首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K A Marx 《Biopolymers》1975,14(5):1103-1107
The magnitude of intramolecular DNA optical absorbance is presented as a function of [Na+] and GC composition of the DNA. The data are presented as a ratio of absorbances A0/A0 for the DNA at the denaturing temperature (Td) and renaturing temperature (Tr) under the given conditions. All ratios were determined for Tr corresponding to the temperature optimum (Tm ? Tr = 25°C) in DNA reassociation rate. This fact, coupled with the convenient A0/A0 ratio representation, permits the quick estimation of the magnitude of this optical effect in DNA reassociation reactions over a wide range of experimental conditions.  相似文献   

2.
Using a combination of static and dynamic laser light scattering, we investigated the complexation of a supercoiled plasmid DNA (pDNA, 104 bp) and a branched polyethyleneimine (bPEI, Mw = 25 kD) in semidilute and low‐salt aqueous solutions. Our results unearth some scaling laws for dynamic and structural properties of the resultant complexes (polyplexes) with different bPEI:pDNA (N:P) molar ratios. Namely, the average scattering intensity (<I>) and the average linewidth of the Rayleigh peak (<Γ>) are scaled to the scattering vector (q) as <I> ∝ q or <Γ> ∝ q, where αS and αD are two N:P dependent scaling exponents. The N:P ratio strongly affects the complexation. When N:P < 2.0, the motions of the negatively charged and extended pDNA chains and the polyplexes are highly correlated so that they behave like a transient network with a fractal dimension. As the N:P ratio increases, nearly all of pDNA chains condensed and the overall charge of the polyplexes reverses to slightly positive, resulting in a turbid dispersion of large loose aggregates made of smaller, but more compact, polyplexes. Further increase of N:P finally disrupts large loose aggregates, leading to a homogeneous transparent dispersion of the polyplexes. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 571–577, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
As part of a multidisciplinary survey of populations in the Banks and Torres Islands of Vanuatu and the Southern and Central Districts of the Solomon Islands, nearly 2,400 persons have been tested for ABO blood groups and a number of serum protein and red cell enzyme genetic marker systems. For the ABO system, the populations are characterized in general by high gene O and low gene B frequencies except in two of the Polynesian Outlier Islands, Rennell and Bellona, which have high frequencies of B. Among the serum proteins, several alleles have distributions indicating significant movement of people between islands. These include Albumin New Guinea and the transferrin alleles Tf, and Tf, and Tf. Similar specific alleles for red cell enzymes also show distributions reflecting interisland population movement as well as contact with persons from outside the southern Pacific region. Examples are ACP in the acid phosphatase system, PGM and PGM, PGM and PGM, PGK4 and also HbJTongariki. The data available for 11 polymorphic systems were used to generate genetic distances. Of the four Polynesian Outlier Islands, Anuta is most remote genetically, with Rennell and Bellona also relatively isolated. The fourth Polynesian Outlier, Tikopia, occupies a position genetically close to the Melanesian populations of the Banks and Torres Islands and the southern Solomons. The history of early European contact and voyaging in the Pacific, as well as archaeological and linguistic evidence and local legends, indicate that significant movements of people occurred between islands and provided opportunities for genes to be introduced from Europeans, Africans, and Asians. The genetic marker studies give evidence for genes from all these sources, though at a low level. Despite this admixture, the Polynesian Outlier and Melanesian populations have preserved their own distinctive genetic patterns.  相似文献   

4.
The discoveries of mutations in SNCA were seminal findings that resulted in the knowledge that α‐synuclein (αS) is the major component of Parkinson's disease‐associated Lewy bodies. Since the pathologic roles of these protein inclusions and SNCA mutations are not completely established, we characterized the aggregation properties of the recently identified SNCA mutations, H50Q and G51D, to provide novel insights. The properties of recombinant H50Q, G51D, and wild‐type αS to polymerize and aggregate into amyloid were studied using (trans,trans)‐1‐bromo‐2,5‐bis‐(4‐hydroxy)styrylbenzene fluorometry, sedimentation analyses, electron microscopy, and atomic force microscopy. These studies showed that the H50Q mutation increases the rate of αS aggregation, whereas the G51D mutation has the opposite effect. However, H50Q and G51D αS could still be similarly induced to form intracellular aggregates from the exposure to exogenous amyloidogenic seeds under conditions that promote their cellular entry. Both mutant αS proteins, but especially G51D, promoted cellular toxicity under cellular stress conditions. These findings reveal that the novel pathogenic SNCA mutations, H50Q and G51D, have divergent effects on aggregation properties relative to the wild‐type protein, with G51D αS demonstrating reduced aggregation despite presenting with earlier disease onset, suggesting that these mutants promote different mechanisms of αS pathogenesis.

