共查询到20条相似文献,搜索用时 15 毫秒
1.
The major function of protein MYST1 is acetylation of histone H4 at the K16 residue. This modification is essential for chromatin remodeling and is used for regulation of gene expression in eukaryotes. MYST1 is a part of multiprotein complexes that accomplish functions of male X-chromosome activation and thereby functions of dosage compensation in drosophila and, in mammals, global acetylation of histone H4 K16. Recently, novel functional links between MYST1 and proteins ATM and p53 have been observed, and it is recognized that MYST1 plays a role in tumor suppression mechanisms. In the present review, we examine novel data about functional composition and mechanisms of MYST1-containing complexes. Interplay between MYST1 and other components of the animal cell interactome is also discussed. 相似文献
2.
3.
Sambit Dalui Anirban Dasgupta Swagata Adhikari Chandrima Das Siddhartha Roy 《The Journal of biological chemistry》2022,298(8)
DNA and core histones are hierarchically packaged into a complex organization called chromatin. The nucleosome assembly protein (NAP) family of histone chaperones is involved in the deposition of histone complexes H2A/H2B and H3/H4 onto DNA and prevents nonspecific aggregation of histones. Testis-specific Y-encoded protein (TSPY)–like protein 5 (TSPYL5) is a member of the TSPY-like protein family, which has been previously reported to interact with ubiquitin-specific protease USP7 and regulate cell proliferation and is thus implicated in various cancers, but its interaction with chromatin has not been investigated. In this study, we characterized the chromatin association of TSPYL5 and found that it preferentially binds histone H3/H4 via its C-terminal NAP-like domain both in vitro and ex vivo. We identified the critical residues involved in the TSPYL5–H3/H4 interaction and further quantified the binding affinity of TSPYL5 toward H3/H4 using biolayer interferometry. We then determined the binding stoichiometry of the TSPYL5–H3/H4 complex in vitro using a chemical cross-linking assay and size-exclusion chromatography coupled with multiangle laser light scattering. Our results indicate that a TSPYL5 dimer binds to either two histone H3/H4 dimers or a single tetramer. We further demonstrated that TSPYL5 has a specific affinity toward longer DNA fragments and that the same histone-binding residues are also critically involved in its DNA binding. Finally, employing histone deposition and supercoiling assays, we confirmed that TSPYL5 is a histone chaperone responsible for histone H3/H4 deposition and nucleosome assembly. We conclude that TSPYL5 is likely a new member of the NAP histone chaperone family. 相似文献
4.
组蛋白修饰及其生物学效应 总被引:3,自引:0,他引:3
组蛋白是染色质的主要成分之一,其氨基端的氨基酸残基可以被共价修饰,进而改变染色质构型,导致转录激活或基因沉默。组蛋白修饰除了简单地调控基因表达,更在于它可以招募蛋白复合体,影响下游蛋白,从而参与细胞分裂、细胞凋亡和记忆形成,甚至影响免疫系统和炎症反应等。不仅如此,最近的研究表明,组蛋白修饰与CTD密码、生物节律、DNA修复之间也存在一定的联系。这些发现证明了组蛋白修饰的重要性。在组蛋白的密码形成与密码破译、修饰级联与招募蛋白质过程中,蛋白复合体的特殊结构域起到的中介作用都是无法替代的。因此,这些特殊结构域将是了解"组蛋白密码"的关键。目前质谱分析等技术的广泛应用,正使得许多新的结构域不断被发现。文章旨在对组蛋白密码的基本内容作一述评,同时对可能的研究热点进行展望。 相似文献
5.
Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin 总被引:5,自引:0,他引:5 下载免费PDF全文
The SAS3-dependent NuA3 histone acetyltransferase complex was originally identified on the basis of its ability to acetylate histone H3 in vitro. Whether NuA3 is capable of acetylating histones in vivo, or how the complex is targeted to the nucleosomes that it modifies, was unknown. To address this question, we asked whether NuA3 is associated with chromatin in vivo and how this association is regulated. With a chromatin pulldown assay, we found that NuA3 interacts with the histone H3 amino-terminal tail, and loss of the H3 tail recapitulates phenotypes associated with loss of SAS3. Moreover, mutation of histone H3 lysine 14, the preferred site of acetylation by NuA3 in vitro, phenocopies a unique sas3Delta phenotype, suggesting that modification of this residue is important for NuA3 function. The interaction of NuA3 with chromatin is dependent on the Set1p and Set2p histone methyltransferases, as well as their substrates, histone H3 lysines 4 and 36, respectively. These results confirm that NuA3 is functioning as a histone acetyltransferase in vivo and that histone H3 methylation provides a mark for the recruitment of NuA3 to nucleosomes. 相似文献
6.
