首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The epigenetic marks H3K27me3 and H3K4me3 are important repressive and permissive histone modifications, respectively, which are involved in gene regulation such as Hox gene expression during embryonic development. In this study, we investigated the global levels of these two histone modifications. We also investigated the expression of H3K27me3's methyltransferase (EZH2), EZH2 co‐factors (EED and SUZ12) and demethylases (JMJD3 and UTX), as well as H3K4me3's methylases (ASH1L and MLL1) and demethylase (RBP2) in porcine pre‐implantation embryos. In addition, the expression of Hox genes, HOXA2, HOXA3, HOXA7, HOXA10, HOXB4, HOXB7, HOXC8, HOXD8, and HOXD10 was investigated. We found that global levels of H3K27me3 decreased from the 1‐ to the 4‐cell stage, corresponding to the time of major embryonic genome activation. Subsequently, the levels increased in hatched blastocysts, particularly in the trophectoderm. The expression levels of EZH2, EED, SUZ12, JMJD3, and UTX correlated well with these findings. The global levels of H3K4me3 decreased from the 1‐cell to the morula stage and increased in hatched blastocysts, especially in trophectoderm. A peak in expression of ASH1L was seen at the 4‐cell stage, but overall, expression of ASH1L, MLL1, and RBP2 correlated poorly with H3K4me3. HOXA3, A7, and B4 were expressed in 4‐cell embryos, and HOXA7, A10, B4, and D8 were expressed in hatched blastocysts, and did not correlate well to global methylation of H3K27me3 or H3K4me3. Thus, H3K4me3 may play a role in early porcine embryonic genome activation, whereas, H3K27me3 may be involved in initial cell lineage segregation in the blastocyst. Mol. Reprod. Dev. 77: 540–549, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Changes in H3K79 methylation during preimplantation development in mice   总被引:1,自引:0,他引:1  
The gene expression pattern of differentiated oocytes is reprogrammed into that of totipotent preimplantation embryos before and/or after fertilization. To elucidate the mechanisms of genome reprogramming, we investigated histone H3 lysine 79 dimethylation (H3K79me2) and trimethylation (H3K79me3) in oocytes and preimplantation embryos via immunocytochemistry. In somatic cells and oocytes, H3K79me2 was observed throughout the genome, whereas H3K79me3 was localized in the pericentromeric heterochromatin regions in which there are no active genes. Because H3K79me2 is considered an active gene marker, H3K79 methylation seems to have differing functions depending on the number of methyl groups added on the same residues. Both H3K79me2 and H3K79me3 decreased soon after fertilization, and the hypomethylated state was maintained at interphase (before the blastocyst stage), except for a transient increase in H3K79me2 at mitosis (M phase). H3K79me3 was not detected throughout preimplantation, even at M phase. To investigate the involvement of H3K79me2 in genome reprogramming, somatic nuclei were transplanted into enucleated oocytes. H3K79me2 in these nuclei was demethylated following parthenogenetic activation. However, the nuclei that had been transplanted into the parthenogenetic embryos 7 h after activation were not demethylated. This suggests that the elimination of H3K79 methylation after fertilization is involved in genomic reprogramming.  相似文献   

4.
为了考察小鼠(Mus musculus)孤雌激活胚胎H3K27三甲基化模式与体内正常胚胎之间的差异,以及曲古抑菌素A(TSA)对孤雌胚H3K27三甲基化水平的影响,探究表观遗传修饰对孤雌胚胎发育的作用。首先,用H3K27me3特异性抗体对MⅡ期卵母细胞染色,利用激光共聚焦对其荧光强度进行检测,结果发现该时期的甲基化荧光强度相对较低。接着,采用同样的方法对小鼠孤雌胚胎和体内正常胚胎植入前各时期的H3K27me3模式进行比较,结果显示,从2-细胞到囊胚期孤雌组呈现逐渐升高的趋势,与体内组变化趋势完全相反,且总体平均荧光强度较体内组普遍偏低。孤雌胚胎经TSA处理后,处理组和未处理组在前三个时期虽然没有显著性差异(P0.05),但是处理之后的H3K27三甲基化水平有所提高,囊胚期与未处理组相比有显著性差异(P0.05)。以上结果表明,小鼠孤雌胚胎的H3K27三甲基化模式与体内胚胎之间存在着巨大的差异,这可能是造成孤雌胚胎发育能力差的重要原因之一。TSA处理对H3K27me3模式造成了一定的影响,使体外培养环境有所改善,这可能对提高孤雌胚胎发育能力具有一定的意义。  相似文献   

5.
Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K‐M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K‐M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice.  相似文献   

