首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since people in industrialized countries spend most of their time indoors, the effects of indoor contaminants such as volatile organic compounds become more and more relevant. Benzene and toluene are among the most abundant compounds in the highly heterogeneous group of indoor volatile organic compounds. In order to understand their effects on lung epithelial cells (A549) representing lung's first line of defense, we chose a global proteome and a targeted metabolome approach in order to detect adverse outcome pathways caused by exposure to benzene and toluene. Using a DIGE approach, 93 of 469 detected protein spots were found to be differentially expressed after exposure to benzene, and 79 of these spots were identified by MS. Pathway analysis revealed an enrichment of proteins involved in Nrf2‐mediated and oxidative stress response glycolysis/gluconeogenesis. The occurrence of oxidative stress at nonacute toxic concentrations of benzene and toluene was confirmed by the upregulation of the stress related proteins NQO1 and SOD1. The changes in metabolism were validated by ion chromatography MS/MS analysis revealing significant changes of glucose‐6‐phosphate, fructose‐6‐phosphate, 3‐phosphoglycerate, and NADPH. The molecular alterations identified as a result of benzene and toluene exposure demonstrate the detrimental effect of nonacute toxic concentrations on lung epithelial cells. The data provided here will allow for a targeted validation in in vivo models.  相似文献   

2.
In industrialized countries, people spend more time indoors and are therefore increasingly exposed to volatile organic compounds that are emitted at working places and from consumer products, paintings, and furniture, with chlorobenzene (CB) and 1,2-dichlorobenzene (DCB) being representatives of the halogenated arenes. To unravel the molecular effects of low concentrations typical for indoor and occupational exposure, we exposed human lung epithelial cells to CB and DCB and analyzed the effects on the proteome level by 2-D DIGE, where 860 protein spots were detected. A set of 25 and 30 proteins were found to be significantly altered due to exposure to environmentally relevant concentrations of 10(-2) g/m(3) of CB or 10(-3) g/m(3) of DCB (2.2 and 0.17 ppm), respectively. The most enriched pathways were cell death signaling, oxidative stress response, protein quality control, and metabolism. The involvement of oxidative stress was validated by ROS measurement. Among the regulated proteins, 28, for example, voltage-dependent anion-selective channel protein 2, PDCD6IP protein, heat shock protein beta-1, proliferating cell nuclear antigen, nucleophosmin, seryl-tRNA synthetase, prohibitin, and protein arginine N-methyltransferase 1, could be correlated with the molecular pathway of cell death signaling. Caspase 3 activation by cleavage was confirmed for both CB and DCB by immunoblotting. Treatment with CB or DCB also caused differential protein phosphorylation, for example, at the proteins HNRNP C1/C2, serine-threonine receptor associated protein, and transaldolase 1. Compared to previous results, where cells were exposed to styrene, for the chlorinated aromatic substances besides oxidative stress, apoptosis was found as the predominant cellular response mechanism.  相似文献   

3.
Selenium is an essential chemopreventive antioxidant element to oxidative stress, although high concentrations of selenium induce toxic and oxidative effects on the human body. However, the mechanisms behind these effects remain elusive. We investigated toxic effects of different selenium concentrations in human promyelocytic leukemia HL-60 cells by evaluating Ca2+ mobilization, cell viability and caspase-3 and -9 activities at different sample times. We found the toxic concentration and toxic time of H2O2 as 100 μm and 10 h on cell viability in the cells using four different concentrations of H2O2 (1 μm–1 mm) and six different incubation times (30 min, 1, 2, 5, 10, 24 h). Then, we found the therapeutic concentration of selenium to be 200 nm by cells incubated in eight different concentrations of selenium (10 nm–1 mm) for 1 h. We measured Ca2+ release, cell viability and caspase-3 and -9 activities in cells incubated with high and low selenium concentrations at 30 min and 1, 2, 5, 10 and 24 h. Selenium (200 nm) elicited mild endoplasmic reticulum stress and mediated cell survival by modulating Ca2+ release, the caspases and cell apoptosis, whereas selenium concentrations as high as 1 mm induced severe endoplasmic reticulum stress and caused cell death by activating modulating Ca2+ release, the caspases and cell apoptosis. In conclusion, these results explained the molecular mechanisms of the chemoprotective effect of different concentrations of selenium on oxidative stress-induced apoptosis.  相似文献   

