首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We have inserted a tryptophan (F77W) in the core of the regulatory domain of cardiac troponin C (cNTnC), and previously determined the structure of this mutant with and without the cosolvent trifluoroethanol (TFE). Interestingly, the orientations of the indole side chain of the Trp are in opposite directions in the two structures (Julien et al., Protein Sci 2009; 18:1165-1174). Fluorescence decay experiments for single Trp-containing proteins often show several lifetimes, which have been interpreted as reflecting conformational heterogeneity of the Trp side chain resulting from different rotamers. To test this interpretation, we monitored the effect of TFE on wild type, F77W and F77W-V82A calcium-saturated cNTnC using 2D (13)C-HSQC NMR and time-correlated single photon counting fluorescence spectroscopies. The time dependence of the Trp fluorescence decay was fit with three lifetimes. Addition of TFE caused a gradual, but limited decrease of the lifetimes due to dynamic quenching. For F77W cNTnC, the amplitude fractions of the lifetimes also changed upon addition of TFE-the long lifetime increased from 13 to 29%, while the middle lifetime decreased from 63 to 50% and the short lifetime remained relatively unchanged. For F77W-V82A cNTnC, comparable NMR changes are observed, confirming the switch in rotamer conformation, but only much smaller changes in fluorescence decay parameters were detected. These data indicate that the balance between the rotamer states can be changed without changing the lifetime amplitude fractions appreciably, and suggest that the environment(s) of the indole ring, responsible for the different lifetimes, can result from factors other than the intrinsic rotamer state of the tryptophan.  相似文献   

2.
The cardiac-specific N-terminus of cardiac troponin I (cTnI) is known to modulate the activity of troponin upon phosphorylation with protein kinase A (PKA) by decreasing its Ca2+ affinity and increasing the relaxation rate of the thin filament. The molecular details of this modulation have not been elaborated to date. We have established that the N-terminus and the switch region of cTnI bind to cNTnC [the N-domain of cardiac troponin C (cTnC)] simultaneously and that the PKA signal is transferred via the cTnI N-terminus modulating the cNTnC affinity toward cTnI147-163 but not toward Ca2+. The Kd of cNTnC for cTnI147-163 was found to be 600 μM in the presence of cTnI1-29 and 370 μM in the presence of cTn11-29PP, which can explain the difference in muscle relaxation rates upon the phosphorylation with PKA in experiments with cardiac fibers. In the light of newly found mutations in cNTnC that are associated with cardiomyopathies, the important role played by the cTnI N-terminus in the development of heart disorders emerges. The mutants studied, L29Q (the N-domain of cTnC containing mutation L29Q) and E59D/D75Y (the N-domain of cTnC containing mutation E59D/D75Y), demonstrated unchanged Ca2+ affinity per se and in complex with the cTnI N-terminus (cTnI1-29 and cTnI1-29PP). The affinity of L29Q and E59D/D75Y toward cTnI147-163 was significantly perturbed, both alone and in complex with cTnI1-29 and cTnI1-29PP, which is likely to be responsible for the development of malfunctions.  相似文献   

3.
The compound MCI-154 was previously shown to increase the calcium sensitivity of cardiac muscle contraction. Using solution NMR spectroscopy, we demonstrate that MCI-154 interacts with the calcium-sensing subunit of the cardiac troponin complex, cardiac troponin C (cTnC). Surprisingly, however, it binds only to the structural C-terminal domain of cTnC (cCTnC), and not to the regulatory N-terminal domain (cNTnC) that determines the calcium sensitivity of cardiac muscle.Physiologically, cTnC is always bound to cardiac troponin I (cTnI), so we examined its interaction with MCI-154 in the presence of two soluble constructs, cTnI1–77 and cTnI135–209, which contain all of the segments of cTnI known to interact with cTnC. Neither the cTnC-cTnI1–77 complex nor the cTnC-cTnI135–209 complex binds to MCI-154. Since residues 39–60 of cTnI are known to bind tightly to the cCTnC domain to form a structured core that is invariant throughout the cardiac cycle, we conclude that MCI-154 does not bind to cTnC when it is part of the intact cardiac troponin complex. Thus, MCI-154 likely exerts its calcium sensitizing effect by interacting with a target other than cardiac troponin.  相似文献   

