首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Drug oxidation activities of 12 recombinant human cytochrome P450s (P450) coexpressed with human NADPH-P450 reductase (NPR) in bacterial membranes (P450/NPR membranes) were determined and compared with those of other recombinant systems and those of human liver microsomes. Addition of exogenous membrane-bound NPR to the P450/NPR membranes enhanced the catalytic activities of CYP2C8, CYP2C9, CYP2C19, CYP3A4, and CYP3A5. Enhancement of activities of CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2D6, and CYP2E1 in membranes was not observed after the addition of NPR (4 molar excess to each P450). Exogenous purified human cytochrome b5 (b5) further enhanced catalytic activities of CYP2A6, CYP2B6, CYP2C8, CYP2E1, CYP3A4, and CYP3A5/NPR membranes. Catalytic activities of CYP2C9 and CYP2C19 were enhanced by addition of b5 in reconstituted systems but not in the P450/NPR membranes. Apo b5 (devoid of heme) enhanced catalytic activities when added to both membrane and reconstituted systems, except for CYP2E1/NPR membranes and the reconstituted system containing purified CYP2E1 and NPR. Catalytic activities in P450/NPR membranes fortified with b5 were roughly similar to those measured with microsomes of insect cells coexpressing P450 with NPR (and b5) and/or human liver microsomes, based on equivalent P450 contents. These results suggest that interactions of P450 and NPR coexpressed in membranes or mixed in reconstituted systems appear to be different in some human CYP2 family enzymes, possibly due to a conformational role of b5. P450/NPR membrane systems containing b5 are useful models for prediction of the rates for liver microsomal P450-dependent drug oxidations.  相似文献   

2.
The debrisoquine/sparteine polymorphism is associated with a clinically important genetic deficiency of oxidative drug metabolism. From 5% to 10% of Caucasians designated as poor metabolizers (PMs) of the debrisoquine/sparteine polymorphism have a severely impaired capacity to metabolize more than 25 therapeutically used drugs. The impaired drug metabolism in PMs is due to the absence of cytochrome P450IID6 protein. The gene controlling the P450IID6 protein, CYP2D6, is located on the long arm of chromosome 22. A pseudogene CYP2D8P and a related gene CYP2D7 are located upstream from CYP2D6. This gene locus is highly polymorphic. After digestion of genomic DNA with XbaI endonuclease, restriction fragments of 11.5 kb and 44 kb represent mutant alleles of the cytochrome CYP2D6 gene locus associated with the PM phenotype. In order to elucidate the molecular mechanism of the mutant allele reflected by the XbaI 11.5-kb fragment, a genomic library was constructed from leukocyte DNA of one individual homozygous for this fragment and screened with the human IID6 cDNA. The CYP2D genes were isolated and characterized by restriction mapping and partial sequencing. We demonstrate that the mutant 11.5-kb allele results from a deletion involving the entire functional CYP2D6 gene. This result provides an explanation for the total absence of P450IID6 protein in the liver of these PMs.  相似文献   

3.
R Feng  X Zhou  PM Or  JY Ma  XS Tan  J Fu  C Ma  JG Shi  CT Che  Y Wang  JH Yeung 《Phytomedicine》2012,19(12):1125-1133
Halenia elliptica D. Don is a Tibetan herb and medicinal preparations containing Halenia elliptica have been commonly used for the treatment of hepatitis B virus infection in China. The metabolism of 1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1) to its metabolites is mediated through cytochrome P450 enzymes. This study aimed to investigate the herb-drug interaction potential of HM-1 by studying its effects on the metabolism of model probe substrates of five major CYP450 isoforms in human liver microsomes. HM-1 showed moderate inhibitory effects on CYP1A2 (IC(50)=1.06μM) and CYP2C9 (IC(50)=3.89μM), minimal inhibition on CYP3A4 (IC(20)=11.94μM), but no inhibition on model CYP2D6 (dextromethorphan) and CYP2E1 (chlorzoxazone) probe substrates. Inhibition kinetic studies showed that the K(i) values of HM-1 on CYP1A2, CYP2C9 and CYP3A4 were 5.12μM, 2.00μM and 95.03μM, respectively. HM-1 competitively inhibited testosterone 6β-hydroxylation (CYP3A4) but displayed mixed type inhibitions for phenacetin O-deethylation (CYP1A2) and tolbutamide 4-hydroxylation (CYP2C9). Molecular docking study confirmed the inhibition modes of HM-1 on these human CYP isoforms.  相似文献   