4.
It is not known whether there are mechanisms linking adipose tissue mass and increased oxidative stress in obesity. This study investigated associations between decreasing general and abdominal fat depots and oxidative stress during weight loss. Subjects were severely obese women who were measured serially at baseline and at 1, 6 (n = 30), and 24 months (n = 18) after bariatric surgery. Total fat mass (FAT) and volumes of visceral (VAT) and subcutaneous abdominal adipose tissue (SAT) were related to plasma concentrations of derivatives of reactive oxidative metabolites (dROMS), a measure of lipid peroxides and oxidative stress. After intervention, BMI significantly decreased, from 47.7 ± 0.8 kg/m2 to 43.3 ± 0.8 kg/m2 (1 month), 35.2 ± 0.8 kg/m2 (6 months), and 30.2 ± 1.2 kg/m2 (24 months). Plasma dROMS also significantly deceased over time. At baseline, VAT (r = 0.46), FAT (r = 0.42), and BMI (r = 0.37) correlated with 6‐month decreases in dROMS. Similarly, at 1 month, VAT (r = 0.43) and FAT (r = 0.41) correlated with 6‐month decreases in dROMS. Multiple regression analysis showed that relationships between VAT and dROMS were significant after adjusting for FAT mass. Increased plasma dROMS at baseline were correlated with decreased concentrations of high‐density lipoprotein (HDL) at 1 and 6 months after surgery (r = ?0.38 and ?0.42). This study found longitudinal associations between general, and more specifically intra‐abdominal adiposity, and systemic lipid peroxides, suggesting that adipose tissue mass contributes to oxidative stress.  相似文献   

5.
Dunaliella species accumulate carotenoids and their role in protection against photooxidative stress has been investigated extensively. By contrast, the role of other antioxidants in this alga, has received less attention. Therefore, the components of the ascorbate–glutathione cycle, along with superoxide dismutase (E.C. 1.15.1.1) and peroxidase (E.C. 1.11.1.11) activity were compared in two strains of Dunaliella salina. Strain IR‐1 had two‐fold higher chlorophyll and β‐carotene concentration than Gh‐U. IR‐1 had around four‐fold higher superoxide dismutase, ascorbate peroxidase and pyrogallol peroxidase activities than Gh‐U on a protein basis. Ascorbate and glutathione concentrations and redox state did not differ between strains and there was little difference in the activity of ascorbate–glutathione cycle enzymes (monodehydroascorbate reductase [E.C. 1.6.5.4], dehydroascorbate reductase [E.C. 1.8.5.1] and glutathione reductase [E.C. 1.8.1.7]). The response of these antioxidants to high light and low temperature was assessed by transferring cells from normal growth conditions (28°C, photon flux density of 100 μmol m?2 s?1)to 28°C/1200 μmol m?2 s?1; 13°C/100 μmol m?2 s?1; 13°C/1200 μmol m?2 s?1 and 28°C/100 μmol m?2 s?1 for 24 h. Low temperature and combined high light‐low temperature decreased chlorophyll and β‐carotene in both strains indicating that these treatments cause photooxidative stress. High light, low temperature and combined high light‐low temperature treatments increased the total ascorbate pool by 10–50% and the total glutathione pool by 20–100% with no consistent effect on their redox state. Activities of ascorbate–glutathione cycle enzymes were not greatly affected but all the treatments increased superoxide dismutase activity. It is concluded that D. salina can partially adjust to photooxidative conditions by increasing superoxide dismutase activity, ascorbate and glutathione.  相似文献   