4.
Cardiac troponin (cTn) is made up of three subunits, cTnC, cTnI, and cTnT. The regulatory N-terminal domain of cTnC (cNTnC) controls cardiac muscle contraction in a calcium-dependent manner. We show that calcium-saturated cNTnC can adopt two different orientations, with the “active” orientation consistent with the 2020 cryo-EM structure of the activated cardiac thin filament by Yamada et al. Using solution NMR 15N R2 relaxation analysis, we demonstrate that the two domains of cTnC tumble independently (average R2 10 s−1), being connected by a flexible linker. However, upon addition of cTnI1-77, the complex tumbles as a rigid unit (R2 30 s−1). cTnI phosphomimetic mutants S22D/S23D, S41D/S43D and dilated cardiomyopathy- (DCM-)associated mutations cTnI K35Q, cTnC D75Y, and cTnC G159D destabilize the active orientation of cNTnC, with intermediate 15N R2 rates (R2 17–23 s−1). The active orientation of cNTnC is stabilized by the flexible tails of cTnI, cTnI1-37 and cTnI135-209. Surprisingly, when cTnC is incorporated into complexes lacking these tails (cTnC-cTnI38-134, cTnC-cTnT223-288, or cTnC-cTnI38-134-cTnT223-288), the cNTnC domain is still immobilized, revealing a new interaction between cNTnC and the IT-arm that stabilizes a “dormant” orientation. We propose that the calcium sensitivity of the cardiac troponin complex is regulated by an equilibrium between active and dormant orientations, which can be shifted through post-translational modifications or DCM-associated mutations.  相似文献   

5.
In situ fluorescence/NMR spectroscopic approaches have been used to elucidate the structure, mobility, and domain orientations of troponin C in striated muscle. This led us to consider complementary approaches such as solid-state NMR spectroscopy. The biophysical properties of tryptophan and Trp-analogues, such as fluorotryptophan or hydroxytryptophan, are often exploited to probe protein structure and dynamics using solid-state NMR or fluorescence spectroscopy. We have characterized Phe-to-Trp mutants in the 'structural' C-domain of cardiac troponin C, designed to immobilize the indole ring in the hydrophobic core of the domain. The mutations and their fluorinated analogues (F104W, F104(5fW), F153W, and F153(5fW)) were shown not to perturb the structural properties of the protein. In this paper, we characterize the mutations F77W and F77W-V82A in the 'regulatory' N-domain of cardiac troponin C. We used NMR to determine the structure and dynamics of the mutant F77W-V82A-cNTnC, which shows a unique orientation of the indole ring. We observed a decrease in calcium binding affinity and a weaker affinity for the switch region of TnI for both mutants. We present force recovery measurements for all of the N- and C-domain mutants reconstituted into skeletal muscle fibers. The F77W mutation leads to a reduction of the in situ force recovery, whereas the C-domain mutants have the same activity as the wild type. These results suggest that the perturbations of the N-domain caused by the Trp mutation disturb the interaction between TnC and TnI, which in turn diminishes the activity in fibers, providing a clear example of the correlation between in vitro protein structures, their interactions, and the resulting in situ physiological activity.  相似文献   