7.
Trang Pham Elizabeth Walden Sylvain Huard John Pezacki Morgan D Fullerton Kristin Baetz 《Genetics》2022,221(4)
Acetyl-CoA Carboxylase 1 catalyzes the conversion of acetyl-CoA to malonyl-CoA, the committed step of de novo fatty acid synthesis. As a master regulator of lipid synthesis, acetyl-CoA carboxylase 1 has been proposed to be a therapeutic target for numerous metabolic diseases. We have shown that acetyl-CoA carboxylase 1 activity is reduced in the absence of the lysine acetyltransferase NuA4 in Saccharomyces cerevisiae. This change in acetyl-CoA carboxylase 1 activity is correlated with a change in localization. In wild-type cells, acetyl-CoA carboxylase 1 is localized throughout the cytoplasm in small punctate and rod-like structures. However, in NuA4 mutants, acetyl-CoA carboxylase 1 localization becomes diffuse. To uncover mechanisms regulating acetyl-CoA carboxylase 1 localization, we performed a microscopy screen to identify other deletion mutants that impact acetyl-CoA carboxylase 1 localization and then measured acetyl-CoA carboxylase 1 activity in these mutants through chemical genetics and biochemical assays. Three phenotypes were identified. Mutants with hyper-active acetyl-CoA carboxylase 1 form 1 or 2 rod-like structures centrally within the cytoplasm, mutants with mid-low acetyl-CoA carboxylase 1 activity displayed diffuse acetyl-CoA carboxylase 1, while the mutants with the lowest acetyl-CoA carboxylase 1 activity (hypomorphs) formed thick rod-like acetyl-CoA carboxylase 1 structures at the periphery of the cell. All the acetyl-CoA carboxylase 1 hypomorphic mutants were implicated in sphingolipid metabolism or very long-chain fatty acid elongation and in common, their deletion causes an accumulation of palmitoyl-CoA. Through exogenous lipid treatments, enzyme inhibitors, and genetics, we determined that increasing palmitoyl-CoA levels inhibits acetyl-CoA carboxylase 1 activity and remodels acetyl-CoA carboxylase 1 localization. Together this study suggests yeast cells have developed a dynamic feed-back mechanism in which downstream products of acetyl-CoA carboxylase 1 can fine-tune the rate of fatty acid synthesis. 相似文献
8.
Yanli Liu Xiajie Yang Mengqi Zhou Yinxue Yang Fangzhou Li Xuemei Yan Mengmeng Zhang Zhengguo Wei Su Qin Jinrong Min 《The Journal of biological chemistry》2022,298(3)
Arabidopsis LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a unique homolog of HP1 in Drosophila, plays important roles in plant development, growth, and architecture. In contrast to specific binding of the HP1 chromodomain to methylated H3K9 histone tails, the chromodomain of LHP1 has been shown to bind to both methylated H3K9 and H3K27 histone tails, and LHP1 carries out its function mainly via its interaction with these two epigenetic marks. However, the molecular mechanism for the recognition of methylated histone H3K9/27 by the LHP1 chromodomain is still unknown. In this study, we characterized the binding ability of LHP1 to histone H3K9 and H3K27 peptides and found that the chromodomain of LHP1 binds to histone H3K9me2/3 and H3K27me2/3 peptides with comparable affinities, although it exhibited no binding or weak binding to unmodified or monomethylated H3K9/K27 peptides. Our crystal structures of the LHP1 chromodomain in peptide-free and peptide-bound forms coupled with mutagenesis studies reveal that the chromodomain of LHP1 bears a slightly different chromodomain architecture and recognizes methylated H3K9 and H3K27 peptides via a hydrophobic clasp, similar to the chromodomains of human Polycomb proteins, which could not be explained only based on primary structure analysis. Our binding and structural studies of the LHP1 chromodomain illuminate a conserved ligand interaction mode between chromodomains of both animals and plants, and shed light on further functional study of the LHP1 protein. 相似文献
9.
