首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary We have studied the distribution of calbindin D-28k immunoreactivity in the rat olfactory bulb using specific monoclonal antibodies and the avidin-biotin-immunoperoxidase method. The largest number of positive neurons was located in the periglomerular layer. These neurons were identified as periglomerular cells; they have been described also by other authors as calbindin-positive elements. Close to these neurons, a second population of nerve cells was identified as superficial shortaxon neurons. The remaining layers showed a smaller number of stained elements. Other labeled neurons were located along the external border of the external plexiform layer; the scarce neurons marking its internal border were identified as van Gehuchten cells. No immunoreactive structures were found in the mitral cell layer, although we observed another population of immunostained short-axon cells at its internal border. Some reactive structures, identified by us as horizontal and vertical cells of Cajal, were located in the boundary zone between the internal plexiform layer and the granule layer. In the white matter, we found a neuronal type characterized by its large size and oriented arborization of varicose dendrites.  相似文献   

3.
Summary The ultrastructure of differentiating rat presumptive olfactory bulb in organ culture was investigated with particular reference to mitral cell differentiation and formation of synapses. The presumptive olfactory bulb and olfactory mucosa were dissected en bloc from rat embryos on the fifteenth day of gestation and cultured for 7 days, after which the expiants were examined by electron microscopy. The presumptive olfactory bulb had differentiated into a laminated structure with layers corresponding to the glomerular, external plexiform and mitral cell layers. Mitral-like cells were identified by their location and large cell size. Ultrastructural observations indicated that they were relatively well-differentiated. Their dendrites extended into the glomerular layer in which they were postsynaptic to incoming olfactory axons. The distal part of these dendrites frequently contained coated vesicles. Both asymmetrical and symmetrical synapses were found. The symmetrical synapses involved dendrodendritic contacts between periglomerular cells. Synapses in reciprocal arrangements were not observed in the organ cultures.  相似文献   

4.
5.
Olfactory dysfunction has been implicated in various neurodegenerative diseases including Parkinson's and Alzheimer's disease but, despite intense interest in the neurobiology of the olfactory bulb (OB), studies of neurodegenerative mechanisms have not been attempted in primary OB cultures. This study was aimed at developing a primary OB culture under serum-free conditions in order to investigate injury and excitotoxicity in vitro. Olfactory bulbs from rat pups were rapidly trypsinised and mechanically dissociated and the resultant single cell suspension was centrifuged through a high bovine serum albumin concentration gradient to reduce cellular debris before being seeded in multi-well culture plates. Cells were plated in neurobasal medium containing 0.5 mM glutamine, 25 mM K+, 2% B27 and 10% fetal calf serum (FCS) for 24 h and, after 1 day in vitro (div1), were maintained without FCS. At div8, neurones exhibited extensive neuritic networks, were present as a monolayer and were mainly bipolar and immunopositive for γ-aminobutyric acid indicating that they were intrinsic OB neurones. At div8, neurones (positive for microtubule-associated protein-2, 73%) predominated over astrocytes (positive for glial fibrillary acidic protein, 27%). Cellular injury produced by staurosporine, hydrogen peroxide and kainate, when assessed by morphological and biochemical procedures, was shown to be concentration-dependent and significantly reduced the numbers of neurones and astrocytes. Further analyses of kainate-induced injury revealed the presence of TUNEL-positive cells (indicative of apoptosis) and increases in intracellular free calcium, both of which were antagonised by CNQX. Thus, the serum-free culture developed here is amenable to morphological and high throughput neurochemical analyses of mechanisms contributing to the injury of OB neurones in vitro. This work was supported by a Program Grant (no. 236805) from NH&MRC (Australia), of which P.M.B. is a Research Fellow.  相似文献   

6.
7.
Insulin-like growth factor I (IGF-I) and its receptor (IGF-IR) are involved in growth of neurons. In the rat olfactory epithelium, we previously showed IGF-IR immunostaining in subsets of olfactory receptor neurons. We now report that IGF-IR staining was heaviest in the olfactory nerve layer of the rat olfactory bulb at embryonic days 18, and 19 and postnatal day 1, with labeling of protoglomeruli. In the adult, only a few glomeruli were IGF-IR-positive, some of which were unusually small and strongly labeled. Some IGF-IR-positive fibers penetrated deeper into the external plexiform layer, even in adults. In developing tissues, IGF-IR staining co-localized with that for olfactory marker protein and growth associated protein GAP-43, but to a lesser extent with synaptophysin. In the adult, IGF-IR-positive fibers were compartmentalized within glomeruli. IGF-I may play a role in glomerular synaptogenesis and/or plasticity, possibly contributing to development of coding patterns for odor detection or identification.  相似文献   