6.
The interaction of Cardiac Troponin C (cTnC) and Cardiac Troponin I (cTnI) plays a critical role in transmitting the Ca (2+) signal to the other myofilament proteins in the activation of cardiac muscle contraction. As such, the cTnC-cTnI interface is a logical target for cardiotonic agents such as levosimendan that can modulate the Ca (2+) sensitivity of the myofilaments. Evidence indicates that drug candidates may exert their effects by targeting a site formed by binding of the switch region of cTnI to the regulatory N domain of cTnC (cNTnC). In this study, we utilized two-dimensional (1)H- (15)N HSQC NMR spectroscopy to monitor the binding of levosimendan and its analogues, CMDP, AMDP, CI-930, imazodan, and MPDP, to cNTnC.Ca (2+) in complex with two versions of the switch region of cTnI (cTnI 147-163 and cTnI 144-163). Levosimendan, CMDP, AMDP, and CI-930 were found to bind to both cNTnC.Ca (2+).cTnI 147-163 and cNTnC.Ca (2+).cTnI 144-163 complexes. These compounds contain a methyl group that is absent in MPDP or imazodan. Thus, the methyl group is one of the pharmacophores responsible for the action of these pyridazinone drugs on cTnC. Furthermore, the results showed that the cNTnC.Ca (2+).cTnI 144-163 complex presents a higher-affinity binding site for these compounds than the cNTnC.Ca (2+).cTnI 147-163 complex. This is consistent with our observation that the affinity of cTnI 144-163 for cNTnC.Ca (2+) is approximately 10-fold stronger than that of cTnI 147-163, likely a result of electrostatic forces between the N-terminal RRV extension in cTnI 144-163 and the acidic residues in the C and D helices of cNTnC. These results will help in the delineation of the mode of action of levosimendan on the important functional unit of cardiac troponin that constitutes the regulatory domain of cTnC and the switch region of cTnI.  相似文献   

7.
Cardiac troponin C (cTnC) is the Ca(2+)-dependent switch for contraction in heart muscle and a potential target for drugs in the therapy of heart failure. Ca(2+) binding to the regulatory domain of cTnC (cNTnC) induces little structural change but sets the stage for cTnI binding. A large "closed" to "open" conformational transition occurs in the regulatory domain upon binding cTnI(147-163) or bepridil. This raises the question of whether cTnI(147-163) and bepridil compete for cNTnC.Ca(2+). In this work, we used two-dimensional (1)H,(15)N-heteronuclear single quantum coherence (HSQC) NMR spectroscopy to examine the binding of bepridil to cNTnC.Ca(2+) in the absence and presence of cTnI(147-163) and of cTnI(147-163) to cNTnC.Ca(2+) in the absence and presence of bepridil. The results show that bepridil and cTnI(147-163) bind cNTnC.Ca(2+) simultaneously but with negative cooperativity. The affinity of cTnI(147-163) for cNTnC.Ca(2+) is reduced approximately 3.5-fold by bepridil and vice versa. Using multinuclear and multidimensional NMR spectroscopy, we have determined the structure of the cNTnC.Ca(2+).cTnI(147-163).bepridil ternary complex. The structure reveals a binding site for cTnI(147-163) primarily located on the A/B interhelical interface and a binding site for bepridil in the hydrophobic pocket of cNTnC.Ca(2+). In the structure, the N terminus of the peptide clashes with part of the bepridil molecule, which explains the negative cooperativity between cTnI(147-163) and bepridil for cNTnC.Ca(2+). This structure provides insights into the features that are important for the design of cTnC-specific cardiotonic drugs, which may be used to modulate the Ca(2+) sensitivity of the myofilaments in heart muscle contraction.  相似文献   

8.
BackgroundCardiac troponin I (cTnI) has two flexible tails that control the cardiac cycle. The C-terminal tail, cTnI135–209, binds actin to shut off cardiac muscle contraction, whereas the competing calcium-dependent binding of the switch region, cTnI146–158, by cardiac troponin C (cTnC) triggers contraction. The N-terminal tail, cTnI1–37, regulates the calcium affinity of cTnC. cTnI is known to be susceptible to proteolytic cleavage by matrix metalloproteinase-2 (MMP-2) and calpain, two intracellular proteases implicated in ischemia-reperfusion injury.MethodsSoluble fragments of cTnI containing its N- and C-terminal tails, cTnI1–77 and cTnI135–209, were highly expressed and purified from E. coli. We performed in vitro proteolysis studies of both constructs using liquid chromatography-mass spectrometry and solution NMR studies of the C-terminal tail.ResultscTnI135–209 is intrinsically disordered, though it contains three regions with helical propensity (including the switch region) that acquire more structure upon actin binding. We identified three precise MMP-2 cleavage sites at cTnI P17-I18, A156-L157, and G199-M200. In contrast, calpain-2 has numerous cleavage sites throughout Y25-T30 and A152-A160. The critical cTnI switch region is targeted by both proteases.ConclusionsBoth N-terminal and C-terminal tails of cTnI are susceptible to cleavage by MMP-2 and calpain-2. Binding to cTnC or actin confers some protection to proteolysis, which can be understood in terms of their interactions as probed by NMR studies.General significancecTnI is an important marker of intracellular proteolysis in cardiomyocytes, given its many protease-specific cut sites, high natural abundance, indispensable functional role, and clinical use as gold standard biomarker of myocardial injury.  相似文献   

