首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EstU1 is a unique family VIII carboxylesterase that displays hydrolytic activity toward the amide bond of clinically used β‐lactam antibiotics as well as the ester bond of p‐nitrophenyl esters. EstU1 assumes a β‐lactamase‐like modular architecture and contains the residues Ser100, Lys103, and Tyr218, which correspond to the three catalytic residues (Ser64, Lys67, and Tyr150, respectively) of class C β‐lactamases. The structure of the EstU1/cephalothin complex demonstrates that the active site of EstU1 is not ideally tailored to perform an efficient deacylation reaction during the hydrolysis of β‐lactam antibiotics. This result explains the weak β‐lactamase activity of EstU1 compared with class C β‐lactamases. Finally, structural and sequential comparison of EstU1 with other family VIII carboxylesterases elucidates an operative molecular strategy used by family VIII carboxylesterases to extend their substrate spectrum. Proteins 2013; 81:2045–2051. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Lietz EJ  Truher H  Kahn D  Hokenson MJ  Fink AL 《Biochemistry》2000,39(17):4971-4981
Lysine 73 is a conserved active-site residue in the class A beta-lactamases, as well as other members of the serine penicillin-sensitive enzyme family; its role in catalysis remains controversial and uncertain. Mutation of Lys73 to alanine in the beta-lactamase from Bacillus licheniformis resulted in a substantial reduction in both turnover rate (k(cat)) and catalytic efficiency (k(cat)/K(m)), and a very significant shift in pK(1) to higher pH in the bell-shaped pH-rate profiles (k(cat)/K(m)) for several penicillin and cephalosporin substrates. The increase in pK(1) is consistent with the removal of the positive ammonium group of the lysine from the proximity of Glu166, to which the acid limb has been ascribed. The alkaline limb of the k(cat)/K(m) vs profiles is not shifted appreciably, as might have been expected if this limb reflected the ionization of Lys73 in the wild-type enzyme. The k(cat)/K(m) at the pH optimum for the mutant was down about 200-fold for penicillins and around 10(4) for cephalosporins, compared to the wild-type, suggesting significant differences in the mechanisms for catalysis of penicillins compared to cephalosporins. Burst kinetics were observed with several substrates assayed with K73A beta-lactamase, indicating an underlying branched-pathway kinetic scheme, and rate-limiting deacylation. FTIR analysis was used to determine whether acylation or deacylation was rate-limiting. In general, acylation was the rate-limiting step for cephalosporin substrates, whereas deacylation was rate-limiting for penicillin substrates. The results indicate that Lys73 plays an important role in both the acylation and deacylation steps of the catalytic mechanism. The effects of this mutation (K73A) indicate that Lys73 does not function as a general base in the catalytic mechanism of beta-lactamase. The existence of bell-shaped pH-rate profiles for the K73A variant suggests that Lys73 is not directly responsible for either limb in such plots. It is likely that both Glu166 and Lys73 are important to each other in terms of maintaining the optimum electrostatic environment for fully efficient catalytic activity to occur.  相似文献   

3.
β‐lactam antibiotics are crucial to the management of bacterial infections in the medical community. Due to overuse and misuse, clinically significant bacteria are now resistant to many commercially available antibiotics. The most widespread resistance mechanism to β‐lactams is the expression of β‐lactamase enzymes. To overcome β‐lactamase mediated resistance, inhibitors were designed to inactivate these enzymes. However, current inhibitors (clavulanic acid, tazobactam, and sulbactam) for β‐lactamases also contain the characteristic β‐lactam ring, making them susceptible to resistance mechanisms employed by bacteria. This presents a critical need for novel, non‐β‐lactam inhibitors that can circumvent these resistance mechanisms. The carbapenem‐hydrolyzing class D β‐lactamases (CHDLs) are of particular concern, given that they efficiently hydrolyze potent carbapenem antibiotics. Unfortunately, these enzymes are not inhibited by clinically available β‐lactamase inhibitors, nor are they effectively inhibited by the newest, non‐β‐lactam inhibitor, avibactam. Boronic acids are known transition state analog inhibitors of class A and C β‐lactamases, and are not extensively characterized as inhibitors of class D β‐lactamases. Importantly, boronic acids provide a novel way to potentially inhibit class D β‐lactamases. Sixteen boronic acids were selected and tested for inhibition of the CHDL OXA‐24/40. Several compounds were identified as effective inhibitors of OXA‐24/40, with Ki values as low as 5 μM. The X‐ray crystal structures of OXA‐24/40 in complex with BA3, BA4, BA8, and BA16 were determined and revealed the importance of interactions with hydrophobic residues Tyr112 and Trp115. These boronic acids serve as progenitors in optimization efforts of a novel series of inhibitors for class D β‐lactamases.  相似文献   

