首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Small monomeric proteins often fold in apparent two-state processes with folding speeds dictated by their native-state topology. Here we test, for the first time, the influence of monomer topology on the folding speed of an oligomeric protein: the heptameric cochaperonin protein 10 (cpn10), which in the native state has seven beta-barrel subunits noncovalently assembled through beta-strand pairing. Cpn10 is a particularly useful model because equilibrium-unfolding experiments have revealed that the denatured state in urea is that of a nonnative heptamer. Surprisingly, refolding of the nonnative cpn10 heptamer is a simple two-state kinetic process with a folding-rate constant in water (2.1 sec(-1); pH 7.0, 20 degrees C) that is in excellent agreement with the prediction based on the native-state topology of the cpn10 monomer. Thus, the monomers appear to fold as independent units, with a speed that correlates with topology, although the C and N termini are trapped in beta-strand pairing with neighboring subunits. In contrast, refolding of unfolded cpn10 monomers is dominated by a slow association step.  相似文献   

3.
Using a test set of 13 small, compact proteins, we demonstrate that a remarkably simple protocol can capture native topology from secondary structure information alone, in the absence of long-range interactions. It has been a long-standing open question whether such information is sufficient to determine a protein's fold. Indeed, even the far simpler problem of reconstructing the three-dimensional structure of a protein from its exact backbone torsion angles has remained a difficult challenge owing to the small, but cumulative, deviations from ideality in backbone planarity, which, if ignored, cause large errors in structure. As a familiar example, a small change in an elbow angle causes a large displacement at the end of your arm; the longer the arm, the larger the displacement. Here, correct secondary structure assignments (alpha-helix, beta-strand, beta-turn, polyproline II, coil) were used to constrain polypeptide backbone chains devoid of side chains, and the most stable folded conformations were determined, using Monte Carlo simulation. Just three terms were used to assess stability: molecular compaction, steric exclusion, and hydrogen bonding. For nine of the 13 proteins, this protocol restricts the main chain to a surprisingly small number of energetically favorable topologies, with the native one prominent among them.  相似文献   

4.
Contact order revisited: influence of protein size on the folding rate   总被引:13,自引:0,他引:13       下载免费PDF全文
Guided by the recent success of empirical model predicting the folding rates of small two-state folding proteins from the relative contact order (CO) of their native structures, by a theoretical model of protein folding that predicts that logarithm of the folding rate decreases with the protein chain length L as L(2/3), and by the finding that the folding rates of multistate folding proteins strongly correlate with their sizes and have very bad correlation with CO, we reexamined the dependence of folding rate on CO and L in attempt to find a structural parameter that determines folding rates for the totality of proteins. We show that the Abs_CO = CO x L, is able to predict rather accurately folding rates for both two-state and multistate folding proteins, as well as short peptides, and that this Abs_CO scales with the protein chain length as L(0.70 +/- 0.07) for the totality of studied single-domain proteins and peptides.  相似文献   

5.
The topology of helical membrane proteins is generally defined during insertion of the transmembrane helices, yet it is now clear that it is possible for topology to change under unusual circumstances. It remains unclear, however, if topology reorientation is part of normal biogenesis. For dual topology dimer proteins such as the multidrug transporter EmrE, there may be evolutionary pressure to allow topology flipping so that the populations of both orientations can be equalized. We previously demonstrated that when EmrE is forced to insert in a distorted topology, topology flipping of the first transmembrane helix can occur during translation. Here, we show that topological malleability also extends to the C‐terminal helix and that even complete topology inversion of the entire EmrE protein can occur after the full protein is translated and inserted. Thus, topology rearrangements are possible during normal biogenesis. Wholesale topology flipping is remarkable given the physical constraints of the membrane and expands the range of possible membrane protein folding pathways, both productive and detrimental.  相似文献   

6.
McGuffin LJ  Jones DT 《Proteins》2002,48(1):44-52
The ultimate goal of structural genomics is to obtain the structure of each protein coded by each gene within a genome to determine gene function. Because of cost and time limitations, it remains impractical to solve the structure for every gene product experimentally. Up to a point, reasonably accurate three‐dimensional structures can be deduced for proteins with homologous sequences by using comparative modeling. Beyond this, fold recognition or threading methods can be used for proteins showing little homology to any known fold, although this is relatively time‐consuming and limited by the library of template folds currently available. Therefore, it is appropriate to develop methods that can increase our knowledge base, expanding our fold libraries by earmarking potentially “novel” folds for experimental structure determination. How can we sift through proteomic data rapidly and yet reliably identify novel folds as targets for structural genomics? We have analyzed a number of simple methods that discriminate between “novel” and “known” folds. We propose that simple alignments of secondary structure elements using predicted secondary structure could potentially be a more selective method than both a simple fold recognition method (GenTHREADER) and standard sequence alignment at finding novel folds when sequences show no detectable homology to proteins with known structures. Proteins 2002;48:44–52. © 2002 Wiley‐Liss, Inc.  相似文献   