9.
The spectral properties of three tryptophan-substituted mutants of recombinant chicken troponin C are compared. Site-specific mutagenesis was used to introduce a tryptophan residue into the high-affinity (Ca2+/Mg2+) domain of troponin C at residue position 105, thereby creating the mutant phenylalanine-105 to tryptophan (F105W). The spectral properties of F105W and a double mutant, F29W/F105W, were compared with the mutant phenylalanine-29 to tryptophan (F29W). Since wild-type chicken troponin C does not naturally contain either tyrosine or tryptophan residues, the tryptophan substitutions behaved as site-specific reporters of metal ion binding and conformational change. The residues that occupy positions 29 and 105 are at homologous locations in low-affinity and high-affinity domains, preceding the first liganding residues of binding loops I and III, respectively. Mutant proteins were examined by a combination of absorbance and fluorescence methods. Calcium induced significant changes in the near-UV absorbance spectra, fluorescence emission spectra, and far-UV circular dichroism of all three mutant proteins. Magnesium induced significant changes in the spectral properties of only F105W and F29W/F105W proteins. Tryptophan substitutions allowed Ca(2+)-specific and Ca(2+)/Mg(2+) sites to be titrated independently of one another. Results indicate that there is no interaction between the two binding domains under conditions where troponin C is isolated from the troponin complex. Magnesium-induced changes in the environment of the tryptophan reporter at position 105 were significantly different from those induced by calcium. This suggests that calcium and magnesium differ in their influence on the conformation of the high-affinity, Ca(2+)/Mg(2+) sites.  相似文献   

10.
Li MX  Wang X  Lindhout DA  Buscemi N  Van Eyk JE  Sykes BD 《Biochemistry》2003,42(49):14460-14468
We have utilized 2D [(1)H,(15)N]HSQC NMR spectroscopy to elucidate the binding of three segments of cTnI in native, phosphorylated, and mutated states to cTnC. The near N-terminal region (cRp; residues 34-71) contains the protein kinase C (PKC) phosphorylation sites S41 and S43, the inhibitory region (cIp; residues 128-147) contains another PKC site T142 and a familial hypertrophic cardiomyopathy (FHC) mutation R144G, and the switch region (cSp; residues 147-163) contains the novel p21-activated kinase (PAK) site S149 and another FHC mutation R161W. While S41/S43 phosphorylation of cRp had minimal disruption in the interaction of cRp and cTnC.3Ca(2+), T142 phosphorylation reduced the affinity of cIp for cCTnC.2Ca(2+) by approximately 14-fold and S149 phosphorylation reduced the affinity of cSp for cNTnC.Ca(2+) by approximately 10-fold. The mutation R144G caused an approximately 6-fold affinity decrease of cIp for cCTnC.2Ca(2+) and mutation R161W destabilized the interaction of cSp and cNTnC.Ca(2+) by approximately 1.4-fold. When cIp was both T142 phosphorylated and R144G mutated, its affinity for cCTnC.2Ca(2+) was reduced approximately 19-fold, and when cSp was both S149 phosphorylated and R161W mutated, its affinity for cNTnC.Ca(2+) was reduced approximately 4-fold. Thus, while the FHC mutation R144G enhances the effect of T142 phosphorylation on the interaction of cIp and cCTnC.2Ca(2+), the FHC mutation R161W suppresses the effect of S149 phosphorylation on the interaction of cSp and cNTnC.Ca(2+), demonstrating linkages between the FHC mutation and phosphorylation of cTnI. The observed alterations corroborate well with structural data. These results suggest that while the modifications in the cRp region have minimal influence, those in the key functional cIp-cSp region have a pronounced effect on the interaction of cTnI and cTnC, which may correlate with the altered myofilament function and cardiac muscle contraction under pathophysiological conditions.  相似文献   

