首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Membrane protein analyses have been notoriously difficult due to hydrophobicity and the general low abundance of these proteins compared to their soluble cytosolic counterparts. Shotgun proteomics has become the preferred method for analyses of membrane proteins, in particular the recent development of peptide immobilized pH gradient isoelectric focusing (IPG-IEF) as the first dimension of two-dimensional shotgun proteomics. Recently, peptide IPG-IEF has been shown to be a valuable shotgun proteomics technique through the use of acidic narrow range IPG strips, which demonstrated that small acidic p I increments are rich in peptides. In this study, we assess the utility of both broad range (BR) (p I 3-10) and narrow range (NR) (p I 3.4-4.9) IPG strips for rat liver membrane protein analyses. Furthermore, the use of these IPG strips was evaluated using label-free quantitation to demonstrate that the identification of a subset of proteins can be improved using NR IPG strips. NR IPG strips provided 2603 protein assignments on average (with 826 integral membrane proteins (IMPs)) compared to BR IPG strips, which provided 2021 protein assignments on average (with 712 IMPs). Nonredundant protein analysis demonstrated that in total from all experiments, 4195 proteins (with 1301 IMPs) could be identified with 1428 of these proteins unique to NR IPG strips with only 636 from BR IPG strips. With the use of label-free quantitation methods, 1659 proteins were used for quantitative comparison of which 319 demonstrated statistically significant increases in normalized spectral abundance factors (NSAF) in NR IPG strips compared to 364 in BR IPG strips. In particular, a selection of six highly hydrophobic transmembrane proteins was observed to increase in NSAF using NR IPG strips. These results provide evidence for the use of alternative pH gradients in combination to improve the shotgun proteomic analysis of the membrane proteome.  相似文献   

2.
By facilitating reproducible first dimension separations, commercial immobilized pH gradient (IPG) strips enable high throughput and high-resolution proteomic analyses using two-dimensional gel electrophoresis (2DE). Amersham, Biorad, Invitrogen, and Sigma all market linear pH 3-10 IPG strips. We have applied optimized 2DE protocols with both membrane and soluble brain protein extracts to critically evaluate all four products. Resolved protein spots were quantitatively evaluated after carrying out these protocols using IPG strips from the four companies. Biorad and Amersham IPG strips resolved a high number of membrane and soluble proteins, respectively. Furthermore, Amersham IPG strips eluted the largest amount of protein into the second dimension gels and had the most protein remaining in the strip after 2DE. Biorad and Amersham IPG strips maintained a consistent linear pH 3-10 gradient, whereas those from Invitrogen appeared nonlinear or "compressed" within the central pH region. The gradient range within Sigma IPG strips appeared to be slightly less than pH 3-10, due to one extended pH unit within the gradient. Overall, all four commercially available IPG strips have the ability to resolve both membrane and soluble brain proteomes. The difference is that Amersham and Biorad do so more consistently and with better spot resolution. It appears that the physical/chemical nature of commercially available IPG strips can vary considerably, leading to marked differences in subsequent protein resolution in 2DE. These differences likely reflect variations in the uptake of proteins into the strips, and differences in the focusing and elution of proteins from the first to the second dimension. These differences would appear, in part, to underlie some inter-lab variations in the effective resolution of proteomes.  相似文献   

3.
为建立适于黄瓜悬浮细胞蛋白质组分析的双向电泳体系,对黄瓜悬浮细胞蛋白质双向电泳分析所采用的胶条pH范围、样品制备方法、裂解液配方及分离胶浓度等参数进行研究。结果表明,采用pH范围为4~7的IPG胶条,直接裂解后丙酮沉淀法制备黄瓜悬浮细胞蛋白质,裂解液为8mol/L尿素、2mol/L硫脲、2%IPG Buffer、4%CHAPS、1%TBP、65mmol/L DTT、2mmol/L EDTA、0.001%溴酚蓝和1%鸡尾酒,分离胶浓度为11%,可获得蛋白质点分离清晰的双向电泳图谱。  相似文献   