7.
We demonstrate that chain length is the main determinant of the folding rate for proteins with the three-state folding kinetics. The logarithm of their folding rate in water (k(f)) strongly anticorrelates with their chain length L (the correlation coefficient being -0.80). At the same time, the chain length has no correlation with the folding rate for two-state folding proteins (the correlation coefficient is -0.07). Another significant difference of these two groups of proteins is a strong anticorrelation between the folding rate and Baker's "relative contact order" for the two-state folders and the complete absence of such correlation for the three-state folders.  相似文献   

8.
Many single-domain proteins exhibit two-state folding kinetics, with folding rates that span more than six orders of magnitude. A quantity of much recent interest for such proteins is their contact order, the average separation in sequence between contacting residue pairs. Numerous studies have reached the surprising conclusion that contact order is well-correlated with the logarithm of the folding rate for these small, well-characterized molecules. Here, we investigate the physico-chemical basis for this finding by asking whether contact order is actually a composite number that measures the fraction of local secondary structure in the protein; viz. turns, helices, and hairpins. To pursue this question, we calculated the secondary structure content for 24 two-state proteins and obtained coefficients that predict their folding rates. The predicted rates correlate strongly with experimentally determined rates, comparable to the correlation with contact order. Further, these predicted folding rates are correlated strongly with contact order. Our results suggest that the folding rate of two-state proteins is a function of their local secondary structure content, consistent with the hierarchic model of protein folding. Accordingly, it should be possible to utilize secondary structure prediction methods to predict folding rates from sequence alone.  相似文献   

9.
We report an interesting case of structural similarity between 2 small, nonhomologous proteins, the third domain of ovomucoid (ovomucoid) and the C-terminal fragment of ribosomal L7/L12 protein (CTF). The region of similarity consists of a 3-stranded beta-sheet and an alpha-helix. This region is highly similar; the corresponding elements of secondary structure share a common topology, and the RMS difference for "equivalent" C alpha atoms is 1.6 A. Surprisingly, this common structure arises from completely different sequences. For the common core, the sequence identity is less than 3%, and there is neither significant sequence similarity nor similarity in the position or orientation of conserved hydrophobic residues. This superposition raises the question of how 2 entirely different sequences can produce an identical structure. Analyzing this common region in ovomucoid revealed that it is stabilized by disulfide bonds. In contrast, the corresponding structure in CTF is stabilized in the alpha-helix by a composition of residues with high helix-forming propensities. This result suggests that different sequences and different stabilizing interactions can produce an identical structure.  相似文献   

10.

Background

Guide-trees are used as part of an essential heuristic to enable the calculation of multiple sequence alignments. They have been the focus of much method development but there has been little effort at determining systematically, which guide-trees, if any, give the best alignments. Some guide-tree construction schemes are based on pair-wise distances amongst unaligned sequences. Others try to emulate an underlying evolutionary tree and involve various iteration methods.

Results

We explore all possible guide-trees for a set of protein alignments of up to eight sequences. We find that pairwise distance based default guide-trees sometimes outperform evolutionary guide-trees, as measured by structure derived reference alignments. However, default guide-trees fall way short of the optimum attainable scores. On average chained guide-trees perform better than balanced ones but are not better than default guide-trees for small alignments.

Conclusions

Alignment methods that use Consistency or hidden Markov models to make alignments are less susceptible to sub-optimal guide-trees than simpler methods, that basically use conventional sequence alignment between profiles. The latter appear to be affected positively by evolutionary based guide-trees for difficult alignments and negatively for easy alignments. One phylogeny aware alignment program can strongly discriminate between good and bad guide-trees. The results for randomly chained guide-trees improve with the number of sequences.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-338) contains supplementary material, which is available to authorized users.  相似文献   

11.
This review compares the folding behavior of proteins and RNAs. Topics covered include the role of topology in the determination of folding rates, major folding events including collapse, properties of denatured states, pathway heterogeneity, and the influence of the mode of initiation on the folding pathway.  相似文献   