4.
A large number of β‐lactamases have emerged that are capable of conferring bacterial resistance to β‐lactam antibiotics. Comparison of the structural and functional features of this family has refined understanding of the catalytic properties of these enzymes. An arginine residue present at position 244 in TEM‐1 β‐lactamase interacts with the carboxyl group common to penicillin and cephalosporin antibiotics and thereby stabilizes both the substrate and transition state complexes. A comparison of class A β‐lactamase sequences reveals that arginine at position 244 is not conserved, although a positive charge at this structural location is conserved and is provided by an arginine at positions 220 or 276 for those enzymes lacking arginine at position 244. The plasticity of the location of positive charge in the β‐lactamase active site was experimentally investigated by relocating the arginine at position 244 in TEM‐1 β‐lactamase to positions 220, 272, and 276 by site‐directed mutagenesis. Kinetic analysis of the engineered β‐lactamases revealed that removal of arginine 244 by alanine mutation reduced catalytic efficiency against all substrates tested and restoration of an arginine at positions 272 or 276 partially suppresses the catalytic defect of the Arg244Ala substitution. These results suggest an evolutionary mechanism for the observed divergence of the position of positive charge in the active site of class A β‐lactamases.  相似文献   

5.
Metallo‐β‐lactamases (MBLs) are some of the best known β‐lactamases produced by common Gram‐positive and Gram‐negative pathogens and are crucial factors in the rise of bacterial resistance against β‐lactam antibiotics. Although many types of β‐lactamase inhibitors have been successfully developed and used in clinical settings, no MBL inhibitors have been identified to date. Nitrocefin, checkerboard and time‐kill assays were used to examine the enzyme behaviour in vitro. Molecular docking calculation, molecular dynamics simulation, calculation of the binding free energy and ligand‐residue interaction decomposition were used for mechanistic research. The behaviour of the enzymes in vivo was investigated by a mouse infection experiment. We showed that theaflavin‐3,3´‐digallate (TFDG), a natural compound lacking antibacterial activities, can inhibit the hydrolysis of MBLs. In the checkerboard and time‐kill assays, we observed a synergistic effect of TFDG with β‐lactam antibiotics against methicillin‐resistant Staphylococcus aureus BAA1717. Molecular dynamics simulations were used to identify the mechanism of the inhibition of MBLs by TFDG, and we observed that the hydrolysis activity of the MBLs was restricted by the binding of TFDG to Gln242 and Ser369. Furthermore, the combination of TFDG with β‐lactam antibiotics showed effective protection in a mouse Staphylococcus aureus pneumonia model. These findings suggest that TFDG can effectively inhibit the hydrolysis activity of MBLs and enhance the antibacterial activity of β‐lactam antibiotics against pathogens in vitro and in vivo.  相似文献   