4.
Two-dimensional gel electrophoresis with immobilized pH gradients in the first dimension, initially applied for the separation of soluble and total cellular proteins, has been extended to the analysis of membrane proteins. We show that the usual procedures lead to artifacts and irreproducible results due to aggregation and precipitation of proteins and protein-phospholipid complexes during isoelectric focusing (first dimension) and sodium dodecyl sulfate (SDS) gel electrophoresis (second dimension). Optimized solubilization procedures for hydrophobic membrane proteins are presented and the use of dilute samples is shown to be essential to overcome the major problems in isoelectric focusing. Increased volumes of samples dissolved in rehydration buffer are applied by direct rehydration of dry immobilized pH gradient (IPG) gels. Isoelectric focusing in 2% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) without urea gives good results as does 2% Nonidet-P40 with 8 M urea. Heat denaturation should be avoided. An optimized equilibration procedure for IPG gel strips in SDS sample buffer prior to separation in the second dimension was developed that minimizes loss of proteins and results in high-resolution two-dimensional electropherographic maps with a minimum of streaking. The gel strips are partially dehydrated at 40 degrees C and shortly reswollen in situ on the SDS slab gel in SDS-sample buffer containing agarose.  相似文献   

5.
In 2D-based comparative proteomics of scarce samples, such as limited patient material, established methods for prefractionation and subsequent use of different narrow range IPG strips to increase overall resolution are difficult to apply. Also, a high number of samples, a prerequisite for drawing meaningful conclusions when pathological and control samples are considered, will increase the associated amount of work almost exponentially. Here, we introduce a novel, effective, and economic method designed to obtain maximum 2D resolution while maintaining the high throughput necessary to perform large-scale comparative proteomics studies. The method is based on connecting different IPG strips serially head-to-tail so that a complete line of different IPG strips with sequential pH regions can be focused in the same experiment. We show that when 3 IPG strips (covering together the pH range of 3-11) are connected head-to-tail an optimal resolution is achieved along the whole pH range. Sample consumption, time required, and associated costs are reduced by almost 70%, and the workload is reduced significantly.  相似文献   

6.
Two-dimensional gel electrophoresis (2-DE) is used to compare the protein profiles of different crude biological samples. Narrow pH range Immobilized pH Gradient (IPG) strips were designed to increase the resolution of these separations. To take full advantage of IPG strips, the ideal sample should be composed primarily of proteins that have isoelectric point (pI) values within the pH range of the IPG strip. Prefractionation of cell lysates from a human prostate cancer cell line cultured in the presence or absence of epigallocatechin-3-gallate was achieved in fewer than 30 min using an anion-exchange resin and two expressly designed buffers. The procedure was carried out in a centrifuge tube and standard instrumentation was used. The cell lysates were prefractionated into two fractions: proteins with pI values above 7 and between 4 and 7, respectively. The fractions were then analyzed by 2-DE, selecting appropriate pH ranges for the IPG strips, and the gels were compared with those of unprefractionated cell lysates. Protein loading capacity was optimized and resolution and visualization of the less abundant and differentially expressed proteins were greatly improved.  相似文献   

7.
Little is known about what happens to transmembrane proteins (TMP) in 2-DE. In order to obtain more insight into the whereabouts of these proteins we prepared membrane-enriched synaptosomes from rat frontal cortex and washed them with 7 M urea or Na(2)CO(3). From each preparation, 200 microg protein was loaded on 2-DE gels covering the 4-7 and 6-11 pH ranges, respectively. MALDI-MS/MS analysis detected only 3 TMP among 421 identified spots. However, when the samples had been washed with Na(2)CO(3), only few well-focused spots remained detectable on the gel covering the pH 6-11 range. Instead, a heavily ruthenium-stained smear became visible at the upper edge of the gel at the location where the samples had been applied by cup loading. LC-MS/MS analysis revealed that this smear contained 38 unfocused TMP with up to 12 transmembrane helices. After transfer to the second dimension, no major areas of protein staining were left on the IPG strips. This indicates that after extraction and denaturation the TMP may form high-molecular aggregates, due to their "hydrophobic interactions". These aggregates enter the IPG strips, but do not focus regularly. They are then transferred onto the 2-DE-gels, where they remain caught at the upper edge.  相似文献   