12.
Bastolla U  Bruscolini P  Velasco JL 《Proteins》2012,80(9):2287-2304
In comparison with intense investigation of the structural determinants of protein folding rates, the sequence features favoring fast folding have received little attention. Here, we investigate this subject using simple models of protein folding and a statistical analysis of the Protein Data Bank (PDB). The mean-field model by Plotkin and coworkers predicts that the folding rate is accelerated by stronger-than-average interactions at short distance along the sequence. We confirmed this prediction using the Finkelstein model of protein folding, which accounts for realistic features of polymer entropy. We then tested this prediction on the PDB. We found that native interactions are strongest at contact range l = 8. However, since short range contacts tend to be exposed and they are frequently formed in misfolded structures, selection for folding stability tends to make them less attractive, that is, stability and kinetics may have contrasting requirements. Using a recently proposed model, we predicted the relationship between contact range and contact energy based on buriedness and contact frequency. Deviations from this prediction induce a positive correlation between contact range and contact energy, that is, short range contacts are stronger than expected, for 2/3 of the proteins. This correlation increases with the absolute contact order (ACO), as expected if proteins that tend to fold slowly due to large ACO are subject to stronger selection for sequence features favoring fast folding. Our results suggest that the selective pressure for fast folding is detectable only for one third of the proteins in the PDB, in particular those with large contact order.  相似文献   

13.
Newly determined protein structures are classified to belong to a new fold, if the structures are sufficiently dissimilar from all other so far known protein structures. To analyze structural similarities of proteins, structure alignment tools are used. We demonstrate that the usage of nonsequential structure alignment tools, which neglect the polypeptide chain connectivity, can yield structure alignments with significant similarities between proteins of known three-dimensional structure and newly determined protein structures that possess a new fold. The recently introduced protein structure alignment tool, GANGSTA, is specialized to perform nonsequential alignments with proper assignment of the secondary structure types by focusing on helices and strands only. In the new version, GANGSTA+, the underlying algorithms were completely redesigned, yielding enhanced quality of structure alignments, offering alignment against a larger database of protein structures, and being more efficient. We applied DaliLite, TM-align, and GANGSTA+ on three protein crystal structures considered to be novel folds. Applying GANGSTA+ to these novel folds, we find proteins in the ASTRAL40 database, which possess significant structural similarities, albeit the alignments are nonsequential and in some cases involve secondary structure elements aligned in reverse orientation. A web server is available at http://agknapp.chemie.fu-berlin.de/gplus for pairwise alignment, visualization, and database comparison.  相似文献   

14.
Kuznetsov IB  Rackovsky S 《Proteins》2004,54(2):333-341
Small single-domain proteins that fold by simple two-state kinetics have been shown to exhibit a wide variation in their folding rates. It has been proposed that folding mechanisms in these proteins are largely determined by the native-state topology, and a significant correlation between folding rate and measures of the average topological complexity, such as relative contact order (RCO), has been reported. We perform a statistical analysis of folding rate and RCO in all three major structural classes (alpha, beta, and alpha/beta) of small two-state proteins and of RCO in groups of analogous and homologous small single-domain proteins with the same topology. We also study correlation between folding rate and the average physicochemical properties of amino acid sequences in two-state proteins. Our results indicate that 1) helical proteins have statistically distinguishable, class-specific folding rates; 2) RCO accounts for essentially all the variation of folding rate in helical proteins, but for only a part of the variation in beta-sheet-containing proteins; and 3) only a small fraction of the protein topologies studied show a topology-specific RCO. We also report a highly significant correlation between the folding rate and average intrinsic structural propensities of protein sequences. These results suggest that intrinsic structural propensities may be an important determinant of the rate of folding in small two-state proteins.  相似文献   

15.
We have used molecular dynamics simulations restrained by experimental phi values derived from protein engineering experiments to determine the structures of the transition state ensembles of ten proteins that fold with two-state kinetics. For each of these proteins we then calculated the average contact order in the transition state ensemble and compared it with the corresponding experimental folding rate. The resulting correlation coefficient is similar to that computed for the contact orders of the native structures, supporting the use of native state contact orders for predicting folding rates. The native contacts in the transition state also correlate with those of the native state but are found to be about 30% lower. These results show that, despite the high levels of heterogeneity in the transition state ensemble, the large majority of contributing structures have native-like topologies and that the native state contact order captures this phenomenon.  相似文献   

16.
Voelz VA  Dill KA 《Proteins》2007,66(4):877-888
It has been proposed that proteins fold by a process called "Zipping and Assembly" (Z&A). Zipping refers to the growth of local substructures within the chain, and assembly refers to the coming together of already-formed pieces. Our interest here is in whether Z&A is a general method that can fold most of sequence space, to global minima, efficiently. Using the HP model, we can address this question by enumerating full conformation and sequence spaces. We find that Z&A reaches the global energy minimum native states, even though it searches only a very small fraction of conformational space, for most sequences in the full sequence space. We find that Z&A, a mechanism-based search, is more efficient in our tests than the replica exchange search method. Folding efficiency is increased for chains having: (a) small loop-closure steps, consistent with observations by Plaxco et al. 1998;277;985-994 that folding rates correlate with contact order, (b) neither too few nor too many nucleation sites per chain, and (c) assembly steps that do not occur too early in the folding process. We find that the efficiency increases with chain length, although our range of chain lengths is limited. We believe these insights may be useful for developing faster protein conformational search algorithms.  相似文献   