6.
7.
Leptin, a multifunctional hormone, is present in mammalian oocytes and follicular fluids and cumulus cells. While leptin modulates oocyte maturation in vitro which seems to result in enhancement of embryo development, it is unclear whether leptin treatment of oocytes affects cytoplasmic maturation and fertilization processes. In order to gain a better understanding of the role of leptin during oocyte maturation, we examined microtubule and microfilament assembly following oocyte maturation and blastocyst formation, mitogen-activated protein kinase (MAPK) activity, and pronuclear formation following parthenogenetic stimuli or intracytoplasmic sperm injection (ICSI) in leptin-treated oocytes. Addition of 10 or 100 ng/ml leptin during oocyte maturation did not increase the proportion of metaphase II oocytes, but enhanced development to blastocyst stage by day 7 (P < 0.01) after parthenogenetic activation (PA), accompanied by increased cell number. However there was no effect on the number of apoptotic cells in blastocysts. Following maturation in the presence of leptin, there were more oocytes with normal spindle formation. MAPK activity decreased more rapidly, and pronuclear formation was accelerated after parthenogenetic activation or ICSI of leptin-treated oocytes. These results suggested that exogeneous leptin enhanced spindle assembly and accelerated pronuclear formation following fertilization, possibly via the MAPK pathway.  相似文献   

8.
9.
10.
《Epigenetics》2013,8(6):404-414
Polycomb-mediated gene silencing and DNA methylation underlie many epigenetic processes important in normal development as well as in cancer. An interaction between EZH2 of the Polycomb repressive complex 2 (PRC2), which trimethylates lysine 27 on Histone 3 (H3K27me3), and all three DNA methyltransferases (DNMTs) has been demonstrated, implicating a role for PRC2 in directing DNA methylation. Interestingly, however, the majority of H3K27me3 marked genes lack DNA methylation in ES cells, indicating that EZH2 recruitment may not be sufficient to promote DNA methylation. Here, we employed a Gal4DBD/gal4UAS-based system to directly test if EZH2 binding at a defined genomic site is sufficient to promote de novo DNA methylation in a murine erythroleukaemia cell line. Targeting of a Gal4DBD-EZH2 fusion to an intergenic transgene bearing a gal4 binding-site array promoted localized recruitment of SUZ12 and BMI1, subunits of PRC2 and PRC1, respectively, and deposition of H3K27me3. Further analysis of the H3K27me3-marked site revealed the persistence of H3K4me2, a mark inversely correlated with DNA methylation. Strikingly, while DNMT3a was also recruited in an EZH2-dependent manner, de novo DNA methylation of the transgene was not observed. Thus, while targeting of EZH2 to a specific genomic site is sufficient for recruitment of DNMT3a, additional events are required for de novo DNA methylation.  相似文献   

11.
Park CH  Kim HS  Lee SG  Lee CK 《Genomics》2009,93(2):179-186
The aim of this study was to demonstrate how differential methylation imprints are established during porcine preimplantation embryo development. For the methylation analysis, the primers for the three Igf2/H19 DMRs were designed and based upon previously published sequences. The methylation marks of Igf2/H19 DMRs were analysed in sperm and MII oocytes with our results showing that these regions are fully methylated in sperm but remain unmethylated in MII oocytes. In order to identify the methylation pattern at the pronuclear stage, we indirectly compared the methylation profile of Igf2/H19 DMR3 in each zygote derived by in vitro fertilization, parthenogenesis, and androgenesis. Interestingly, this region was found to be differently methylated according to parental origins; DMR3 was hemimethylated in in vitro fertilized zygotes, fully methylated in parthenogenetic zygotes, and demethylated in androgenetic zygotes. These results indicate that the methylation mark of the paternal allele is erased by active demethylation, and that of the maternal one is de novo methylated. We further examined the methylation imprints of Igf2/H19 DMR3 during early embryonic development. The hemimethylated pattern as seen in zygotes fertilized in vitro was observed up to the 4-cell embryo stage. However, this mark was exclusively demethylated at the 8-cell stage and then restored at the morula stage. These results suggest that methylation imprints are established via dynamic changes during early embryonic development in porcine embryos.  相似文献   

12.
SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show that mice lacking Suz12, like Ezh2 and Eed mutant mice, are not viable and die during early postimplantation stages displaying severe developmental and proliferative defects. Consistent with this, we demonstrate that SUZ12 is required for proliferation of cells in tissue culture. Furthermore, we demonstrate that SUZ12 is essential for the activity and stability of the PRC2/3 complexes in mouse embryos, in tissue culture cells and in vitro. Strikingly, Suz12-deficient embryos show a specific loss of di- and trimethylated H3K27, demonstrating that Suz12 is indeed essential for EZH2 activity in vivo. In conclusion, our data demonstrate an essential role of SUZ12 in regulating the activity of the PRC2/3 complexes, which are required for regulating proliferation and embryogenesis.  相似文献   