6.
Methionine γ‐lyse (MGL) catalyzes the α, γ‐elimination of l ‐methionine and its derivatives as well as the α, β‐elimination of l ‐cysteine and its derivatives to produce α‐keto acids, volatile thiols, and ammonia. The reaction mechanism of MGL has been characterized by enzymological studies using several site‐directed mutants. The Pseudomonas putida MGL C116H mutant showed drastically reduced degradation activity toward methionine while retaining activity toward homocysteine. To understand the underlying mechanism and to discern the subtle differences between these substrates, we analyzed the crystal structures of the reaction intermediates. The complex formed between the C116H mutant and methionine demonstrated that a loop structure (Ala51–Asn64) in the adjacent subunit of the catalytic dimer cannot approach the cofactor pyridoxal 5′‐phosphate (PLP) because His116 disrupts the interaction of Asp241 with Lys240, and the liberated side chain of Lys240 causes steric hindrance with this loop. Conversely, in the complex formed between C116H mutant and homocysteine, the thiol moiety of the substrate conjugated with PLP offsets the imidazole ring of His116 via a water molecule, disrupting the interaction of His116 and Asp241 and restoring the interaction of Asp241 with Lys240. These structural data suggest that the Cys116 to His mutation renders the enzyme inactive toward the original substrate, but activity is restored when the substrate is homocysteine due to substrate‐assisted catalysis.  相似文献   

7.
NagZ is an exo‐N‐acetyl‐β‐glucosaminidase, found within Gram‐negative bacteria, that acts in the peptidoglycan recycling pathway to cleave N‐acetylglucosamine residues off peptidoglycan fragments. This activity is required for resistance to cephalosporins mediated by inducible AmpC β‐lactamase. NagZ uses a catalytic mechanism involving a covalent glycosyl enzyme intermediate, unlike that of the human exo‐N‐acetyl‐β‐glucosaminidases: O‐GlcNAcase and the β‐hexosaminidase isoenzymes. These latter enzymes, which remove GlcNAc from glycoconjugates, use a neighboring‐group catalytic mechanism that proceeds through an oxazoline intermediate. Exploiting these mechanistic differences we previously developed 2‐N‐acyl derivatives of O‐(2‐acetamido‐2‐deoxy‐D ‐glucopyranosylidene)amino‐N‐phenylcarbamate (PUGNAc), which selectively inhibits NagZ over the functionally related human enzymes and attenuate antibiotic resistance in Gram‐negatives that harbor inducible AmpC. To understand the structural basis for the selectivity of these inhibitors for NagZ, we have determined its crystallographic structure in complex with N‐valeryl‐PUGNAc, the most selective known inhibitor of NagZ over both the human β‐hexosaminidases and O‐GlcNAcase. The selectivity stems from the five‐carbon acyl chain of N‐valeryl‐PUGNAc, which we found ordered within the enzyme active site. In contrast, a structure determination of a human O‐GlcNAcase homologue bound to a related inhibitor N‐butyryl‐PUGNAc, which bears a four‐carbon chain and is selective for both NagZ and O‐GlcNAcase over the human β‐hexosamnidases, reveals that this inhibitor induces several conformational changes in the active site of this O‐GlcNAcase homologue. A comparison of these complexes, and with the human β‐hexosaminidases, reveals how selectivity for NagZ can be engineered by altering the 2‐N‐acyl substituent of PUGNAc to develop inhibitors that repress AmpC mediated β‐lactam resistance.  相似文献   

8.
Plant β‐galactosidases hydrolyze cell wall β‐(1,4)‐galactans to play important roles in cell wall expansion and degradation, and turnover of signaling molecules, during ripening. Tomato β‐galactosidase 4 (TBG4) is an enzyme responsible for fruit softening through the degradation of β‐(1,4)‐galactan in the pericarp cell wall. TBG4 is the only enzyme among TBGs 1–7 that belongs to the β‐galactosidase/exo‐β‐(1,4)‐galactanase subfamily. The enzyme can hydrolyze a wide range of plant‐derived (1,4)‐ or 4‐linked polysaccharides, and shows a strong ability to attack β‐(1,4)‐galactan. To gain structural insight into its substrate specificity, we determined crystal structures of TBG4 and its complex with β‐d ‐galactose. TBG4 comprises a catalytic TIM barrel domain followed by three β‐sandwich domains. Three aromatic residues in the catalytic site that are thought to be important for substrate specificity are conserved in GH35 β‐galactosidases derived from bacteria, fungi and animals; however, the crystal structures of TBG4 revealed that the enzyme has a valine residue (V548) replacing one of the conserved aromatic residues. The V548W mutant of TBG4 showed a roughly sixfold increase in activity towards β‐(1,6)‐galactobiose, and ~0.6‐fold activity towards β‐(1,4)‐galactobiose, compared with wild‐type TBG4. Amino acid residues corresponding to V548 of TBG4 thus appear to determine the substrate specificities of plant β‐galactosidases towards β‐1,4 and β‐1,6 linkages.  相似文献   