Yu-Qiang Shi Xin-Jie Zhuang Bo Xu Juan Hua Shang-Ying Liao Qinghua Shi Howard J. Cooke Chunsheng Han 《Gene》2013
Meiosis is the process by which diploid germ cells produce haploid gametes. A key event is the formation of the synaptonemal complex. In the pachytene stage, the unpaired regions of X and Y chromosomes form a specialized structure, the XY body, within which gene expression is mostly silenced. In the present study, we showed that SYCP3-like X-linked 2 (SLX2, 1700013H16Rik), a novel member of XLR (X-linked Lymphocyte-Regulated) family, was specifically expressed in meiotic germ cells. In the spermatocyte SLX2 was distributed in the nucleus of germ cells at the preleptotene, leptotene and zygotene stages and is then restricted to the XY body at the pachytene stage. This localization change is coincident with that of phosphorylated histone H2AX (γH2AX), a well-known component of the sex body. Through yeast two-hybrid screening and coimmunoprecipitation assays, we demonstrated that SLX2 interacts with synaptonemal complex central element protein 2 (SYCE2), an important component of synaptonemal complex, and histone acetyltransferase TIP60, which has been implicated in remodeling phospho-H2AX-containing nucleosomes at sites of DNA damage. These results suggest that SLX2 might be involved in DNA recombination, synaptonemal complex formation as well as sex body maintenance during meiosis. 相似文献
10.
We analysed the distribution of histone H3 modifications in the nucleus of the vegetative cell (the vegetative nucleus) during pollen development in lily (Lilium longiflorum). Among the modifications specifically and/or abundantly present in the vegetative nucleus, dimethylation of histone H3 at lysine 9 (H3K9me2) and lysine 27 (H3K27me2) were found in heterochromatin, whereas trimethylation of histone H3 at lysine 27 (H3K27me3) was localized in euchromatin in the vegetative nucleus. Such unique localization of the histone H3 methylation marks, particularly of H3K27me3, within a nucleus was not observed in lily nuclei other than the vegetative nucleus. The level of H3K27me3 increased in the euchromatic region of the vegetative nucleus during pollen maturation. The results suggest that H3K27me3 controls the gene expression of the vegetative cell during pollen maturation. 相似文献
11.
Sharra Hammond Stephanie Byrum Sarita Namjoshi Hilary Graves briana Dennehey Alan J. Tackett 《Cell cycle (Georgetown, Tex.)》2014,13(3):440-452
The onset and regulation of mitosis is dependent on phosphorylation of a wide array of proteins. Among the proteins that are phosphorylated during mitosis is histone H3, which is heavily phosphorylated on its N-terminal tail. In addition, large-scale mass spectrometry screens have revealed that histone H3 phosphorylation can occur at multiple sites within its globular domain, yet detailed analyses of the functions of these phosphorylations are lacking. Here, we explore one such histone H3 phosphorylation site, threonine 80 (H3T80), which is located on the nucleosome surface. Phosphorylated H3T80 (H3T80ph) is enriched in metazoan cells undergoing mitosis. Unlike H3S10 and H3S28, H3T80 is not phosphorylated by the Aurora B kinase. Further, mutations of T80 to either glutamic acid, a phosphomimetic, or to alanine, an unmodifiable residue, result in an increase in cells in prophase and an increase in anaphase/telophase bridges, respectively. SILAC-coupled mass spectrometry shows that phosphorylated H3T80 (H3T80ph) preferentially interacts with histones H2A and H4 relative to non-phosphorylated H3T80, and this result is supported by increased binding of H3T80ph to histone octamers in vitro. These findings support a model where H3T80ph, protruding from the nucleosome surface, promotes interactions between adjacent nucleosomes to promote chromatin compaction during mitosis in metazoan cells. 相似文献
12.
13.