13.
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that includes noncatalytic subunits suppressor of zeste 12 (SUZ12) and embryonic ectoderm development (EED). When present in PRC2, EZH2 catalyzes trimethylation on lysine 27 residue of histone H3 (H3K27Me3), resulting in epigenetic silencing of gene expression. Here, we investigated the expression and function of EZH2 in epithelial ovarian cancer (EOC). When compared with primary human ovarian surface epithelial (pHOSE) cells, EZH2, SUZ12, and EED were expressed at higher levels in all 8 human EOC cell lines tested. Consistently, H3K27Me3 was also overexpressed in human EOC cell lines compared with pHOSE cells. EZH2 was significantly overexpressed in primary human EOCs (n = 134) when compared with normal ovarian surface epithelium (n = 46; P < 0.001). EZH2 expression positively correlated with expression of Ki67 (P < 0.001; a marker of cell proliferation) and tumor grade (P = 0.034) but not tumor stage (P = 0.908) in EOC. There was no correlation of EZH2 expression with overall (P = 0.3) or disease-free survival (P = 0.2) in high-grade serous histotype EOC patients (n = 98). Knockdown of EZH2 expression reduced the level of H3K27Me3 and suppressed the growth of human EOC cells both in vitro and in vivo in xenograft models. EZH2 knockdown induced apoptosis of human EOC cells. Finally, we showed that EZH2 knockdown suppressed the invasion of human EOC cells. Together, these data demonstrate that EZH2 is frequently overexpressed in human EOC cells and its overexpression promotes the proliferation and invasion of human EOC cells, suggesting that EZH2 is a potential target for developing EOC therapeutics.  相似文献   

14.
15.
Androgenetic embryos are useful model for investigating the contribution of the paternal genome to embryonic development. Little work has been done with androgenetic embryo production in domestic animals. The aim of this study was the production of diploid androgenetic sheep embryos. In vitro matured sheep oocytes were enucleated and fertilized in vitro; parthenogenetic and normally fertilized embryos were also produced as a control. Fifteen hours after in vitro fertilization (IVF), presumptive zygotes were centrifuged and scored for the number of pronucleus. IVF, parthenogenetic, and androgenetic embryos (haploid, diploid, and triploid) were cultured in SOFaa medium with bovine serum albumin (BSA). The proportion of oocytes with polyspermic fertilization increased linearly with increasing sperm concentration. After IVF, there was no significant difference in early cleavage and morula formation rates between the groups, while there was a significant difference on blastocyst development between IVF, parthenogenetic, and androgenetic embryos, the last ones displaying poor developmental potential (IVF, parthenogenetic, and haploid, diploid, and triploid androgenetic embryos: 43%, 38%, 0%, 2%, and 2%, respectively). In order to boost androgenetic embryonic development, we produced diploid androgenetic embryos through pronuclear transfer. Single pronuclei were aspirated with a bevelled pipette from haploid or diploid embryos and transferred into the perivitelline space of other haploid embryos, and the zygotes were reconstructed by electrofusion. Fusion rates approached 100%. Pronuclear transfer significantly increased blastocyst development (IVF, parthenogenetic, androgenetic: Diploid into Haploid, and Haploid into Haploid: 42%, 42%, 19%, and 3%, respectively); intriguingly, the Haploid + Diploid group showed the highest development to blastocyst stage. The main findings of our study are: (1) sheep androgenetic embryos display poor developmental ability compared with IVF and parthenogenetic embryos; (2) diploid androgenetic embryos produced by pronuclear exchange developed in higher proportion to blastocyst stage, particularly in the Diploid-Haploid group. In conclusion, pronuclear transfer is an effective method to produce sheep androgenetic blastocysts.  相似文献   

16.
《Epigenetics》2013,8(4):199-209
The oocyte is remarkable in its ability to remodel parental genomes following fertilization and to reprogram somatic nuclei after nuclear transfer (NT). To characterise the patterns of histone H4 acetylation and DNA methylation during development of bovine gametogenesis and embryogenesis, specific antibodies for histone H4 acetylated at lysine 5 (K5), K8, K12 and K16 residues and for methylated cytosine of CpG dinucleotides were used. Oocytes and sperm lacked the staining for histone acetylation, when DNA methylation staining was intense. In IVF zygotes, both pronuclei were transiently hyper-acetylated. However, the male pronucleus was faster in acquiring acetylated histones, and concurrently it was rapidly demethylated. Both pronuclei were equally acetylated during the S to G2-phase transition, while methylation staining was only still observed in the female pronucleus. In parthenogenetically activated oocytes, acetylation of the female pronucleus was enriched faster, while DNA remained methylated. A transient de-acetylation was observed in NT embryos reconstructed using a non-activated ooplast of a metaphase second arrested oocyte. Remarkably, the intensity of acetylation staining of most H4 lysine residues peaked at the 8-cell stage in IVF embryos, which coincided with zygotic genome activation and with lowest DNA methylation staining. At the blastocyst stage, trophectodermal cells of IVF and parthenogenetic embryos generally demonstrated more intense staining for most acetylated H4 lysine, whilst ICM cells stained very weakly. In contrast methylation of the DNA stained more intensely in ICM. NT blastocysts showed differential acetylation of blastomeres but not methylation. The inverse association of histone lysine acetylation and DNA methylation at different vital embryo stages suggests a mechanistically significant relationship. The complexities of these epigenetic interactions are discussed.  相似文献   