9.
Antibiotics have, indeed, altered the course of human history as is evidenced by the increase in human life expectancy since the 1940s. Many of these natural compounds are produced by bacteria that, by necessity, must have efficient self‐resistance mechanisms. The methymycin/pikromycin producing species Streptomyces venezuelae, for example, utilizes β‐glucosylation of its macrolide products to neutralize their effects within the confines of the cell. Once released into the environment, these compounds are activated by the removal of the glucose moiety. In S. venezuelae, the enzyme responsible for removal of the sugar from the parent compound is encoded by the desR gene and referred to as DesR. It is a secreted enzyme containing 828 amino acid residues, and it is known to be a retaining glycosidase. Here, we describe the structure of the DesR/D ‐glucose complex determined to 1.4‐Å resolution. The overall architecture of the enzyme can be envisioned in terms of three regions: a catalytic core and two auxiliary domains. The catalytic core harbors the binding platform for the glucose ligand. The first auxiliary domain adopts a “PA14 fold,” whereas the second auxiliary domain contains an immunoglobulin‐like fold. Asp 273 and Glu 578 are in the proper orientation to function as the catalytic base and proton donor, respectively, required for catalysis. The overall fold of the core region places DesR into the GH3 glycoside hydrolase family of enzymes. Comparison of the DesR structure with the β‐glucosidase from Kluyveromyces marxianus shows that their PA14 domains assume remarkably different orientations.  相似文献   

10.
A promising means of rapid screening of extended‐spectrum‐β‐lactamase (ESBL), AmpC β‐lactamase, and co‐production of ESBL and AmpC that combines resazurin chromogenic agar (RCA) with a combined disc method is here reported. Cefpodoxime (CPD) discs with and without clavulanic acid (CA), cloxacillin (CX) and CA+CX were evaluated against 86 molecularly confirmed β‐lactamase‐producing Enterobacteriaceae , including 15 ESBLs, 32 AmpCs, nine co‐producers of ESBL and AmpC and 30 carbapenemase producers. The CA and CX synergy test successfully detected all ESBL producers (100% sensitivity and 98.6% specificity) and all AmpC producers (100% sensitivity and 96.36% specificity). This assay also performed well in screening for co‐existence of ESBL and AmpC (88.89% sensitivity and 100% specificity). The RCA assay is simple and inexpensive and provides results within 7 hr. It can be performed in any microbiological laboratory, in particular, in geographic regions in which ESBL, AmpC or co‐β‐lactamase‐producing Enterobacteriaceae are endemic.
  相似文献   

11.
Serine β-lactamases contribute widely to the β-lactam resistance phenomena. Unfortunately, the intimate details of their catalytic mechanism remain elusive and subject to some controversy even though many “natural” and “artificial” mutants of these different enzymes have been isolated. This paper is essentially focused on class C β-lactamases, which contain a Tyr (Tyr150) as the first residue of the second conserved element, in contrast to their class A counterparts, in which a Ser is found in the corresponding position. We have modified this Tyr residue by site-directed mutagenesis. On the basis of the three-dimensional structure of the Enterobacter cloacae P99 enzyme, it seemed that residues Glu272 and His314 might also be important. They were similarly substituted. The modified enzymes were isolated and their catalytic properties determined. Our results indicated that His314 was not required for catalysis and that Glu272 did not play an important role in acylation but was involved to a small extent in the deacylation process. Conversely, Tyr150 was confirmed to be central for catalysis, at least with the best substrates. On the basis of a comparison of data obtained for several class C enzyme mutants and in agreement with recent structural data, we propose that the phenolate anion of Tyr150, in conjunction with the alkyl ammonium of Lys315, acts as the general base responsible for the activation of the active-site Ser64 during the acylation step and for the subsequent activation of a water molecule in the deacylation process. The evolution of the important superfamily of penicillin-recognizing enzymes is further discussed in the light of this proposed mechanism. © 1996 Wiley-Liss, Inc.  相似文献   