6.
Catalytic biofilms minimize reactant toxicity and maximize biocatalyst stability in selective transformations of chemicals to value‐added products in continuous processes. The scaling up of such catalytic biofilm processes is challenging, due to fluidic and biological parameters affording a special reactor design affecting process performance. A solid support membrane‐aerated biofilm reactor was optimized and scaled‐up to yield gram amounts of (S)‐styrene oxide, a toxic and instable high value chemical synthon. A sintered stainless steel membrane unit was identified as an optimal choice as biofilm substratum and for high oxygen mass transfer. A stable expanded polytetrafluoroethylene (ePTFE) membrane was best suited for in situ substrate delivery and product extraction. For the verification of scalability, catalytic biofilms of Pseudomonas sp. strain VLB120ΔC produced (S)‐styrene oxide to an average concentration of 390 mM in the organic phase per day (equivalent to 24.4 g Laq–1 day–1). This productivity was gained by efficiently using the catalyst with an excellent product yield on biomass of 13.6 gproduct gbiomass–1. This product yield on biomass is in the order of magnitude reported for other continuous systems based on artificially immobilized biocatalysts and is fulfilling the minimum requirements for industrial biocatalytic processes. Overall, 46 g of (S)‐styrene oxide were produced and isolated (purity: 99%; enantiomeric excess [ee]: >99.8%. yield: 30%). The productivity is in a similar range as in comparable small‐scale biofilm reactors highlighting the large potential of this methodology for continuous bioprocessing of bulk chemicals and biofuels.  相似文献   

7.

Background

Acute ozone exposure causes lung oxidative stress and inflammation leading to lung injury. At least one mechanism underlying the lung toxicity of ozone involves excessive production of reactive oxygen and nitrogen intermediates such as peroxynitrite. In addition and beyond its major prooxidant properties, peroxynitrite may nitrate tyrosine residues altering phosphorylation of many protein kinases involved in cell signalling. It was recently proposed that peroxynitrite activates 5''-AMP-activated kinase (AMPK), which regulates metabolic pathways and the response to cell stress. AMPK activation as a consequence of ozone exposure has not been previously evaluated. First, we tested whether acute ozone exposure in mice would impair alveolar fluid clearance, increase lung tissue peroxynitrite production and activate AMPK. Second, we tested whether loss of AMP-activated protein kinase alpha1 subunit in mouse would prevent enhanced oxidative stress and lung injury induced by ozone exposure.

Methods

Control and AMPKα1 deficient mice were exposed to ozone at a concentration of 2.0 ppm for 3 h in glass cages. Evaluation was performed 24 h after ozone exposure. Alveolar fluid clearance (AFC) was evaluated using fluorescein isothiocyanate tagged albumin. Differential cell counts, total protein levels, cytokine concentrations, myeloperoxidase activity and markers of oxidative stress, i.e. malondialdehyde and peroxynitrite, were determined in bronchoalveolar lavage (BAL) and lung homogenates (LH). Levels of AMPK-Thr172 phosphorylation and basolateral membrane Na(+)-K(+)-ATPase abundance were determined by Western blot.

Results

In control mice, ozone exposure induced lung inflammation as evidence by increased leukocyte count, protein concentration in BAL and myeloperoxidase activity, pro-inflammatory cytokine levels in LH. Increases in peroxynitrite levels (3 vs 4.4 nM, p = 0.02) and malondialdehyde concentrations (110 vs 230 μmole/g wet tissue) were detected in LH obtained from ozone-exposed control mice. Ozone exposure consistently increased phosphorylated AMPK-Thr172 to total AMPK ratio by 80% in control mice. Ozone exposure causes increases in AFC and basolateral membrane Na(+)-K(+)-ATPase abundance in control mice which did not occur in AMPKα1 deficient mice.

Conclusions

Our results collectively suggest that AMPK activation participates in ozone-induced increases in AFC, inflammation and oxidative stress. Further studies are needed to understand how the AMPK pathway may provide a novel approach for the prevention of ozone-induced lung injury.  相似文献   

8.
Hydrogen peroxide (H2O2) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross‐tolerance to various stressors. SA‐stimulated pre‐adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole‐plant level, SA‐induced massive H2O2 accumulation only at high concentrations (10?3–10?2M), which later caused the death of plants. The excess accumulation of H2O2 as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre‐treatments. In the root tips, 10?3–10?2M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre‐adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt‐treated samples. This suggests that, the cross‐talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1‐aminocyclopropane‐1‐carboxylic acid, the compounds accumulating in pre‐treated plants, enhanced the diphenylene iodonium‐sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.  相似文献   

