step in a 2‐DE proteome approach and is absolutely essential for obtaining good results. Six protein extraction protocols based on different protein precipitation agents were tested and evaluated using 2‐DE. The methods generated remarkably different 2‐DE protein spot patterns. We conclude that trichloroacetic acid (TCA)‐A eliminates interfering compounds, thus allowing for the efficient resolubilization of proteins. TCA‐A gives good distinction, more bands in 1‐DE gels, and the most number of protein spots in 2‐DE gels. It is also rapid, provides the higher protein yield, and has the less number of steps. To demonstrate the quality of the extracted proteins, we cut several protein spots that were common to four methods from 2‐DE gels, analyzed them using MALDI‐TOF/TOF MS, and tentatively identified them. The classic TCA‐A method proved to be most useful as a standard method of extracting proteins from E. fetida.  相似文献   

16.
Phytoremedlation is a relatively new approach to remove polycyclic aromatic hydrocarbons (PAHs) from the environment. When plants are grown under pyrene treatment, they respond by synthesizing a set of protective proteins. To learn more about protein changes in response to pyrene treatment, we extracted total proteins from the leaves of maize (Zea mays L.) 1 week after pyrene treatment. The proteins extracted were separated with twodimensional gel electrophoresis. In total, approximately 54 protein spots were found by comparing gels from treated and control groups. According to the Isoelectric point, molecular weight, and abundance of these protein spots, 20 pyrene-lnduced proteins were found to have changed abundance. Of these, 15 protein spots were Increased and five protein spots were newly appeared in pyrene-treated plant leaves. Six model upregulated protein spots of different molecular weights were excised from the gels and subjected to trypsin digestion followed by peptide separation using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Peptlde masses were used to search the matrix-science database for protein Identification. Two of the proteins were Identified on the basis of the homology of their peptide profiles with existing protein sequences as pyruvate orthophosphate diklnase and the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunlt. These proteins are Involved in the regulation of carbohydrate and energy metabolism. The present study gives new Insights into the pyrene stress response In maize leaves and demonstrates the power of the proteomlc approach in phytoremedlation of PAHs.  相似文献   

17.
Protein phosphorylation is one of the most studied post‐translational modifications that is involved in different cellular events in Leishmania. In this study, we performed a comparative phosphoproteomics analysis of potassium antimonyl tartrate (SbIII)‐resistant and ‐susceptible lines of Leishmania braziliensis using a 2D‐DIGE approach followed by MS. In order to investigate the differential phosphoprotein abundance associated with the drug‐induced stress response and SbIII‐resistance mechanisms, we compared nontreated and SbIII‐treated samples of each line. Pair wise comparisons revealed a total of 116 spots that showed a statistically significant difference in phosphoprotein abundance, including 11 and 34 spots specifically correlated with drug treatment and resistance, respectively. We identified 48 different proteins distributed into seven biological process categories. The category “protein folding/chaperones and stress response” is mainly implicated in response to SbIII treatment, while the categories “antioxidant/detoxification,” “metabolic process,” “RNA/DNA processing,” and “protein biosynthesis” are modulated in the case of antimony resistance. Multiple sequence alignments were performed to validate the conservation of phosphorylated residues in nine proteins identified here. Western blot assays were carried out to validate the quantitative phosphoproteome analysis. The results revealed differential expression level of three phosphoproteins in the lines analyzed. This novel study allowed us to profile the L. braziliensis phosphoproteome, identifying several potential candidates for biochemical or signaling networks associated with antimony resistance phenotype in this parasite.  相似文献   

18.
Many insects in temperate regions overwinter in diapause. In these insects, one of the metabolic adaptations to cold stress is the synthesis of responsive proteins. Using proteomic analysis, an investigation aimed to a better understanding of the molecular adaptation mechanisms to cold stress was carried out in Ostrinia furnacalis larva. Proteins were extracted from the larval hemolymph collected from both control and overwintering larva. By polyethylene glycol precipitation, approximately 560 protein spots were separated and visualized on two‐dimensional (2D) gels after silver staining. Eighteen protein spots were found to be upregulated in overwinter larval plasma in different patterns. As an initial work, 13 of these proteins were identified using MALDI TOF/TOF MS. The differentially overexpressed proteins include heat shock 70 kDa cognate protein, small heat shock protein (sHSP), putative aliphatic nitrilase, arginine kinase, phosphoglyceromutase, triosephosphateisomerase, and glutathione transferase. Alterations in the levels of these proteins were further confirmed by qPCR. This study is the first analysis of differentially expressed plasma proteins in O. furnacalis diapause larvae under extremely low temperature conditions and gives new insights into the acclimation mechanisms responsive to cold stress. Our results also support the idea that energy metabolism, alanine and proline metabolism, and antioxidative reaction act in the cold acclimation of O. furnacalis diapause larvae.  相似文献   

19.
20.
A previous study showed that the contents of caffeoylquinic acids and iridoids, the major bioactive components in the postharvest Lonicera japonica Thunb., were induced by enhanced ultraviolet (UV)‐A or UV‐B irradiation. To clarify the UV‐responsive key enzymes in the bioactive metabolites biosynthetic pathway and the related plant defense mechanism in L. japonica, 2DE in combination with MALDI‐TOF/TOF MS was employed. Seventy‐five out of 196 differential proteins were positively identified. Based on the functions, these proteins were grouped into nine categories, covering a wide range of molecular processes including the secondary metabolites (caffeoylquinic acids and iridoids) biosynthetic‐related proteins, photosynthesis, carbohydrate and energy metabolism, stress, DNA, transport‐related proteins, lipid metabolism, amino acid metabolism, cell wall. Of note is the increasing expression of 1‐deoxy‐d ‐xylulose 5‐phosphate reductoisomerase and 5‐enol‐pyruvylshikimate‐phosphate synthase, which was crucial to supply more precursor for the secondary metabolites including caffeoylquinic acids and iridoids. Thus, this study provides both the clues at the protein level for the increase of the two bioactive components upon UV irradiation and the profile of UV‐responsive proteins in L. japonica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号