12.
A biocatalytic route for the synthesis of a potential β‐blocker, (S)‐moprolol is reported here. Enantiopure synthesis of moprolol is mainly dependent on the chiral intermediate, 3‐(2‐methoxyphenoxy)‐propane‐1,2‐diol. Various commercial lipases were screened for the enantioselective resolution of (RS)‐3‐(2‐methoxyphenoxy)propane‐1,2‐diol to produce the desired enantiomer. Among them, Aspergillus niger lipase (ANL) was selected on the basis of both stereo‐ and regioselectivity. The optimized values of various reaction parameters were determined such as enzyme (15 mg/mL), substrate concentration (10 mM), organic solvent (toluene), reaction temperature (30 °C), and time (18 h).The optimized conditions led to achieving >49% yield with high enantiomeric excess of (S)‐3‐(2‐methoxyphenoxy)propane‐1,2‐diol. The lipase‐mediated catalysis showed regioselective acylation with dual stereoselectivity. Further, the enantiopure intermediate was used for the synthesis of (S)‐moprolol, which afforded the desired β‐blocker. Chirality 28:313–318, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
NagZ is an N‐acetyl‐β‐d ‐glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram‐negative bacteria by removing N‐acetyl‐glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6‐anhydromuramoyl‐peptide products generated by NagZ activate β‐lactam resistance in many Gram‐negative bacteria by inducing the expression of AmpC β‐lactamase. Blocking NagZ activity can thereby suppress β‐lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X‐ray structures of NagZ bound to the potent yet non‐selective N‐acetyl‐β‐glucosaminidase inhibitor PUGNAc (O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidene) amino‐N‐phenylcarbamate), and two NagZ‐selective inhibitors – EtBuPUG, a PUGNAc derivative bearing a 2‐N‐ethylbutyryl group, and MM‐156, a 3‐N‐butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM‐156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N‐acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.  相似文献   

14.
Zhang W  Shi Q  Meroueh SO  Vakulenko SB  Mobashery S 《Biochemistry》2007,46(35):10113-10121
Penicillin-binding proteins (PBPs) and beta-lactamases are members of large families of bacterial enzymes. These enzymes undergo acylation at a serine residue with their respective substrates as the first step in their catalytic events. Penicillin-binding protein 5 (PBP 5) of Escherichia coli is known to perform a dd-carboxypeptidase reaction on the bacterial peptidoglycan, the major constituent of the cell wall. The roles of the active site residues Lys47 and Lys213 in the catalytic machinery of PBP 5 have been explored. By a sequence of site-directed mutagenesis and chemical modification, we individually introduced gamma-thialysine at each of these positions. The pH dependence of kcat/Km and of kcat for the wild-type PBP 5 and for the two gamma-thialysine mutant variants at positions 47 and 213 were evaluated. The pH optimum for the enzyme was at 9.5-10.5. The ascending limb to the pH optimum is due to Lys47; hence, this residue exists in the free-base form for catalysis. The descending limb from the pH optimum is contributed to by both Lys213 and a water molecule coordinated to Lys47. These results have been interpreted as Lys47 playing a key role in proton-transfer events in the course of catalysis during both the acylation and deacylation events. However, the findings for Lys213 argue for a protonated state at the pH optimum. Lys213 serves as an electrostatic anchor for the substrate.  相似文献   