8.
Two-dimensional gel electrophoresis (2-DE)is a core proteomic technique to studyprotein expression and function in livingorganisms. Although it has been extensivelyused for investigation of bacterial, yeast,animal and plant tissue cells, there islimited information about the use of 2-DEin microalgal research. In this study, anumber of key chemical reagents, includingacetone, trichloroacetic acid, urea,thiourea, dithiothreitol, and tributylphosphine, were quantitatively evaluatedfor 2-DE of green microalgae, using Haematococcus pluvialis as a model system.The goal was to maximize the number andstaining intensity of protein spots whileminimizing streaking and smearing on thesecond dimensional SDS gel. Compared tonon-frozen immobilized pH gradients (IPG)strips, freezing of the IPG strips at –20 °C after isoelectric focusing (IEF)enhanced protein resolubilization andtransfer into the SDS gel, and thusimproved resolution while eliminatingvertical point streaking on the SDS gel. Itwas also confirmed that manipulation ofsample loading capacity is a simple,effective purification strategy forselective investigation of the proteins ofinterest and of varying abundances. Theprotocol was also successfully applied toprofiling protein expression in H.pluvialis under external stressconditions, indicating its potentialusefulness in further proteomics studies ofthis organism and related species.  相似文献   

9.
Passive rehydration of immobilized pH gradient (IPG) strips for two-dimensional gel electrophoresis (2DE) has, to our knowledge, never been quantitatively evaluated to determine an ideal rehydration time. Seeking to increase throughput without sacrificing analytical rigor, we report that a substantially shorter rehydration time is accomplished when surface area of IPG strips is increased via microneedling. Rehydration for 4 h, post microneedling, provides comparable results to overnight rehydration in final analyses by 2DE, while also shortening the overall protocol by 1 day.  相似文献   

10.
A reproducible high-resolution protein separation method is the basis for a successful differential proteome analysis. Of the techniques currently available, two-dimensional gel electrophoresis is most widely used, because of its robustness under various experimental conditions. With the introduction of narrow range immobilized pH gradient (IPG) strips (also referred to as ultra-zoom gels) in the first dimension, the depth of analysis, i.e. the number of proteins that can be resolved, has increased substantially. However, for poorly understood reasons isoelectric focusing on ultra-zoom gels in the alkaline region above pH 7 has suffered from problems with resolution and reproducibility. To tackle these difficulties we have optimized the separation of semipreparative amounts of proteins on alkaline IPG strips by focusing on two important phenomena: counteracting water transport during isoelectric focusing and migration of dithiothreitol (DTT) in alkaline pH gradients. The first problem was alleviated by the addition of glycerol and isopropanol to the focusing medium, leading to a significant improvement in the resolution above pH 7. Even better results were obtained by the introduction of excess of the reducing agent DTT at the cathode. With these adaptations together with an optimized composition of the IPG strip, separation efficiency in the pH 6.2-8.2 range is now comparable to the widely used acidic ultra-zoom gels. We further demonstrated the usefulness of these modifications up to pH 9.5, although further improvements are still needed in that range. Thus, by extending the range covered by conventional ultra-zoom gels, the depth of analysis of two-dimensional gel electrophoresis can be significantly increased, underlining the importance of this method in differential proteomics.  相似文献   

11.
蝴蝶兰叶片蛋白质提取及双向电泳体系优化   总被引:1,自引:0,他引:1  
通过对蛋白质提取、IPG胶条选择、上样量、水化方式、聚焦条件等方面的优化,建立蝴蝶兰叶片蛋白质的双向电泳体系。结果表明,采用酚抽提法提取蝴蝶兰叶片蛋白质的纯度较高,复溶较完全;双向电泳优化体系选用24 cm pH 3~10 NL的IPG胶条,被动水化,上样量为1.35 mg,B1程序进行等电聚焦,12%分离胶进行第二向电泳,考马斯亮蓝G-250染色。该方法获得分辨率较高、重复性较好的蝴蝶兰叶片双向电泳图谱,蛋白数点多达1163个,可以满足蝴蝶兰蛋白质组学研究和分析。  相似文献   

12.
The G-electrode-loading method (GELM) is a technique enabling a large number of proteins from rat liver to enter an immobilized pH gradient (IPG) gel strip for isoelectric focusing (IEF). In this method, three slips containing the sample solution are placed on the cathodic edge of an IPG gel strip and a slip containing Chaps solution, a filtration membrane, and an electrode slip are placed on top. Finally, a G-electrode is placed on these slips. The Chaps solution (an amphoteric compound) is supplied gently to the sample solution during IEF and helps the proteins in the sample solution to enter the IPG gel strips with a high solubilization capacity. This method was compared with traditional slip-loading and in-gel rehydration, and it showed the best results for protein separation, including high-molecular-mass proteins.  相似文献   