11.
To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and (19)F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ((5F)W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that (5F)W incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when (5F)W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. (19)F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each (5F)W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.  相似文献   

12.
The amino-terminal regulatory domain of cardiac troponin C (cNTnC) plays an important role as the calcium sensor for the troponin complex. Calcium binding to cNTnC results in conformational changes that trigger a cascade of events that lead to cardiac muscle contraction. The cardiac N-terminal domain of TnC consists of two EF-hand calcium binding motifs, one of which is dysfunctional in binding calcium. Nevertheless, the defunct EF-hand still maintains a role in cNTnC function. For its structural analysis by X-ray crystallography, human cNTnC with the wild-type primary sequence was crystallized under a novel crystallization condition. The crystal structure was solved by the single-wavelength anomalous dispersion method and refined to 2.2 Å resolution. The structure displays several novel features. Firstly, both EF-hand motifs coordinate cadmium ions derived from the crystallization milieu. Secondly, the ion coordination in the defunct EF-hand motif accompanies unusual changes in the protein conformation. Thirdly, deoxycholic acid, also derived from the crystallization milieu, is bound in the central hydrophobic cavity. This is reminiscent of the interactions observed for cardiac calcium sensitizer drugs that bind to the same core region and maintain the “open” conformational state of calcium-bound cNTnC. The cadmium ion coordination in the defunct EF-hand indicates that this vestigial calcium binding site retains the structural and functional elements that allow it to coordinate a cadmium ion. However, it is a result of, or concomitant with, large and unusual structural changes in cNTnC.  相似文献   

13.
Platt GW  Simpson SA  Layfield R  Searle MS 《Biochemistry》2003,42(46):13762-13771
A F45W mutant of yeast ubiquitin has been used as a model system to examine the effects of nonnative local interactions on protein folding and stability. Mutating the native TLTGK G-bulged type I turn in the N-terminal beta-hairpin to NPDG stabilizes a nonnative beta-strand alignment in the isolated peptide fragment. However, NMR structural analysis of the native and mutant proteins shows that the NPDG mutant is forced to adopt the native beta-strand alignment and an unfavorable type I NPDG turn. The mutant is significantly less stable (approximately 9 kJ mol(-1)) and folds 30 times slower than the native sequence, demonstrating that local interactions can modulate protein stability and that attainment of a nativelike beta-hairpin conformation in the transition state ensemble is frustrated by the turn mutations. Surprising, alcoholic cosolvents [5-10% (v/v) TFE] are shown to accelerate the folding rate of the NPDG mutant. We conclude, backed-up by NMR data on the peptide fragments, that even though nonnative states in the denatured ensemble are highly populated and their stability further enhanced in the presence of cosolvents, the simultaneous increase in the proportion of nativelike secondary structure (hairpin or helix), in rapid equilibrium with nonnative states, is sufficient to accelerate the folding process. It is evident that modulating local interactions and increasing nonnative secondary structure propensities can change protein stability and folding kinetics. However, nonlocal contacts formed in the global cooperative folding event appear to determine structural specificity.  相似文献   

14.
Cardiac troponin C belongs to the EF-hand superfamily of calcium-binding proteins and plays an essential role in the regulation of muscle contraction and relaxation. To follow calcium binding and exchange with the regulatory N-terminal domain (N-domain) of human cardiac troponin C, we substituted Phe at position 27 with Trp, making a fluorescent cardiac troponin C(F27W). Trp(27) accurately reported the kinetics of calcium association and dissociation of the N-domain of cardiac troponin C(F27W). To sensitize the N-domain of cardiac troponin C(F27W) to calcium, we individually substituted the hydrophobic residues Phe(20), Val(44), Met(45), Leu(48), and Met(81) with polar Gln. These mutations were designed to increase the calcium affinity of the N-domain of cardiac troponin C by facilitating the movement of helices B and C (BC unit) away from helices N, A, and D (NAD unit). As anticipated, these selected hydrophobic residue substitutions increased the calcium affinity of the regulatory domain of cardiac troponin C(F27W) approximately 2.1-15.2-fold. Surprisingly, the increased calcium affinity caused by the hydrophobic residue substitutions was largely due to faster calcium association rates (2.6-8.7-fold faster) rather than to slower calcium dissociation rates (1.2-2.9-fold slower). The regulatory N-domains of cardiac troponin C(F27W) and its mutants were also able to bind magnesium competitively and with physiologically relevant affinities (1.2-2.7 mm). The design of calcium-sensitizing cardiac troponin C mutants presented in this work enhances the understanding of how to control cation binding properties of EF-hand proteins and ultimately their structure and physiological function.  相似文献   