Marina L Kozak Alejandro Chavez Weiwei Dang Shelley L Berger Annie Ashok Xiaoge Guo F Brad Johnson 《The EMBO journal》2010,29(1):158-170
Changes in telomere chromatin have been linked to cellular senescence, but the underlying mechanisms and impact on lifespan are unclear. We found that inactivation of the Sas2 histone acetyltransferase delays senescence in Saccharomyces cerevisiae telomerase (tlc1) mutants through a homologous recombination‐dependent mechanism. Sas2 acetylates histone H4 lysine 16 (H4K16), and telomere shortening in tlc1 mutants was accompanied by a selective and Sas2‐dependent increase in subtelomeric H4K16 acetylation. Further, mutation of H4 lysine 16 to arginine, which mimics constitutively deacetylated H4K16, delayed senescence and was epistatic to sas2 deletion, indicating that deacetylated H4K16 mediates the delay caused by sas2 deletion. Sas2 normally prevents the Sir2/3/4 heterochromatin complex from leaving the telomere and spreading to internal euchromatic loci. Senescence was delayed by sir3 deletion, but not sir2 deletion, indicating that senescence delay is mediated by release of Sir3 specifically from the telomere repeats. In contrast, sir4 deletion sped senescence and blocked the delay conferred by sas2 or sir3 deletion. We thus show that manipulation of telomere chromatin modulates senescence caused by telomere shortening. 相似文献
14.
15.
Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5 总被引:1,自引:0,他引:1
Benhamed M Martin-Magniette ML Taconnat L Bitton F Servet C De Clercq R De Meyer B Buysschaert C Rombauts S Villarroel R Aubourg S Beynon J Bhalerao RP Coupland G Gruissem W Menke FL Weisshaar B Renou JP Zhou DX Hilson P 《The Plant journal : for cell and molecular biology》2008,56(3):493-504
16.
Histone modifications not only play important roles in regulating chromatin structure and nuclear processes but also can be passed to daughter cells as epigenetic marks. Accumulating evidence suggests that the key function of histone modifications is to signal for recruitment or activity of downstream effectors. Here, we discuss the latest discovery of histone-modification readers and how the modification language is interpreted. 相似文献
17.
Regulation of chromatin by histone modifications 总被引:3,自引:0,他引:3
18.
During fertilization, two of the most differentiated cells in the mammalian organism, a sperm and oocyte, are combined to form a pluripotent embryo. Dynamic changes in chromatin structure allow the transition of the chromatin on these specialized cells into an embryonic configuration capable of generating every cell type. Initially, this reprogramming activity is supported by oocyte-derived factors accumulated during oogenesis as proteins and mRNAs; however, the underlying molecular mechanisms that govern it remain poorly characterized. Trimethylation of histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic mark that changes dynamically during pre-implantation development in mice, bovine and pig embryos. Here we present data and hypotheses related to the potential mechanisms behind H3K27me3 remodeling during early development. We postulate that the repressive H3K27me3 mark is globally erased from the parental genomes in order to remove the gametic epigenetic program and to establish a pluripotent embryonic epigenome. We discuss information gathered in mice, pigs, and bovine, with the intent of providing a comparative analysis of the reprogramming of this epigenetic mark during early mammalian development. 相似文献
19.
20.
《Epigenetics》2013,8(9):976-981
During fertilization, two of the most differentiated cells in the mammalian organism, a sperm and oocyte, are combined to form a pluripotent embryo. Dynamic changes in chromatin structure allow the transition of the chromatin on these specialized cells into an embryonic configuration capable of generating every cell type. Initially, this reprogramming activity is supported by oocyte-derived factors accumulated during oogenesis as proteins and mRNAs; however, the underlying molecular mechanisms that govern it remain poorly characterized. Trimethylation of histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic mark that changes dynamically during pre-implantation development in mice, bovine and pig embryos. Here we present data and hypotheses related to the potential mechanisms behind H3K27me3 remodeling during early development. We postulate that the repressive H3K27me3 mark is globally erased from the parental genomes in order to remove the gametic epigenetic program and to establish a pluripotent embryonic epigenome. We discuss information gathered in mice, pigs, and bovine, with the intent of providing a comparative analysis of the reprogramming of this epigenetic mark during early mammalian development. 相似文献