9.
Despite recurrent exposure to zinc through inhalation of ambient air pollution particles, relatively little information is known about the homeostasis of this metal in respiratory epithelial cells. We describe zinc uptake and release by respiratory epithelial cells and test the postulate that Zn2+ transport interacts with iron homeostasis in these same cells. Zn2+ uptake after 4 and 8 h of exposure to zinc sulfate was concentration- and time-dependent. A majority of Zn2+ release occurred in the 4 h immediately following cell exposure to ZnSO4. Regarding metal importers, mRNA for Zip1 and Zip2 showed no change after respiratory epithelial cell exposure to zinc while mRNA for divalent metal transporter (DMT)1 increased. Western blot assay for DMT1 protein supported an elevated expression of this transport protein following zinc exposure. RT-PCR confirmed mRNA for the metal exporters ZnT1 and ZnT4 with the former increasing after ZnSO4. Cell concentrations of ferritin increased with zinc exposure while oxidative stress, measured as lipid peroxides, was decreased supporting an anti-oxidant function for Zn2+. Increased DMT1 expression, following pre-incubations of respiratory epithelial cells with TNF-α, IFN-γ, and endotoxin, was associated with significantly decreased intracellular zinc transport. Finally, incubations of respiratory epithelial cells with both zinc sulfate and ferric ammonium citrate resulted in elevated intracellular concentrations of both metals. We conclude that exposure to zinc increases iron uptake by respiratory epithelial cells. Elevations in cell iron can possibly affect an increased expression of DMT1 and ferritin which function to diminish oxidative stress. Comparable to other metal exposures, changes in iron homeostasis may contribute to the biological effects of zinc in specific cells and tissues.  相似文献   

10.
Styrene oxide-cysteine adduction is predominantly involved in protein covalent modification after exposure in vivo to styrene or styrene oxide. In the present study, we developed an alkaline permethylation- and GC/MS-based approach to detect styrene oxide-derived protein adduction. Permethylation of the protein adducts produced two methylthiophenylethanols, namely 2-methylthio-2-phenyl-1-ethanol and 2-methylthio-1-phenyl-1-ethanol. To improve the permethylation efficiency, reaction conditions, including temperature, time, NaOH strength, and molar ratio of CH3I/NaOH, were explored. Under optimized conditions, the yields of the analyte formation resulting from permethylation of authentic standard α- and β-mercapturic acids, representing α and β isomers of cysteine adducts, were 35% and 28%, respectively. Permethylation of styrene oxide-modified bovine serum albumin released the two methylthiophenylethanols with an α-/β-adduction ratio of 1.5. A concentration-dependent increase in both α- and β-adduction was observed in mouse liver microsomes incubated with styrene at various concentrations. CD-1 mice were administered intraperitoneally with styrene at doses of 0, 50, and 400 mg/kg daily for 5 days. The formation of protein adducts derived from styrene oxide in whole blood in 400 mg/kg group was observed with an α/β ratio of 4.8, suggesting that the reaction of styrene oxide with cysteine residues took place more likely at the α-carbon than the β-carbon of styrene oxide.  相似文献   

11.
Endoplasmic reticulum (ER) stress and oxidative stress have recently been linked to the pathogenesis of inflammatory bowel diseases. Under physiological conditions, intestinal epithelial cells are exposed to ER and oxidative stress affecting the cellular ionic homeostasis. However, these altered ion flux ‘signatures’ during these stress conditions are poorly characterized. We investigated the kinetics of K+, Ca2+ and H+ ion fluxes during ER and oxidative stress in a colonic epithelial cell line LS174T using a non‐invasive microelectrode ion flux estimation technique. ER and oxidative stress were induced by cell exposure to tunicamycin (TM) and copper ascorbate (CuAsc), respectively, from 1 to 24 h. Dramatic K+ efflux was observed following acute ER stress with peak K+ efflux being ?30·6 and ?138·7 nmolm?2 s?1 for 10 and 50 µg ml?1, respectively (p < 0·01). TM‐dependent Ca2+ uptake was more prolonged with peak values of 0·85 and 2·68 nmol m?2 s?1 for 10 and 50 µg ml?1 TM, respectively (p < 0·02). Ion homeostasis was also affected by the duration of ER stress. Increased duration of TM treatment from 0 to 18 h led to increases in both K+ efflux and Ca2+ uptake. While K+ changes were significantly higher at each time point tested, Ca2+ uptake was significantly higher only after prolonged treatment (18 h). CuAsc also led to an increased K+ efflux and Ca2+ uptake. Functional assays to investigate the effect of inhibiting K+ efflux with tetraethylammonium resulted in increased cell viability. We conclude that ER/oxidative stress in colonic epithelial cells cause dramatic K+, Ca2+ and H+ ion flux changes, which may predispose this lineage to poor stress recovery reminiscent of that seen in inflammatory bowel diseases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Although chronic exposure to high doses of trichloroethene causes tumors of the lung, liver, and kidney in experimental animals, the epidemiology data in humans exposed to trichloroethene as a whole fail to support a causal association between trichloroethene exposure and cancers of the lungs, liver, or kidneys in humans at environmentally relevant concentrations. Environmentally relevant concentrations of trichloroethene are defined as 50 ppb (50 µg/L) in water or 5 ppb (27 µg/m3) in air. Tumor induction by trichloroethene in rodents exposed to very high doses over their whole lifespan has been observed in the kidney of rats and in the lung and liver of mice. Mechanistic data demonstrate that species-specific processes are involved in the carcinogenicity associated with chronic trichloroethene exposure in rodents. Based on these data and the results of recent well-conducted epidemiology studies, it can be concluded that humans exposed to trichloroethene at environmentally relevant concentrations are not at an increased risk for developing cancer.  相似文献   