13.
人肺巨细胞癌蛋白质组的二维电泳和计算机图象分析   总被引:3,自引:0,他引:3  
为优化用于蛋白质组研究的二维电泳技术和计算机图象分析技术 ,以及初步分析比较与肿瘤细胞转移相关的蛋白质 ,以人肺巨细胞癌 (PLA- 80 1 - D、C)高、低转移株作为研究对象 ,应用 IPG-phor进行第一向等电聚焦 ,随后 ,在 Protein IPG conversion Kit上进行垂直 SDS- PAGE的分离 .利用光密度仪对银染的凝胶扫描 ,通过 PDQuest软件进行蛋白斑点检测和配比 .结果表明 :(1 )应用 IPGphor,采用样品直接加入重泡胀溶液的形式 ,增大了溶解性 ,缩短聚焦时间、增大样品负荷量 (分析型 ) ,提高了分辨率 .(2 )比较宽 (p H=3~ 1 0 L)、窄 (p H=4~ 7L)范围 IPG胶条 ,窄 p H范围的 IPG胶条具有较高的分辨率 .(3)比较 PLA- 80 1 - C、D细胞蛋白图谱之间的差异 ,其相关系数为 0 .7339± 0 .0 2 91 ;仅在 PLA- 80 1 - C株出现的蛋白为 1 79个 .  相似文献   

14.
2-DE is still a relatively cumbersome and labor intensive method. Given the successful cysteinyl protection concept with hydroxyethyl disulfide (specific oxidation) during the first dimension separation, the possibility for a simplified equilibration procedure was investigated. This was achieved by maintaining the S-mercaptoethanol modified cysteinyls throughout the 2-D workflow including second dimension separation, spot handling, protein digestion, and protein identification. The traditional equilibration protocol encompassing thiol reduction and alkylation was compared with a one-step protocol employing continuous exposure to hydroxyethyl disulfide. Both equilibration protocols gave equally well-resolved spot maps with analytical protein loads regardless of IPG strip pH range. Using preparative protein loads, narrow range IPG strips gave comparable results for the two protocols while preparative load on wide range IPG strips was the only condition where classical reduction/alkylation outperformed hydroxyethyl disulfide equilibration. Moreover, with analytical protein loads, the hydroxyethyl disulfide equilibration time could be significantly reduced without apparent loss of spot map quality or quantitative protein transfer from the first- to the second dimension gel. MALDI-TOF mass spectrometric protein identification was successfully performed with either iodoacetamide or hydroxyethyl disulfide as the cysteine modifier, yielding comparable identification results with high confidence in protein assignment, sequence coverage, and detection of cysteine-containing peptides. The results provide a novel and simplified protocol for 2-DE where the concept of hydroxyethyl disulfide as the cysteinyl protecting agent is extended to cover the entire 2-D work flow.  相似文献   

15.
The oxidative modification of proteins plays a major role in a number of human diseases, but identity of the specific proteins that are most susceptible to oxidation has posed a difficult problem. Protein carbonyls are increased after oxidative stress, and after derivatization with 2,4-dinitrophenyl hydrazine (DNP) they can be detected by various analytical and immunological methods. Although high resolution two-dimensional electrophoresis (2-DE) can resolve virtually all proteins present in a cell or tissue it has been difficult to determine the oxidized proteins because the DNP-derivatization process alters the isoelectric points of proteins, and additional procedures must be utilized to remove reaction byproducts. These additional procedures can lead to loss of sample, and poor isoelectric resolution on immobilized pH gradient (IPG) strips. We have developed a method that allows the IPG strips to be derivatized with DNP directly following isoelectric focusing of the proteins. This method allows the visualization of oxidized proteins by 2-DE with high reproducibility.  相似文献   

16.
We have undertaken the identification of basic proteins (pH 6–11) of the human heart using 2‐DE. Tissue from the left ventricle of human heart was lysed and proteins were separated in the first dimension on pH 6–11 IPG strips using paper‐bridge loading followed by separation on 12% SDS polyacrylamide gels in the second dimension. Proteins were then identified by mass spectrometry and analysed using Proline, a proteomic data analysis platform that was developed in‐house. The proteome map contains 176 identified spots with 151 unique proteins and has been made available as part of the UCD‐2DPAGE database at http://proteomics‐portal.ucd.ie:8082 . The associated mass spectrometry data have been submitted to PRIDE (Accession number ?10098). This reference map, and the other heart reference maps available through the UCD‐2DPAGE database, will aid further proteomic studies of heart diseases such as dilated cardiomyopathy and ischaemic heart disease.  相似文献   