8.
啮齿动物的犁鼻器和副嗅球与社会通讯和生殖行为有关,主嗅球影响其觅食行为。达乌尔黄鼠(Spermophilus dauricus)是一种具有较低社会行为的储脂类冬眠动物。本研究用组织学和免疫组织化学方法探究了其犁鼻器和副嗅球的结构特点及嗅球神经元活动对季节变化的适应。结果发现,达乌尔黄鼠犁鼻器具有较大的血管,犁鼻器管腔外侧为非感觉性的呼吸上皮(Respiratory epithelium,RE),内侧为感觉上皮(Sensory epithelium,SE),RE较SE薄,靠近管腔处为假复层柱状上皮。选取犁鼻器中间部位比较,发现SE的厚度、长度及感觉细胞密度均无性别差异。副嗅球位于主嗅球后方背内侧,由6层细胞构成。侧嗅束穿过副嗅球,位于颗粒细胞层之上。雄性达乌尔黄鼠较雌性有更长的僧帽细胞层和颗粒细胞层。春季(3月)和冬季(1月)达乌尔黄鼠主嗅球的嗅小球层、僧帽细胞层和颗粒细胞层的c-Fos-ir神经元密度显著低于夏季(7月)和秋季(10月),且冬季外网织层的c-Fos-ir神经元密度显著低于夏季和秋季,说明达乌尔黄鼠在冬季和春季的嗅觉神经活动较弱,呈现出对冬眠的生理性适应。这些结果丰富了动物犁鼻器和副嗅球的形态学资料,并有助于理解冬眠动物嗅觉系统对季节变化和冬眠的适应。  相似文献   

9.
Neuronal circuits in the olfactory bulb transform odor-evoked activity patterns across the input channels, the olfactory glomeruli, into distributed activity patterns across the output neurons, the mitral cells. One computation associated with this transformation is a decorrelation of activity patterns representing similar odors. Such a decorrelation has various benefits for the classification and storage of information by associative networks in higher brain areas. Experimental results from adult zebrafish show that pattern decorrelation involves a redistribution of activity across the population of mitral cells. These observations imply that pattern decorrelation cannot be explained by a global scaling mechanism but that it depends on interactions between distinct subsets of neurons in the network. This article reviews insights into the network mechanism underlying pattern decorrelation and discusses recent results that link pattern decorrelation in the olfactory bulb to odor discrimination behavior.  相似文献   

10.
In the adrenal medulla, binding of the immediate early gene (IEG) proteins, EGR-1 (ZIF-268/KROX-24/NGFI-A) and AP-1, to the tyrosine hydroxylase (Th) proximal promoter mediate inducible Th expression. The current study investigated the potential role of EGR-1 in inducible Th expression in the olfactory bulb (OB) since IEGs bound to the AP-1 site in the Th proximal promoter are also necessary for activity-dependent OB TH expression. Immunohistochemical analysis of a naris-occluded mouse model of odor deprivation revealed weak EGR-1 expression levels in the OB glomerular layer that were activity-dependent. Immunofluorescence analysis indicated that a majority of glomerular cells expressing EGR-1 also co-expressed TH, but only small subset of TH-expressing cells contained EGR-1. By contrast, granule cells, which lack TH, exhibited EGR-1 expression levels that were unchanged by naris closure. Together, these finding suggest that EGR-1 mediates activity-dependent TH expression in a subset of OB dopaminergic neurons, and that there is differential regulation of EGR-1 in periglomerular and granule cells.  相似文献   

11.
Summary The terminals of centrifugal fibers to the olfactory bulbs of goldfish were studied by electron microscopy after transection of the medial, lateral or entire olfactory tract. The centrifugal fibers originate in the telencephalic hemisphere, pass through both the medial and the lateral olfactory tract, and form synaptic contacts with dendrites in the granule cell layer.  相似文献   

12.
Long-term potentiation of synaptic transmission is considered to be an elementary process underlying the cellular mechanism of memory formation. In the present study we aimed to examine whether or not the dendrodendritic mitral-to-granule cell synapses in the carp olfactory bulb show plastic changes after their repeated activation. It was found that: (1) the dendrodendritic mitral-to-granule cell synapses showed three types of plasticity after tetanic electrical stimulation applied to the olfactory tract—long-term potentiation (potentiation lasting >1 h), short-term potentiation (potentiation lasting <1 h) and post-tetanic potentiation (potentiation lasting <10 min); (2) Long-term potentiation was generally induced when both the dendrodendritic mitral-to-granule cell synapses and centrifugal fiber-to-granule cell synapses were repeatedly and simultaneously activated; (3) long-term enhancement (>1 h) of the odor-evoked bulbar response accompanied the electrically-induced LTP, and; (4) repeated olfactory stimulation enhanced dendrodendritic mitral-to-granule cell transmission. Based on these results, it was proposed that long-term potentiation (as well as olfactory memory) occurs at the dendrodendritic mitral-to-granule cell synapses after strong and long-lasting depolarization of granule cells, which follows repeated and simultaneous synaptic activation of both the peripheral and deep dendrites (or somata).  相似文献   