15.
Interactions between troponin C and troponin I play a critical role in the regulation of skeletal muscle contraction and relaxation. We individually substituted 27 hydrophobic Phe, Ile, Leu, Val, and Met residues in the regulatory domain of the fluorescent troponin C(F29W) with polar Gln to examine the effects of these mutations on: (a) the calcium binding and dynamics of troponin C(F29W) complexed with the regulatory fragment of troponin I (troponin I(96-148)) and (b) the calcium sensitivity of force production. Troponin I(96-148) was an accurate mimic of intact troponin I for measuring the calcium dynamics of the troponin C(F29W)-troponin I complexes. The calcium affinities of the troponin C(F29W)-troponin I(96-148) complexes varied approximately 243-fold, whereas the calcium association and dissociation rates varied approximately 38- and approximately 33-fold, respectively. Interestingly, the effect of the mutations on the calcium sensitivity of force development could be better predicted from the calcium affinities of the troponin C(F29W)-troponin I(96-148) complexes than from that of the isolated troponin C(F29W) mutants. Most of the mutations did not dramatically affect the affinity of calcium-saturated troponin C(F29W) for troponin I(96-148). However, the Phe(26) to Gln and Ile(62) to Gln mutations led to >10-fold lower affinity of calcium-saturated troponin C(F29W) for troponin I(96-148), causing a drastic reduction in force recovery, even though these troponin C(F29W) mutants still bound to the thin filaments. In conclusion, elucidating the determinants of calcium binding and exchange with troponin C in the presence of troponin I provides a deeper understanding of how troponin C controls signal transduction.  相似文献   

16.
Alcohol based cosolvents, such as trifluoroethanol (TFE) have been used for many decades to denature proteins and to stabilize structures in peptides. Nuclear magnetic resonance spectroscopy and site directed mutagenesis have recently made it possible to characterize the effects of TFE and of other alcohols on polypeptide structure and dynamics at high resolution. This review examines such studies, particularly of hen lysozyme and beta-lactoglobulin. It presents an overview of what has been learnt about conformational preferences of the polypeptide chain, the interactions that stabilize structures and the nature of the denatured states. The effect of TFE on transition states and on the pathways of protein folding and unfolding are also reviewed. Despite considerable progress there is as yet no single mechanism that accounts for all of the effects TFE and related cosolvents have on polypeptide conformation. However, a number of critical questions are beginning to be answered. Studies with alcohols such as TFE, and 'cosolvent engineering' in general, have become valuable tools for probing biomolecular structure, function and dynamics.  相似文献   

17.
The structures of the fifth and sixth transmembrane segments of the bovine mitochondrial oxoglutarate carrier (OGC) and of the hydrophilic loop that connects them were studied by CD and NMR spectroscopies. Peptides F215-R246, W279-K305 and P257-L278 were synthesized and structurally characterized. CD data showed that at high concentrations of TFE and SDS all peptides assume α-helical structures. 1H-NMR spectra of the three peptides in TFE/water were fully assigned and the secondary structures of the peptides were obtained from nuclear Overhauser effects, 3JαH-NH coupling constants and αH chemical shifts. The three-dimensional solution structures of the peptides were generated by distance geometry calculations. A well-defined α–helix was found in the region L220-V243 of peptide F215-R246 (TMS-V), in the region P284-M303 of peptide W279-K305 (TMS-VI) and in the region N261-F275 of peptide P257-L278 (hydrophilic loop). The helix L220-V243 exhibited a sharp kink at P239, while a little bend around P291 was observed in the helical region P284-M303. Fluorescence studies performed on peptide W279-K305, alone and together with other transmembrane segments of OGC, showed that the W279 fluorescence was quenched upon addition of peptide F215-R246, but not of peptides K21-K46, R78-R108 and P117-A149 suggesting a specific interaction between TMS-V and TMS-VI of OGC.  相似文献   