  相似文献   


5.
ScFv‐h3D6 is a single chain variable fragment that precludes Aβ peptide‐induced cytotoxicity by withdrawing Aβ oligomers from the amyloid pathway to the worm‐like pathway. Production of scFv molecules is not a straightforward procedure because of the occurrence of disulfide scrambled conformations generated in the refolding process. Here, we separately removed the disulfide bond of each domain and solved the scrambling problem; and then, we intended to compensate the loss of thermodynamic stability by adding three C‐terminal elongation mutations, previously described to stabilize the native fold of scFv‐h3D6. Such stabilization occurred through stabilization of the intermediate state in the folding pathway and destabilization of a different, β‐rich, intermediate state driving to worm‐like fibrils. Elimination of the disulfide bridge of the less stable domain, VL, deeply compromised the yield and increased the aggregation tendency, but elimination of the disulfide bridge of the more stable domain, VH, solved the scrambling problem and doubled the production yield. Notably, it also changed the aggregation pathway from the protective worm‐like morphology to an amyloid one. This was so because a partially unfolded intermediate driving to amyloid aggregation was present, instead of the β‐rich intermediate driving to worm‐like fibrils. When combining with the elongation mutants, stabilization of the partially unfolded intermediate driving to amyloid fibrils was the only effect observed. Therefore, the same mutations drove to completely different scenarios depending on the presence of disulfide bridges and this illustrates the relevance of such linkages in the stability of different intermediate states for folding and misfolding.  相似文献   

6.
Trimethylamine‐N‐oxide (TMAO) is a naturally occurring osmolyte that stabilizes proteins against denaturation. Although the impact of TMAO on the folding thermodynamics of many proteins has been well characterized, far fewer studies have investigated its effects on protein folding kinetics. In particular, no previous studies have used Φ‐value analysis to determine whether TMAO may alter the structure of the folding transition state. Here we have measured the effects on folding kinetics of 16 different amino acid substitutions distributed across the structure of the Fyn SH3 domain both in the presence and absence of TMAO. The folding and unfolding rates in TMAO, on average, improved to equivalent degrees, with a twofold increase in the protein folding rate accompanied by a twofold decrease in the unfolding rate. Importantly, TMAO caused little alteration to the Φ‐values of the mutants tested, implying that this compound minimally perturbs the folding transition state structure. Furthermore, the solvent accessibility of the transition state was not altered as reflected in an absence of a TMAO‐induced change in the denaturant β factors. Through TMAO‐induced folding studies, a β factor of 0.5 was calculated for this compound, suggesting that the protein backbone, which is the target of action of TMAO, is 50% exposed in the transition state as compared to the native state. This finding is consistent with the equivalent effects of TMAO on the folding and unfolding rates. Through thermodynamic analysis of mutants, we also discovered that the stabilizing effect of TMAO is lessened with increasing temperature.  相似文献   