17.
In the present study, we examined the developmental ability of enucleated zygotes, MII oocytes, and parthenogenetically activated oocytes at pronuclear stages (parthenogenetic PNs) as recipient cytoplasm for rat embryonic cell nuclear transfer. Enucleated zygotes as recipient cytoplasm receiving two-cell nuclei allowed development to blastocysts, whereas the development of embryos reconstituted with MII oocytes and parthenogenetic PNs was arrested at the two-cell stage. Previous observations in rat two-cell embryos suggested that the distribution of microtubules is involved in two-cell arrest. Therefore, we also examined the distribution of microtubules using immunofluorescence. At the two-cell stage after nuclear transfer into enucleated zygotes, microtubules were distributed homogeneously in the cytoplasm during interphase, and normal mitotic spindles were observed in cleaving embryos from the two- to four-cell stage. In contrast, embryos reconstituted with MII oocytes and parthenogenetic PNs showed aberrant microtubule organization. In enucleated zygotes, fibrous microtubules were distributed homogeneously in the cytoplasm. In contrast, dense microtubules were localized at the subcortical area in the cytoplasm and strong immunofluorescence intensity was observed at the plasma membrane, while very weak intensity was detected in the central part of enucleated MII oocytes. In enucleated parthenogenetic PNs, high-density and fibrous microtubules were distributed in the subcortical and central areas, respectively. Pre-enucleated parthenogenetic PNs also showed lower intensity of microtubule immunofluorescence in the central cytoplasm than zygotes. In conclusion, the results of the present study showed that zygote cytoplasm is better as recipient than MII oocyte and parthenogenetic PNs for rat two-cell embryonic cell nuclear transfer to develop beyond four-cell stage. Furthermore, microtubule organization is involved in the development of reconstituted embryos to overcome the two-cell arrest.  相似文献   

18.
Mammalian androgenetic embryos can be produced by pronuclear exchange of fertilized oocytes or by dispermic in vitro fertilization of enucleated oocytes. Here, we report a new technique for producing mouse androgenetic embryos by injection of two round spermatid nuclei into oocytes, followed by female chromosome removal. We found that injection of round spermatids resulted in high rates of oocyte survival (88%). Androgenetic embryos thus produced developed into mid‐gestation fetuses at various rates, depending on the mouse strain used. All the fetuses examined maintained paternally specific genomic imprinting memories. This technique also enabled us to produce complete heterozygous F1 embryos by injecting two spermatids from different strains. The best rate of fetal survival (12% per embryos transferred) was obtained with C57BL/6 × DBA/2 androgenetic embryos. We also generated embryonic stem cell lines efficiently with the genotype of Mus musculus domesticus × M. m. molossinus. Thus, injection of two round spermatid nuclei followed by maternal enucleation is an effective alternative method of producing androgenetic embryos that consistently develop into blastocysts and mid‐gestation fetuses. genesis 47:155–160, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
At the imprinted Rasgrf1 locus in mouse, a cis-acting sequence controls DNA methylation at a differentially methylated domain (DMD). While characterizing epigenetic marks over the DMD, we observed that DNA and H3K27 trimethylation are mutually exclusive, with DNA and H3K27 methylation limited to the paternal and maternal sequences, respectively. The mutual exclusion arises because one mark prevents placement of the other. We demonstrated this in five ways: using 5-azacytidine treatments and mutations at the endogenous locus that disrupt DNA methylation; using a transgenic model in which the maternal DMD inappropriately acquired DNA methylation; and by analyzing materials from cells and embryos lacking SUZ12 and YY1. SUZ12 is part of the PRC2 complex, which is needed for placing H3K27me3, and YY1 recruits PRC2 to sites of action. Results from each experimental system consistently demonstrated antagonism between H3K27me3 and DNA methylation. When DNA methylation was lost, H3K27me3 encroached into sites where it had not been before; inappropriate acquisition of DNA methylation excluded normal placement of H3K27me3, and loss of factors needed for H3K27 methylation enabled DNA methylation to appear where it had been excluded. These data reveal the previously unknown antagonism between H3K27 and DNA methylation and identify a means by which epigenetic states may change during disease and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号