13.
In this study an experiment was carried out to study the process of stress adaptation in Groenlandia densa (opposite-leaved pondweed) grown under cadmium stress (0–20 mg L?1 Cd). The results showed that Cd concentrations in plants increased with increasing Cd supply levels and reached a maximum of 0.43 mg kg?1 DW at 0.5 mg L?1 Cd concentrations. The level of photosynthetic pigments and soluble proteins decreased only upon exposure to high Cd concentrations. At the same time, the level of malondialdehyde (MDA) increased with increasing Cd concentration. These results suggested an alleviation of stress that was presumably the result of by antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione S-transferase (GST) as well as ascorbate peroxidase (APX), which increased linearly with increasing Cd levels. Cellular antioxidants levels showed a decline suggesting a defensive mechanism to protect against oxidative stress caused by Cd. In addition, the proline content in G. densa increased with increasing cadmium levels. These findings suggest that G. densa is equipped with an efficient antioxidant mechanism against Cd-induced oxidative stress which protects the plant's photosynthetic machinery from damage.Our present work concluded that G. densa has a high level of Cd tolerance and accumulation. We also found that moderate Cd treatment (0.05–5 mg L?1 Cd) alleviated oxidative stress in plants, while the addition of higher amounts of Cd (10–20 mg L?1) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

14.
Pleural epithelial adaptations to mechanical stress are relevant to both normal lung function and parenchymal lung diseases. Assessing regional differences in mechanical stress, however, has been complicated by the nonlinear stress–strain properties of the lung and the large displacements with ventilation. Moreover, there is no reliable method of isolating pleural epithelium for structural studies. To define the topographic variation in pleural structure, we developed a method of en face harvest of murine pleural epithelium. Silver-stain was used to highlight cell borders and facilitate imaging with light microscopy. Machine learning and watershed segmentation were used to define the cell area and cell perimeter of the isolated pleural epithelial cells. In the deflated lung at residual volume, the pleural epithelial cells were significantly larger in the apex (624 ± 247 μm2) than in basilar regions of the lung (471 ± 119 μm2) (p < 0.001). The distortion of apical epithelial cells was consistent with a vertical gradient of pleural pressures. To assess epithelial changes with inflation, the pleura was studied at total lung capacity. The average epithelial cell area increased 57% and the average perimeter increased 27% between residual volume and total lung capacity. The increase in lung volume was less than half the percent change predicted by uniform or isotropic expansion of the lung. We conclude that the structured analysis of pleural epithelial cells complements studies of pulmonary microstructure and provides useful insights into the regional distribution of mechanical stresses in the lung.  相似文献   