13.
Maurya DK  Sundaram CS  Bhargava P 《Proteomics》2010,10(23):4311-4319
Cerebellum is an important brain region involved in motor, cognition, learning and memory functions. Proteome mapping of the 21 days old rat cerebellum identified total 285 proteins, out of which 76 proteins were not reported earlier from rat brain. This includes 49 neuronal activity-specific proteins, 7 of which are reported for the first time from the cerebellum in this study. The protein sequence data for 31 proteins reported here have been integrated in the UniProt Knowledgebase.  相似文献   

14.
龙娣  郭炳冉  高玲  江乐  高燕  卢少俊 《兽类学报》2011,31(3):272-277
利用免疫组化法检测c-Fos 蛋白在不同季节刺猬嗅球各层次的表达差异,探讨c-Fos、嗅觉、冬眠三者的关系。分别选取春、夏、秋、冬四个季节各6 只野生健康刺猬,固定剥离嗅球,石蜡切片,免疫组化显色,拍片,载入Motic Images Advanced 3.2 软件,测量四个季节刺猬嗅球各层次c-Fos 的表达率,将结果载入GraphPadPrism4 软件分析,Microsoft Excel 作图。结果表明:c-Fos 蛋白在成年刺猬嗅球各层均有不同程度的表达,阴性对照不着色,且表现出明显的季节性差异。1)与秋季相比,冬眠期c-Fos 蛋白在刺猬嗅球各层次的表达均有极显著的降低(P <0.01);2)与夏季相比,冬眠期c-Fos 蛋白在外网丛层、僧帽细胞层、颗粒细胞层的表达有极显著降低(P < 0. 01),在嗅神经层、嗅小球层、室管膜层的表达也有显著降低(P < 0. 05);3)与冬眠期相比,春季c-Fos 蛋白在嗅小球层、僧帽细胞层、颗粒细胞层的表达有极显著的升高(P <0. 01),在嗅神经层、外网丛层、室管膜层的表达却没有显著变化(P ﹥ 0.05);4)嗅神经层c-Fos 的表达在春季显著低于秋季,夏季与秋季没有显著差异。颗粒细胞层夏季显著低于秋季(P < 0.05)。秋季c-Fos 在其余各层次的表达与春季、夏季相比都有极显著的提高(P <0.01)。结论:秋季刺猬嗅球神经元最活跃,嗅觉最灵敏,冬眠期刺猬嗅球活跃性大大降低,嗅觉系统最迟钝。c-Fos 在刺猬嗅球中的强表达表明其在嗅觉信息的传递中可能发挥一定作用,c-Fos 表达率的显著季节性差异揭示了刺猬嗅球的活跃性与其冬眠具有一定的相关性。  相似文献   

15.
Netrin1 (NTN1) deficiency in mouse brain causes defects in axon guidance and cell migration during embryonic development. Here we show that NTN1 is required for olfactory bulb (OB) development at late embryogenesis and at early postnatal stages to facilitate the accumulation of proper numbers of granular and glomerular neuron subtypes and oligodendrocytes into the OB. In addition to the analysis of Ntn1−/− mice we made tissue and neurosphere cultures to clarify the role of NTN1 in the anterior forebrain. We propose that a subset of neural progenitors/precursors requires NTN1 to efficiently enter the rostral migratory stream to migrate into the OB. The analysis of postnatal Ntn1−/− OBs revealed a reduction of specific types of interneurons which have been shown to originate from particular subregions of the lateral ventricle walls. Based on Ntn1 expression in ventral parts of the ventricle walls, we observed a decrease in the mainly ventrally derived type II interneurons that express calcium-binding proteins calretinin and calbindin. Instead, no change in the numbers of dorsally derived tyrosine hydroxylase expressing interneurons was detected. In addition to the specific reduction of type II interneurons, our results indicate that NTN1 is required for oligodendroglial migration into the OB. Furthermore, we characterised the Ntn1 expressing subpopulation of neurosphere-forming cells from embryonic and adult brain as multipotent and self-renewing. However, NTN1 is dispensable for the proliferation of neurosphere forming progenitor cells and for their differentiation.  相似文献   