15.
The diversity in substrate recognition spectra exhibited by various β‐lactamases can result from one or a few mutations in the active‐site area. Using Escherichia coli TEM‐1 β‐lactamase as a template that efficiently hydrolyses penicillins, we performed site‐saturation mutagenesis simultaneously on two opposite faces of the active‐site cavity. Residues 104 and 105 as well as 238, 240, and 244 were targeted to verify their combinatorial effects on substrate specificity and enzyme activity and to probe for cooperativity between these residues. Selection for hydrolysis of an extended‐spectrum cephalosporin, cefotaxime (CTX), led to the identification of a variety of novel mutational combinations. In vivo survival assays and in vitro characterization demonstrated a general tendency toward increased CTX and decreased penicillin resistance. Although selection was undertaken with CTX, productive binding (KM) was improved for all substrates tested, including benzylpenicillin for which catalytic turnover (kcat) was reduced. This indicates broadened substrate specificity, resulting in more generalized (or less specialized) variants. In most variants, the G238S mutation largely accounted for the observed properties, with additional mutations acting in an additive fashion to enhance these properties. However, the most efficient variant did not harbor the mutation G238S but combined two neighboring mutations that acted synergistically, also providing a catalytic generalization. Our exploration of concurrent mutations illustrates the high tolerance of the TEM‐1 active site to multiple simultaneous mutations and reveals two distinct mutational paths to substrate spectrum diversification.  相似文献   

16.
β‐lactamases confer antibiotic resistance, one of the most serious world‐wide health problems, and are an excellent theoretical and experimental model in the study of protein structure, dynamics and evolution. Bacillus licheniformis exo‐small penicillinase (ESP) is a Class‐A β‐lactamase with three tryptophan residues located in the protein core. Here, we report the 1.7‐Å resolution X‐ray structure, catalytic parameters, and thermodynamic stability of ESPΔW, an engineered mutant of ESP in which phenylalanine replaces the wild‐type tryptophan residues. The structure revealed no qualitative conformational changes compared with thirteen previously reported structures of B. licheniformis β‐lactamases (RMSD = 0.4–1.2 Å). However, a closer scrutiny showed that the mutations result in an overall more compact structure, with most atoms shifted toward the geometric center of the molecule. Thus, ESPΔW has a significantly smaller radius of gyration (Rg) than the other B. licheniformis β‐lactamases characterized so far. Indeed, ESPΔW has the smallest Rg among 126 Class‐A β‐lactamases in the Protein Data Bank (PDB). Other measures of compactness, like the number of atoms in fixed volumes and the number and average of noncovalent distances, confirmed the effect. ESPΔW proves that the compactness of the native state can be enhanced by protein engineering and establishes a new lower limit to the compactness of the Class‐A β‐lactamase fold. As the condensation achieved by the native state is a paramount notion in protein folding, this result may contribute to a better understanding of how the sequence determines the conformational variability and thermodynamic stability of a given fold.  相似文献   

17.
Cystathionine γ‐synthase (CGS) catalyzes the condensation of O‐succinyl‐L ‐homoserine (L ‐OSHS) and L ‐cysteine (L ‐Cys), to produce L ‐cystathionine (L ‐Cth) and succinate, in the first step of the bacterial transsulfuration pathway. In the absence of L ‐Cys, the enzyme catalyzes the futile α,γ‐elimination of L ‐OSHS, yielding succinate, α‐ketobutyrate, and ammonia. A series of 16 site‐directed variants of Escherichia coli CGS (eCGS) was constructed to probe the roles of active‐site residues D45, Y46, R48, R49, Y101, R106, N227, E325, S326, and R361. The effects of these substitutions on the catalytic efficiency of the α,γ‐elimination reaction range from a reduction of only ~2‐fold for R49K and the E325A,Q variants to 310‐ and 760‐fold for R361K and R48K, respectively. A similar trend is observed for the kcat/K of the physiological, α,γ‐replacement reaction. The results of this study suggest that the arginine residues at positions 48, 106 and 361 of eCGS, conserved in bacterial CGS sequences, tether the distal and α‐carboxylate moieties, respectively, of the L ‐OSHS substrate. In contrast, with the exception of the 13‐fold increase observed for R106A, the K is not markedly affected by the site‐directed replacement of the residues investigated. The decrease in kcat observed for the S326A variant reflects the role of this residue in tethering the side chain of K198, the catalytic base. Although no structures exist of eCGS bound to active‐site ligands, the roles of individual residues is consistent with the structures inhibitor complexes of related enzymes. Substitution of D45, E325, or Y101 enables a minor transamination activity for the substrate L ‐Ala.  相似文献   