15.
The effects of CdSO4 additions on the gene expressions of a mercury reductase, merA, an oxidative stress protein, trxA, the ammonia‐monooxygenase enzyme (AMO), amoA, and the hydroxylamine oxidoreductase enzyme (HAO), hao, were examined in continuously cultured N. europaea cells. The reactor was fed 50 mM NH4+ and was operated for 78 days with a 6.9 days hydraulic retention time. Over this period, six successive batch additions of CdSO4 were made with increasing maximum concentrations ranging from 1 to 60 µM Cd2+. The expression of merA was highly correlated with the level of Cd2+ within the reactor (Rs = 0.90) with significant up‐regulation measured at non‐inhibitory Cd2+ concentrations. Cd2+ appears to target AMO specifically at lower concentrations and caused oxidative stress at higher concentrations, as indicated by the SOURs (specific oxygen uptake rates) and the up‐regulation of trxA. Since Cd2+ inhibition is irreversible and amoA was up‐regulated in response to Cd2+ inhibition, it is hypothesized that de novo synthesis of the AMO enzyme occurred and was responsible for the observed recovery in activity. Continuously cultured N. europaea cells were more resistant to Cd2+ inhibition than previously examined batch cultured cells due to the presence of Mg2+ and Ca2+ in the growth media, suggesting that Cd2+ enters the cell through Mg2+ and Ca2+ import channels. The up‐regulation of merA during exposure to non‐inhibitory Cd2+ levels indicates that merA is an excellent early warning signal for Cd2+ inhibition. Biotechnol. Bioeng. 2009; 104: 1004–1011. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
A styrene-utilizing mixed microbial culture was isolated and utilized in a biofilter for the biological treatment of a contaminated air stream. Biofilter media consisted of composted wood bark and yard waste. The biofilters were acclimated at 120 s residence time and further evaluated at 60 and 30 s gas residence times. The biofilters received organic loading rates of up to 350 g/m3 h. The styrene volumetric removal rate was a function of the organic loading rate and increased with increasing loading rates. Average volumetric removal rates of 69–118 g/m3 h observed in our studies were higher than reported values for styrene biofilters. Average styrene removal efficiencies ranged from 65% to 75% (maximum 100%). Axial analysis of styrene concentration along the column indicated that the bulk of the styrene removal occurred in the first section of the biofilter. Analyses of the media indicated that the moisture content of the first section (50–55% w/w) was significantly lower than in the second and third sections (65–70% w/w). The pressure drops across the biofilter were low due to the high concentration of large media particles. The total pressure drops were 1–3, 4–6, and 10–16 mm for the 120-, 60-, and 30-s residence time periods, respectively. Journal of Industrial Microbiology & Biotechnology (2001) 26, 196–202. Received 04 March 2000/ Accepted in revised form 25 January 2001  相似文献   

17.
Paraquat (PQ; 1, 1′‐dimethyl‐4‐4′‐bipyridinium), an herbicide and model neurotoxicant, is identified to be one of the prime risk factors in Parkinson's disease (PD). In the Drosophila system, PQ is commonly used to measure acquired resistance against oxidative stress (PQ resistance test). Despite this, under acute PQ exposure, data on the oxidative stress response and associated impact on mitochondria among flies is limited. Accordingly, in this study, we measured markers of oxidative stress and mitochondrial dysfunctions among adult male flies (8–10 days old) exposed to varying concentrations of PQ (10, 20, and 40 mM in 5% sucrose solution) employing a conventional filter disc method for 24 h. PQ exposure resulted in significant elevation in the levels of oxidative stress biomarkers (malondialdehyde: 43% increase: hydroperoxide: 32–39% increase), with concomitant enhancement in reduced glutathione and total thiol levels in cytosol. Higher activity of antioxidant enzymes were also evident along with increased free iron levels. Furthermore, PQ exposure caused a concentration‐dependent increase in mitochondrial superoxide generation and activity of manganese‐superoxide dismutase (Mn‐SOD). The activity levels of complex I‐III, complex II‐III, and Mg+2 adinosine triphosphatase (ATPase) were also decreased significantly. A robust diminution in the activity of succinate dehydrogenase and moderate decline in the citrate synthase activity suggested a specific effect on citric acid cycle enzymes. Collectively, these data suggest that acute PQ exposure causes significant oxidative stress and mitochondrial dysfunction among flies in vivo. It is suggested that in various experimental settings, while conducting the “PQ resistance stress test” incorporation of selected biochemical end points is likely to enhance the quality of the data.  相似文献   