16.
Summary Superfusion of synaptosomes prepared from rat olfactory bulb revealed constant basal release of endogenous taurine (Tau), aspartate (Asp), glutamate (Glu) and-aminobutyrate (GABA): their release rates were 110.4 ± 13.0, 30.3 ± 6.7, 93.7 ± 13.1, and 53.3 ± 8.8 pmol/min/mg protein, respectively. The depolarizing-stimulation with 30mM KCl evoked 1.17-, 2.18-, 2.55- and 1.53-fold increases, respectively. Tau release was calcium-independent. However, the perfusion of synaptosomes with Tau (10µM) inhibited the evoked increase in GABA release by 63% without changing basal release, although it did not affect release of Asp and Glu. Phaclofen (10µM, a GABAB receptor antagonist), but not bicuculline (10µM, a GABAA receptor antagonist), counteracted the Tau-induced reduction in GABA release. These data suggest that Tau may be abundantly released from nerve endings of rat olfactory bulb and that it may regulate GABA release through the activation of presynaptic GABAB autoreceptors.  相似文献   

17.
Summary The giant cells in the olfactory bulb of labyrinth fish, most likely belonging to the nervus terminalis, show ultrastructural features of active synthesis of secretory material. Dense core vesicles (70–100 nm in diameter), found in the perikaryon as well as in the axon, are the possible storage sites of the secretory substance. Its chemical nature is unknown. In some of these vesicles acid phosphatase is demonstrable. Large membrane-bound bodies (up to 2000 nm in diameter), either containing an electron dense matrix or debris of cytoplasmic organelles, are also acid phosphatase-positive, suggesting their lysosomal nature. Some other ultrastructural characteristics of these cells are also described.  相似文献   

18.
Precise control of neuronal migration is essential for proper function of the brain. Taking a forward genetic screen, we isolated a mutant mouse with defects in interneuron migration. By genetic mapping, we identified a frame shift mutation in the pericentrin (Pcnt) gene. The Pcnt gene encodes a large centrosomal coiled-coil protein that has been implicated in schizophrenia. Recently, frame shift and premature termination mutations in the pericentrin (PCNT) gene were identified in individuals with Seckel syndrome and microcephalic osteodysplastic primordial dwarfism (MOPD II), both of which are characterized by greatly reduced body and brain sizes. The mouse Pcnt mutant shares features with the human syndromes in its overall growth retardation and reduced brain size. We found that dorsal lateral ganglionic eminence (dLGE)-derived olfactory bulb interneurons are severely affected and distributed abnormally in the rostral forebrain in the mutant. Furthermore, mutant interneurons exhibit abnormal migration behavior and RNA interference knockdown of Pcnt impairs cell migration along the rostal migratory stream (RMS) into the olfactory bulb. These findings indicate that pericentrin is required for proper migration of olfactory bulb interneurons and provide a developmental basis for association of pericentrin function with interneuron defects in human schizophrenia.  相似文献   

19.
We defined the cellular mechanisms for genesis, migration, and differentiation of the initial population of olfactory bulb (OB) interneurons. This cohort of early generated cells, many of which become postmitotic on embryonic day (E) 14.5, differentiates into a wide range of mature OB interneurons by postnatal day (P) 21, and a substantial number remains in the OB at P60. Their precursors autonomously acquire a distinct identity defined by their position in the lateral ganglionic eminence (LGE). The progeny migrate selectively to the OB rudiment in a pathway that presages the rostral migratory stream. After arriving in the OB rudiment, these early generated cells acquire cellular and molecular hallmarks of OB interneurons. Other precursors--including those from the medial ganglionic eminence (MGE) and OB--fail to generate neuroblasts with similar migratory capacity when transplanted to the LGE. The positional identity and migratory specificity of the LGE precursors is rigidly established between E12.5 and E14.5. Thus, the pioneering population of OB interneurons is generated from spatially and temporally determined LGE precursors whose progeny uniquely recognize a distinct migratory trajectory.  相似文献   

20.
Long-term potentiation (LTP) of synaptic transmission is considered a cellular mechanism for neural plasticity and memory formation. Previously, we showed that in the carp olfactory bulb, LTP occurs at the dendrodendritic mitral-to-granule cell synapse following tetanic electrical stimulation applied to the olfactory tract, and suggested that it is involved in the process of olfactory memory formation. As a first step towards understanding mechanisms underlying plasticity at this synapse, we examined the effects of various drugs (glutamate and GABA receptor agonists and antagonists, noradrenaline, and drugs affecting cAMP signaling) on dendrodendritic mitral-to-granule cell synaptic transmission in an in vitro preparation. Two forms of LTP are involved: a postsynaptic form (tetanus-evoked LTP) and a presynaptic form. The postsynaptic form is evoked at the granule cell dendrite following tetanic olfactory tract stimulation and is suppressed by the NMDA receptor antagonist, D-AP5, enhanced by noradrenaline, and occluded by the metabotropic glutamate receptor agonist, trans-ACPD. The presynaptic form occurs at the mitral cell dendrite following blockade of the GABAA receptor by picrotoxin and bicuculline, or via activation of cAMP signaling by forskolin and 8-Br-cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号