7.
β2 microglobulin (β2m) is the light chain of class‐I major histocompatibility complex (MHC‐I). Its accumulation in the blood of patients affected by kidney failure leads to amyloid deposition around skeletal joints and bones, a severe condition known as Dialysis Related Amyloidosis (DRA). In an effort to dissect the structural determinants of β2m aggregation, several β2m mutants have been previously studied. Among these, three single‐residue mutations in the loop connecting strands D and E (W60G, W60V, D59P) have been shown to affect β2m amyloidogenic properties, and are here considered. To investigate the biochemical and biophysical properties of wild‐type (w.t.) β2m and the three mutants, we explored thermal unfolding by Trp fluorescence and circular dichroism (CD). The W60G mutant reveals a pronounced increase in conformational stability. Protein oligomerization and reduction kinetics were investigated by electrospray‐ionization mass spectrometry (ESI‐MS). All the mutations analyzed here reduce the protein propensity to form soluble oligomers, suggesting a role for the DE‐loop in intermolecular interactions. A partially folded intermediate, which may be involved in protein aggregation induced by acids, accumulates for all the tested proteins at pH 2.5 under oxidizing conditions. Moreover, the kinetics of disulfide reduction reveals specific differences among the tested mutants. Thus, β2m DE‐loop mutations display long‐range effects, affecting stability and structural properties of the native protein and its low‐pH intermediate. The evidence presented here hints to a crucial role played by the DE‐loop in determining the overall properties of native and partially folded β2m.  相似文献   

8.
A Lac+ papillation assay was used to identify mutants (tex) of Escherichia coli that exhibit an increased frequency of precise excision of a lacZ::Tn10dKan insertion. Three tex strains had suffered mutations in the gene (ssb) encoding the essential single-stranded DNA-binding protein SSB, which resulted in the following alterations in the 177-residue protein: G4D; L10F, P24S; and V102M. The phenotypes of these ssb mutants indicated that they were largely unaffected in other functions mediated by SSB, such as DNA replication, recombination, and repair. Strains with multicopy ssb+ exhibited a decreased frequency of Tn10dKan precise excision. Three other tex mutants had insertion mutations in the locus designated uup at 21.75 min on the linkage map. The nucleotide sequence of uup was determined, and the gene was inferred to encode a 625-amino-acid hydrophilic protein that belongs to the superfamily of ABC-domain proteins (with two pairs of the Walker A and B motifs), which are postulated to be involved in coupling ATP hydrolysis with other biological processes. The uup gene product shares extensive homology with the deduced sequences of two proteins of Haemophilus influenzae. The uup gene is also situated immediately upstream of (and is transcribed in the same direction as) the paraquat-inducible SoxRS-regulated pqi-5 gene, two reported promoters for which are situated within the uup coding sequence.  相似文献   

9.
Effects of hydrophobic and electrostatic interactions on the self‐assembling process of the ionic‐complementary peptide EMK16‐II are investigated by atomic force microscopy imaging, circular dichroism spectra, light scattering, and chromatography. It is found that the hydrophobicity of the peptide promotes the aggregation in pure water even at a very low concentration, resulting in a much lower critical aggregation concentration than that of another peptide, EAK16‐II. The effect of anions in solution with different valences on electrostatic interactions is also important. Monovalent anions (Cl? and Ac?) with a proper concentration can facilitate the formation of peptide fibrils, with Cl? of smaller size being more effective than Ac? of larger size. However, only small amounts of fibrils, but plenty of large amorphous aggregates, are found when the peptide solution is incubated with multivalent anions, such as SO, C6H5O, and HPO. More importantly, by gel filtration chromatography, the citrate anion, which induces a similar effect on the self‐assembling process of EMK16‐II as that of SO and HPO, can interact with two or more positively charged residues of the peptide and reside in the amorphous aggregates. This implies a “salt bridge” effect of multivalent anions on the peptide self‐assembling process, which can interpret a previous puzzle why divalent cations inhibit the formation of ordered nanofibrils of the ionic‐complementary peptides. Thus, our results clarify the important effects of hydrophobic and electrostatic interactions on the self‐assembling process of the ionic‐complementary peptides. These are greatly helpful for us to understand the mechanism of peptides' self‐assembling process and protein folding and aggregation. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 318–329, 2010. This article was originally published online as an acceptedpreprint. The “Published Online” date corresponds to the preprintversion. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
Light chain (AL) amyloidosis is an incurable human disease, where the amyloid precursor is a misfolding‐prone immunoglobulin light‐chain. Here, we identify the role of somatic mutations in the structure, stability and in vitro fibril formation for an amyloidogenic AL‐12 protein by restoring four nonconservative mutations to their germline (wild‐type) sequence. The single restorative mutations do not affect significantly the native structure, the unfolding pathway, and the reversibility of the protein. However, certain mutations either decrease (H32Y and H70D) or increase (R65S and Q96Y) the protein thermal stability. Interestingly, the most and the least stable mutants, Q96Y and H32Y, do not form amyloid fibrils under physiological conditions. Thus, Q96 and H32 are key residues for AL‐12 stability and fibril formation and restoring them to the wild‐type residues preclude amyloid formation. The mutants whose equilibrium is shifted to either the native or unfolded states barely sample transient partially folded states, and therefore do not form fibrils. These results agree with previous observations by our laboratory and others that amyloid formation occurs because of the sampling of partially folded states found within the unfolding transition (Blancas‐Mejia and Ramirez‐Alvarado, Ann Rev Biochem 2013;82:745–774). Here we provide a new insight on the AL amyloidosis mechanism by demonstrating that AL‐12 does not follow the established thermodynamic hypothesis of amyloid formation. In this hypothesis, thermodynamically unstable proteins are more prone to amyloid formation. Here we show that within a thermal stability range, the most stable protein in this study is the most amyloidogenic protein.  相似文献   