18.
Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4‐hydroxy‐2‐ketobutyrate, a key reaction in producing 1,3‐propanediol (1,3‐PDO) from glucose in a novel glycerol‐independent metabolic pathway. To this end, a computation‐based rational approach is used to change the substrate specificity of SerC from l ‐phosphoserine to l ‐homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerCR42W/R77W, is successfully improved by 4.2‐fold in comparison to the wild type when l ‐homoserine is used as the substrate, while its activity toward the natural substrate l ‐phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3‐PDO production, the “homoserine to 1,3‐PDO” pathway is constructed in E. coli by coexpression of SerCR42W/R77W with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L?1 1,3‐PDO in fed‐batch fermentation, which is 13‐fold higher than the wild‐type strain and represents an important step forward to realize the promise of the glycerol‐independent synthetic pathway for 1,3‐PDO production from glucose.  相似文献   

19.
Many protein architectures exhibit evidence of internal rotational symmetry postulated to be the result of gene duplication/fusion events involving a primordial polypeptide motif. A common feature of such structures is a domain‐swapped arrangement at the interface of the N‐ and C‐termini motifs and postulated to provide cooperative interactions that promote folding and stability. De novo designed symmetric protein architectures have demonstrated an ability to accommodate circular permutation of the N‐ and C‐termini in the overall architecture; however, the folding requirement of the primordial motif is poorly understood, and tolerance to circular permutation is essentially unknown. The β‐trefoil protein fold is a threefold‐symmetric architecture where the repeating ~42‐mer “trefoil‐fold” motif assembles via a domain‐swapped arrangement. The trefoil‐fold structure in isolation exposes considerable hydrophobic area that is otherwise buried in the intact β‐trefoil trimeric assembly. The trefoil‐fold sequence is not predicted to adopt the trefoil‐fold architecture in ab initio folding studies; rather, the predicted fold is closely related to a compact “blade” motif from the β‐propeller architecture. Expression of a trefoil‐fold sequence and circular permutants shows that only the wild‐type N‐terminal motif definition yields an intact β‐trefoil trimeric assembly, while permutants yield monomers. The results elucidate the folding requirements of the primordial trefoil‐fold motif, and also suggest that this motif may sample a compact conformation that limits hydrophobic residue exposure, contains key trefoil‐fold structural features, but is more structurally homologous to a β‐propeller blade motif.  相似文献   

20.
AmpC beta-lactamase is a bacterial enzyme with great clinical impact as it mediates beta-lactam antibiotic resistance in many Gram-negative bacteria. To facilitate the structure-function relationship studies on this clinically important enzyme, we developed new strategies for production of recombinant Enterobacter cloacae P99 AmpC beta-lactamase in Bacillus subtilis. With the utilization of a special thermo-inducible phi105 phage system, functionally active AmpC beta-lactamase was expressed in B. subtilis, either in an extracellular native form or an intracellular N-terminal (His)(6)-tagged form. A higher expression level was achieved when expressing the enzyme as the intracellular (His)(6)-tagged protein rather than as the extracellular native protein. In addition, from the approach of producing intracellular tagged protein, highly pure (>95%) (His)(6)-tagged beta-lactamase wild-type and mutants (Y150C and K315C) were obtained after a one-step nickel affinity chromatography with a yield of 28.5, 66, and 0.85 mg/L of culture, respectively. Furthermore, the Y150C and K315C mutants were characterized so as to investigate the roles of the conserved residues, Tyr150 and Lys315, in the AmpC beta-lactamase. Severe impairment in hydrolytic abilities and restored secondary structures of the Y150C and K315C mutants suggested the major contribution of these two residues in the catalytic reaction rather than the structural framework in the AmpC enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号