18.
We report here on the stability and folding of the 91 residue alpha-helical F29W N-terminal domain of chicken skeletal muscle troponin C (TnC(1-91)F29W), the thin filament calcium-binding component. Unfolding was monitored by differential scanning calorimetry, circular dichroism, and intrinsic fluorescence spectroscopy using urea, pH, and temperature as denaturants, in the absence and in the presence of calcium. The unfolding of TnC(1-91)F29W was reversible and did not follow a two-state transition, suggesting that an intermediate may be present during this reaction. Our results support the hypothesis that intermediates are likely to occur during the folding of small proteins and domains. The physiological significance of the presence of an intermediate in the folding pathway of troponin C is discussed.  相似文献   

19.
Calcium binding to the regulatory domain of cardiac troponin C (cNTnC) causes a conformational change that exposes a hydrophobic surface to which troponin I (cTnI) binds, prompting a series of protein-protein interactions that culminate in muscle contraction. A number of cTnC variants that alter the Ca(2+) sensitivity of the thin filament have been linked to disease. Tikunova and Davis engineered a series of cNTnC mutations that altered Ca(2+) binding properties and studied the effects on the Ca(2+) sensitivity of the thin filament and contraction [Tikunova, S. B., and Davis, J. P. (2004) J. Biol. Chem. 279, 35341-35352]. One of the mutations they engineered, the L48Q variant, resulted in a pronounced increase in the cNTnC Ca(2+) binding affinity and Ca(2+) sensitivity of cardiac muscle force development. In this work, we sought structural and mechanistic explanations for the increased Ca(2+) sensitivity of contraction for the L48Q cNTnC variant, using an array of biophysical techniques. We found that the L48Q mutation enhanced binding of both Ca(2+) and cTnI to cTnC. Nuclear magnetic resonance chemical shift and relaxation data provided evidence that the cNTnC hydrophobic core is more exposed with the L48Q variant. Molecular dynamics simulations suggest that the mutation disrupts a network of crucial hydrophobic interactions so that the closed form of cNTnC is destabilized. The findings emphasize the importance of cNTnC's conformation in the regulation of contraction and suggest that mutations in cNTnC that alter myofilament Ca(2+) sensitivity can do so by modulating Ca(2+) and cTnI binding.  相似文献   

20.
It is widely accepted that a pair of EF-hands is the functional unit of typical four EF-hand proteins such as calmodulin or troponin C. In this work we investigate the structure and stability of the four EF-hand domains in the related protein calcium- and integrin-binding protein 1 (CIB1) in the presence and absence of Mg2+ or Ca2+, to determine if similar EF-hand interactions occur. The backbone structure and flexibility of CIB1 were first studied by NMR spectroscopy, and these studies were complimented with steady-state fluorescence spectroscopy and chemical denaturation experiments using mutant CIB1 proteins having single Trp reporter groups in each of the four EF-hand domains EF-I (F34W), EF-II (F91W), EF-III (L128W), and EF-IV (F173W). We find that Mg2+-CIB1 adopts a well-folded structure similar to Ca2+-CIB1, except for some conformational heterogeneity in the C-terminal EF-IV domain. The structure of apo-CIB1 is significantly more dynamic, especially within EF-II, EF-III, and a partially unfolded EF-IV region, but the N-terminal EF-I region of apo-CIB1 has a well-ordered and more stable structure. The data reveal significant communication between the N- and C-lobes of CIB1, and show that transient intermediate conformations are formed along the unfolding pathway for each form of the protein. Collectively the data demonstrate that the communication between the paired EF-hand domains as well as between the N- and C-lobes of CIB1 is distinct from the ancestral proteins calmodulin and troponin C, which might be important for the unique function of CIB1 in numerous biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号