11.
Cystathionine β‐lyase (CBL) catalyzes the hydrolysis of L ‐cystathionine (L ‐Cth) to produce L ‐homocysteine, pyruvate, and ammonia. A series of active‐site mutants of Escherichia coli CBL (eCBL) was constructed to investigate the roles of residues R58, R59, D116, W340, and R372 in catalysis and inhibition by aminoethoxyvinylglycine (AVG). The effects of these mutations on the kcat/K for the β‐elimination reaction range from a reduction of only 3‐fold for D116A and D116N to 6 orders of magnitude for the R372L and R372A mutants. The order of importance of these residues for the hydrolysis of L ‐Cth is: R372 >> R58 > W340 ≈ R59 > D116. Comparison of the kinetic parameters for L ‐Cth hydrolysis with those for inhibition of eCBL by AVG demonstrates that residue R58 tethers the distal carboxylate group of the substrate and confirms that residues W340 and R372 interact with the α‐carboxylate moiety. The increase in the pKa of the acidic limb and decrease in the pKa of the basic limb of the kcat/K versus pH profiles of the R58K and R58A mutants, respectively, support a role for this residue in modulating the pKa of an active‐site residue.  相似文献   

12.
Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent‐insoluble ERAD substrates, but the spectrum of disease‐associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation‐prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid‐binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide‐binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease‐causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER‐associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease‐causing mutation. Chimeras containing a wild‐type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide‐binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation‐prone, disease‐causing ERAD substrates in their native environments.  相似文献   