17.
We describe a 2‐DE proteomic reference map containing 227 basic proteins in the dorsolateral prefrontal cortex region of the human brain. Proteins were separated in the first dimension on pH 6–11 IPG strips using paper‐bridge loading and on 12% SDS‐PAGE in the second dimension. Proteins were subsequently identified by MS and spectra were analyzed using an in‐house proteomics data analysis platform, Proline. The 2‐DE reference map is available via the UCD 2‐DE Proteome Database ( http://proteomics‐portal.ucd.ie:8082 ) and can also be accessed via the WORLD‐2DPAGE Portal ( http://www.expasy.ch/world‐2dpage/ ). The associated protein identification data have been submitted to the PRIDE database (accession numbers 10018–10033). Separation of proteins in the basic region resolves more membrane associated proteins relevant to the synaptic pathology central to many neurological disorders. The 2‐DE reference map will aid with further characterisation of neurological disorders such as bipolar and schizophrenia.  相似文献   

18.
Recently, we reported a new way of performing 2-DE, called P-dimensional electrophoresis (2-PE). In this approach, the second dimension is achieved in a radial gel which can accommodate up to six 7 cm long IPG strips simultaneously, improving reproducibility and throughput power in respect to 2-DE. Nevertheless, 2-PE was up to now limited to the use of only short strips because of technical difficulties. Here, we describe how to load longer strips (e.g., 18–24 cm) on 2-PE and report some representative images for a qualitative assessment.  相似文献   

19.
Görg A  Boguth G  Köpf A  Reil G  Parlar H  Weiss W 《Proteomics》2002,2(12):1652-1657
Due to their heterogeneity and huge differences in abundance, the detection and identification of all proteins expressed in eukaryotic cells and tissues is a major challenge in proteome analysis. Currently the most promising approaches are sample prefractionation procedures prior to narrow pH range two-dimensional gel electrophoresis (IPG-Dalt) to reduce the complexity of the sample and to enrich for low abundance proteins. We recently developed a simple, cheap and rapid sample prefractionation procedure based on flat-bed isoelectric focusing (IEF) in granulated gels. Complex sample mixtures are prefractionated in Sephadex gels containing urea, zwitterionic detergents, dithiothreitol and carrier ampholytes. After IEF, up to ten gel fractions alongside the pH gradient are removed with a spatula and directly applied onto the surface of the corresponding narrow pH range immobilized pH gradient (IPG) strips as first dimension of two-dimensional (2-D) gel electrophoresis. The major advantages of this technology are the highly efficient electrophoretic transfer of the prefractionated proteins from the Sephadex IEF fraction into the IPG strip without any sample dilution, and the full compatibility with subsequent IPG-IEF, since the prefactionated samples are not eluted, concentrated or desalted, nor does the amount of the carrier ampholytes in the Sephadex fraction interfere with subsequent IPG-IEF. Prefractionation allows loading of higher protein amounts within the separation range applied to 2-D gels and facilitates the detection of less abundant proteins. Also, this system is highly flexibile, since it allows small scale and large scale runs, and separation of different samples at the same time. In the current study, this technology has been successfully applied for prefractionation of mouse liver proteins prior to narrow pH range IPG-Dalt.  相似文献   

20.
Guidelines for effective blotting of proteins from immobilized pH gradients with a soft polyacrylamide matrix (e.g. T% = 3) include: thick (1 mm) IPG slabs, electrotransfer in a buffer tank in the presence of 0.1% SDS, nitrocellulose of the sturdiest type, thorough removal of all IPG fragments before further processing of the membrane. For alpha 2-M, IPG on a 4-6.5 gradient followed by enzyme-linked immunodetection allows the recognition of a complex pattern with several bands centered around pI 5.1. The procedure may also reveal the desialylated forms of alpha 2-M (microheterogeneity reduced to 2-3 bands), the native subunits (after reduction with thiols) and the denatured half molecules (in the presence of 8 M urea).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号