18.
Pulmonary fibrosis is one of the most severe consequences of exposure to paraquat, an herbicide that causes rapid alveolar inflammation and epithelial cell damage. Paraquat is known to induce toxicity in cells by stimulating oxygen utilization via redox cycling and the generation of reactive oxygen intermediates. However, the enzymatic activity mediating this reaction in lung cells is not completely understood. Using self-referencing microsensors, we measured the effects of paraquat on oxygen flux into murine lung epithelial cells. Paraquat (10-100 microm) was found to cause a 2-4-fold increase in cellular oxygen flux. The mitochondrial poisons cyanide, rotenone, and antimycin A prevented mitochondrial- but not paraquat-mediated oxygen flux into cells. In contrast, diphenyleneiodonium (10 microm), an NADPH oxidase inhibitor, blocked the effects of paraquat without altering mitochondrial respiration. NADPH oxidases, enzymes that are highly expressed in lung epithelial cells, utilize molecular oxygen to generate superoxide anion. We discovered that lung epithelial cells possess a distinct cytoplasmic diphenyleneiodonium-sensitive NAD(P)H:paraquat oxidoreductase. This enzyme utilizes oxygen, requires NADH or NADPH, and readily generates the reduced paraquat radical. Purification and sequence analysis identified this enzyme activity as thioredoxin reductase. Purified paraquat reductase from the cells contained thioredoxin reductase activity, and purified rat liver thioredoxin reductase or recombinant enzyme possessed paraquat reductase activity. Reactive oxygen intermediates and subsequent oxidative stress generated from this enzyme are likely to contribute to paraquat-induced lung toxicity.  相似文献   

19.
Genotoxic effects related to exposure to styrene have been a matter of investigation for many years by employing markers of exposure, effect and susceptibility. The role of individual DNA-repair capacity in response to exposure to styrene may explain the controversial results so far obtained, but it is still scarcely explored. In the present study, we measured capacity to repair oxidative DNA damage in cell extracts obtained from 24 lamination workers occupationally exposed to styrene and 15 unexposed controls. The capacity to repair oxidative DNA damage was determined by use of a modified comet assay, as follows: HeLa cells, pre-treated with photosensitizer and irradiated with a halogen lamp in order to induce 7,8-dihydroxy-8-oxoguanine, were incubated with cell extracts from mononuclear leukocytes of each subject. The level of strand breaks reflects the removal of 7,8-dihydroxy-8-oxoguanine from substrate DNA by the enzymatic extract.In styrene-exposed subjects a moderate, non-significant increase in oxidative DNA repair was observed. Stratification for sex and smoking habit showed that unexposed males (P = 0.010) and unexposed smokers (P = 0.037) exhibited higher DNA-repair rates. The repair capacity did not correlate with parameters of styrene exposure and biomarkers of genotoxic effects (DNA strand breaks, N1-styrene-adenine DNA adducts, chromosomal aberrations and mutant frequencies at the HPRT locus). Significantly higher levels of DNA-repair capacity were observed in carriers of GSTM1-plus, compared to those with a deletion in GSTM1. The DNA-repair capacity was significantly lower in individuals with variant Gln/Gln genotype in XRCC1 Arg399Gln than in those with heterozygous Arg/Gln and wild-type Arg/Arg genotypes. Significantly lower repair capacity was also found in individuals with the wild-type Lys/Lys genotype in XPC Lys939Gln as compared with those homozygous for the Gln/Gln variant genotype.  相似文献   

20.
The hypothesis that mitogen‐activated protein kinase (MAPK) signalling is important in plant defences against metal stress has become accepted in recent years. To test the role of oxidative signal‐inducible kinase (OXI1) in metal‐induced oxidative signalling, the responses of oxi1 knockout lines to environmentally realistic cadmium (Cd) and copper (Cu) concentrations were compared with those of wild‐type plants. A relationship between OXI1 and the activation of lipoxygenases and other initiators of oxylipin production was observed under these stress conditions, suggesting that lipoxygenase‐1 may be a downstream component of OXI1 signalling. Metal‐specific differences in OXI1 action were observed. For example, OXI1 was required for the up‐regulation of antioxidative defences such as catalase in leaves and Fe‐superoxide dismutase in roots, following exposure to Cu, processes that may involve the MEKK1‐MKK2‐WRKY25 cascade. Moreover, the induction of Cu/Zn superoxide dismutases in Cu‐exposed leaves was regulated by OXI1 in a manner that involves fluctuations in the expression of miRNA398. These observations contrast markedly with the responses to Cd exposure, which also involves OXI1‐independent pathways but rather involves changes in components mediating intracellular communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号