13.
Trp‐cage miniprotein was used to investigate the role of a salt‐bridge (Asp9–Arg16) in protein formation, by mutating residues at both sides, we mapped its contribution to overall stability and its role in folding mechanism. We found that both of the above side‐chains are also part of a dense interaction network composed of electrostatic, H‐bonding, hydrophobic, etc. components. To elucidate the fold stabilizing effects, we compared and contrasted electronic circular dichroism and NMR data of miniproteins equipped with a salt‐bridge with those of the salt‐bridge deleted mutants. Data were acquired both in neutral and in acidic aqueous solutions to decipher the pH dependency of both fully and partially charged partners. Our results indicate that the folding of Trp‐cage miniproteins is more complex than a simple two‐state process as we detected an intermediate state that differs significantly from the native fold. The intermediate formation is related to the salt‐bridge stabilization; in the miniprotein variants equipped with salt‐bridge the population of the intermediate state at acidic pH is significantly higher than it is for the salt‐bridge deleted mutants. In this molecular framework Arg16 stabilizes more than Asp9 does, because of its higher degree of 3D‐fold cooperation. In conclusion, the Xxx$^{9} \leftrightarrow$ Yyy16 salt‐bridge is not an isolated entity of this fold; rather it is an integrated part of a complex interaction network. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
On the basis of elastic light scattering, we have compared the capacity of the multi-block, surfactant copolymers Poloxamer 108 (P108), Poloxamer 188 (P188), and Tetronic 1107 (T1107), of average molecular weight 4700, 8400, and 15,000, respectively, with that of polyethylene glycol (PEG, molecular weight 8000) to suppress aggregation of heat-denatured hen egg white lysozyme (HEWL) and bovine serum albumin (BSA). We also compared the capacity of P188 to that of PEG to suppress aggregation of carboxypeptidase A denatured in the presence of trifluoroethanol and to facilitate recovery of catalytic activity. In contrast to the multi-block copolymers, PEG had no effect in inhibiting aggregation of HEWL or of carboxypeptidase A with the recovery of catalytic activity. At very high polymer:protein ratios (>or=10:1), PEG increased aggregation of heat-denatured HEWL and BSA, consistent with its known properties to promote macromolecular crowding and crystallization of proteins. At a polymer:protein ratio of 2:1, the tetra-block copolymer T1107 was the most effective of the three surfactant copolymers, completely suppressing aggregation of heat-denatured HEWL. At a T1107:BSA ratio of 10:1, the poloxamer suppressed aggregation of heat-denatured BSA by 50% compared to that observed in the absence of the polymer. We showed that the extent of suppression of aggregation of heat-denatured proteins by multi-block surfactant copolymers is dependent on the size of the protein and the copolymer:protein molar ratio. We also concluded that at least one of the tertiary nitrogens in the ethylene-1,2-diamine structural core of the T1107 copolymer is protonated, and that this electrostatic factor underlies its capacity to suppress aggregation of denatured proteins more effectively than nonionic, multi-block poloxamers. These results indicate that amphiphilic, surfactant, multi-block copolymers are efficient as additives to suppress aggregation and to facilitate refolding of denatured proteins in solution. Because of these properties, multi-block, surfactant copolymers are suitable for application to a variety of biotechnological and biomedical problems in which refolding of denatured or misfolded proteins and suppression of aggregation are important objectives.  相似文献   

15.
Protein aggregation is a major issue affecting the long-term stability of protein preparations. Proteins exist in equilibrium between the native and denatured or partially denatured conformations. Often denatured or partially denatured conformations are prone to aggregate because they expose to solvent the hydrophobic core of the protein. The aggregation of denatured protein gradually shifts the protein equilibrium toward increasing amounts of denatured and ultimately aggregated protein. Recognizing and quantitating the presence of denatured protein and its aggregation at the earliest possible time will bring enormous benefits to the identification and selection of optimal solvent conditions or the engineering of proteins with the best stability/aggregation profile. In this article, a new approach that allows simultaneous determination of structural stability and the amount of denatured and aggregated protein is presented. This approach is based on the analysis of the concentration dependence of the Gibbs energy (ΔG) of protein stability. It is shown that three important quantities can be evaluated simultaneously: (i) the population of denatured protein, (ii) the population of aggregated protein, and (iii) the fraction of denatured protein that is aggregated.  相似文献   

16.
Protein aggregation into insoluble fibrillar structures known as amyloid characterizes several neurodegenerative diseases, including Alzheimer's, Huntington's and Creutzfeldt‐Jakob. Transthyretin (TTR), a homotetrameric plasma protein, is known to be the causative agent of amyloid pathologies such as FAP (familial amyloid polyneuropathy), FAC (familial amyloid cardiomiopathy) and SSA (senile systemic amyloidosis). It is generally accepted that TTR tetramer dissociation and monomer partial unfolding precedes amyloid fibril formation. To explore the TTR unfolding landscape and to identify potential intermediate conformations with high tendency for amyloid formation, we have performed molecular dynamics unfolding simulations of WT‐TTR and L55P‐TTR, a highly amyloidogenic TTR variant. Our simulations in explicit water allow the identification of events that clearly discriminate the unfolding behavior of WT and L55P‐TTR. Analysis of the simulation trajectories show that (i) the L55P monomers unfold earlier and to a larger extent than the WT; (ii) the single α‐helix in the TTR monomer completely unfolds in most of the L55P simulations while remain folded in WT simulations; (iii) L55P forms, early in the simulations, aggregation‐prone conformations characterized by full displacement of strands C and D from the main β‐sandwich core of the monomer; (iv) L55P shows, late in the simulations, severe loss of the H‐bond network and consequent destabilization of the CBEF β‐sheet of the β‐sandwich; (v) WT forms aggregation‐compatible conformations only late in the simulations and upon extensive unfolding of the monomer. These results clearly show that, in comparison with WT, L55P‐TTR does present a much higher probability of forming transient conformations compatible with aggregation and amyloid formation.  相似文献   