17.
Jung J  Lee J  Moon HT 《Proteins》2005,58(2):389-395
For proteins that fold by two-state kinetics, the folding and unfolding processes are believed to be closely related to their native structures. In particular, folding and unfolding rates are influenced by the native structures of proteins. Thus, we focus on finding important topological quantities from a protein structure that determine its unfolding rate. After constructing graphs from protein native structures, we investigate the relationships between unfolding rates and various topological quantities of the graphs. First, we find that the correlation between the unfolding rate and the contact order is not as prominent as in the case of the folding rate and the contact order. Next, we investigate the correlation between the unfolding rate and the clustering coefficient of the graph of a protein native structure, and observe no correlation between them. Finally, we find that a newly introduced quantity, the impact of edge removal per residue, has a good overall correlation with protein unfolding rates. The impact of edge removal is defined as the ratio of the change of the average path length to the edge removal probability. From these facts, we conclude that the protein unfolding process is closely related to the protein native structure.  相似文献   

18.
The folding of naturally occurring, single-domain proteins is usually well described as a simple, single-exponential process lacking significant trapped states. Here we further explore the hypothesis that the smooth energy landscape this implies, and the rapid kinetics it engenders, arises due to the extraordinary thermodynamic cooperativity of protein folding. Studying Miyazawa-Jernigan lattice polymers, we find that, even under conditions where the folding energy landscape is relatively optimized (designed sequences folding at their temperature of maximum folding rate), the folding of protein-like heteropolymers is accelerated when their thermodynamic cooperativity is enhanced by enhancing the nonadditivity of their energy potentials. At lower temperatures, where kinetic traps presumably play a more significant role in defining folding rates, we observe still greater cooperativity-induced acceleration. Consistent with these observations, we find that the folding kinetics of our computational models more closely approximates single-exponential behavior as their cooperativity approaches optimal levels. These observations suggest that the rapid folding of naturally occurring proteins is, in part, a consequence of their remarkably cooperative folding.  相似文献   

19.
We have collected the kinetic folding data for non-two-state and two-state globular proteins reported in the literature, and investigated the relationships between the folding kinetics and the native three-dimensional structure of these proteins. The rate constants of formation of both the intermediate and the native state of non-two-state folders were found to be significantly correlated with protein chain length and native backbone topology, which is represented by the absolute contact order and sequence-distant native pairs. The folding rate of two-state folders, which is known to be correlated with the native backbone topology, apparently does not correlate significantly with protein chain length. On the basis of a comparison of the folding rates of the non-two-state and two-state folders, it was found that they are similarly dependent on the parameters that reflect the native backbone topology. This suggests that the mechanisms behind non-two-state and two-state folding are essentially identical. The present results lead us to propose a unified mechanism of protein folding, in which folding occurs in a hierarchical manner, reflecting the hierarchy of the native three-dimensional structure, as embodied in the case of non-two-state folding with an accumulation of the intermediate. Apparently, two-state folding is merely a simplified version of hierarchical folding caused either by an alteration in the rate-limiting step of folding or by destabilization of the intermediate.  相似文献   

20.
Dixit PD  Weikl TR 《Proteins》2006,64(1):193-197
The folding rates of two-state proteins have been found to correlate with simple measures of native-state topology. The most prominent among these measures is the relative contact order (CO), which is the average CO, or localness, of all contacts in the native protein structure, divided by the chain length. Here, we test whether such measures can be generalized to capture the effect of chain crosslinks on the folding rate. Crosslinks change the chain connectivity and therefore also the localness of some of the native contacts. These changes in localness can be taken into account by the graph-theoretical concept of effective contact order (ECO). The relative ECO, however, the natural extension of the relative CO for proteins with crosslinks, overestimates the changes in the folding rates caused by crosslinks. We suggest here a novel measure of native-state topology, the relative logCO, and its natural extension, the relative logECO. The relative logCO is the average value for the logarithm of the CO of all contacts, divided by the logarithm of the chain length. The relative log(E)CO reproduces the folding rates of a set of 26 two-state proteins without crosslinks with essentially the same high correlation coefficient as the relative CO. In addition, it also captures the folding rates of eight two-state proteins with crosslinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号