17.
The effect of the Y108V mutation of human glutathione S‐transferase P1‐1 (hGST P1‐1) on the binding of the diuretic drug ethacrynic acid (EA) and its glutathione conjugate (EASG) was investigated by calorimetric, spectrofluorimetric, and crystallographic studies. The mutation Tyr 108 → Val resulted in a 3D‐structure very similar to the wild type (wt) enzyme, where both the hydrophobic ligand binding site (H‐site) and glutathione binding site (G‐site) are unchanged except for the mutation itself. However, due to a slight increase in the hydrophobicity of the H‐site, as a consequence of the mutation, an increase in the entropy was observed. The Y108V mutation does not affect the affinity of EASG for the enzyme, which has a higher affinity (Kd ~ 0.5 μM) when compared with those of the parent compounds, K ~ 13 μM, K ~ 25 μM. The EA moiety of the conjugate binds in the H‐site of Y108V mutant in a fashion completely different to those observed in the crystal structures of the EA or EASG wt complex structures. We further demonstrate that the ΔCp values of binding can also be correlated with the potential stacking interactions between ligand and residues located in the binding sites as predicted from crystal structures. Moreover, the mutation does not significantly affect the global stability of the enzyme. Our results demonstrate that calorimetric measurements maybe useful in determining the preference of binding (the binding mode) for a drug to a specific site of the enzyme, even in the absence of structural information.  相似文献   

18.
19.
The conformational preference and electronic properties of three L ‐tryptophyl‐containing dipeptides, i.e., glycyl‐L ‐tryptophane (H‐Gly‐Trp‐OH), L ‐alanyl‐L ‐tryptophane (H‐Ala‐Trp‐OH), and L ‐methionyl‐L ‐tryptophane (L ‐Met‐Trp‐OH) in solution depending on the pH of the media are studied both theoretically and experimentally. The effect of the protonation of the COO? and deprotonation of the NH as well as the alkaline hydrolysis of the amide fragment in a strong basic media on the electronic spectra are discussed. Ab initio and density functional theory (DFT) methods as well as the time‐dependent DFT (TD‐DFT) method as a function of the basis set are performed with a view to obtain the geometry and electronic properties of all of the species as well as the intermediate, obtained in the alkaline hydrolysis mechanism. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 727–734, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
Sec1/Munc‐18 (SM) family proteins are essential regulators in intracellular transport in eukaryotic cells. The SM protein Vps33 functions as a core subunit of two tethering complexes, class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) in the endocytic pathway in yeast. Metazoan cells possess two Vps33 proteins, VPS33A and VPS33B, but their precise roles remain unknown. Here, we present a comparative analysis of Caenorhabditis elegans null mutants for these proteins. We found that the vps‐33.1 (VPS33A) mutants exhibited severe defects in both endocytic function and endolysosomal biogenesis in scavenger cells. Furthermore, vps‐33.1 mutations caused endocytosis defects in other tissues, and the loss of maternal and zygotic VPS‐33.1 resulted in embryonic lethality. By contrast, vps‐33.2 mutants were viable but sterile, with terminally arrested spermatocytes. The spermatogenesis phenotype suggests that VPS33.2 is involved in the formation of a sperm‐specific organelle. The endocytosis defect in the vps‐33.1 mutant was not restored by the expression of VPS‐33.2, which indicates that these proteins have nonredundant functions. Together, our data suggest that VPS‐33.1 shares most of the general functions of yeast Vps33 in terms of tethering complexes in the endolysosomal system, whereas VPS‐33.2 has tissue/organelle specific functions in C. elegans.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号