4.
The human cytochrome P450 (P450) superfamily consists of membrane-bound proteins that metabolize a myriad of xenobiotics and endogenous compounds. Quantification of P450 expression in various tissues under normal and induced conditions has an important role in drug safety and efficacy. Conventional immunoquantification methods have poor dynamic range, low throughput, and a limited number of specific antibodies. Recent advances in MS-based quantitative proteomics enable absolute protein quantification in a complex biological mixture. We have developed a gel-free MS-based protein quantification strategy to quantify CYP3A enzymes in human liver microsomes (HLM). Recombinant protein-derived proteotypic peptides and synthetic stable isotope-labeled proteotypic peptides were used as calibration standards and internal standards, respectively. The lower limit of quantification was approximately 20 fmol P450. In two separate panels of HLM examined (n = 11 and n = 22), CYP3A, CYP3A4 and CYP3A5 concentrations were determined reproducibly (CV or=0.87) and marker activities (r(2)>or=0.88), including testosterone 6beta-hydroxylation (CYP3A), midazolam 1'-hydroxylation (CYP3A), itraconazole 6-hydroxylation (CYP3A4) and CYP3A5-mediated vincristine M1 formation (CYP3A5). Taken together, our MS-based method provides a specific, sensitive and reliable means of P450 protein quantification and should facilitate P450 characterization during drug development, especially when specific substrates and/or antibodies are unavailable.  相似文献   

5.
We examined and compared enantioselectivity in the oxidation of propranolol (PL) by liver microsomes from humans and Japanese monkeys (Macaca fuscata). PL was oxidized at the naphthalene ring to 4-hydroxypropranolol, 5-hydroxypropranolol and side chain N-desisopropylpropranolol by human liver microsomes with enantioselectivity of [R(+)>S(-)] in PL oxidation rates at substrate concentrations of 10 microM and 1 mM. In contrast, reversed enantioselectivity [R(+)相似文献   

6.
The aim of this study was to investigate the expression and organ distribution of cytochrome P450 (CYP450) enzymes, microsomal epoxide hydrolase (MEH), and microsomal glutathione-S-transferase (MGST 1, 2, 3) in human liver, lung, intestinal, and kidney microsomes by targeted peptide-based quantification using nano liquid chromatography–tandem multiple reaction monitoring (nano LC-MRM). Applying this method, we analyzed 16 human liver microsomes and pooled lung, kidney, and intestine microsomes. Nine of the CYP450s (CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5) could be quantified in liver. Except for CYP3A4 and 3A5 existing in intestine, other CYP450s had little content (<0.1 pmol/mg protein) in extrahepatic tissues. MEH and MGSTs could be quantified both in hepatic and in extrahepatic tissues. The highest concentrations of MEH and MGST 1, 2 were found in liver; conversely MGST 3 was abundant in human kidney and intestine compared to liver. The targeted proteomics assay described here can be broadly and efficiently utilized as a tool for investigating the targeted proteins. The method also provides novel CYP450s, MEH, and MGSTs expression data in human hepatic and extrahepatic tissues that will benefit rational approaches to evaluate metabolism in drug development.  相似文献   

7.
8.
An electrospray ionization liquid chromatographic-mass spectrometric (ESI-LC-MS) method has been developed to study the involvement of the cytochrome P450 isoenzyme CYP2D6 in the in vitro metabolism of the indole containing 5-hydroxytryptamine (5-HT3) receptor antagonists tropisetron, ondansetron and dolasetron in human liver microsomes. Compounds were eluted using linear gradients of acetonitrile-20 mM ammonium acetate, solvent A, (10:90, v/v) (ph 6.0) and solvent B, (60:40, v/v) (pH 6.0) and a Nucleosil C4 column. Microsomal incubations were analysed using selected ion monitoring of the molecular ion of parent drug and the molecular ion of hydroxylated metabolites. The involvement of CYP2D6 in drug metabolism was assessed by inhibition studies using quinidine (5 μM), a specific inhibitor of human CYP2D6, as well as by incubating compounds with microsomes prepared from celss transfected with cDNA encoding human CYP2D6. Results showed that the oxidation of all three compounds involved CYP2D6, but only that of tropisetron was inhibited by over 90% in the presence of quinidine. The present method can be applied to pre-clinical compounds, at an early stage of drug discovery, to assess the involvement of CYP2D6 in their metabolism and to screen for those compounds where CYP2D6 is the only isoenzyme implicated in the formation of major metabolites.  相似文献   

9.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6alpha-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 microM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6alpha-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6beta-hydroxylation (r2=0.9). There was also a strong correlation between 6alpha-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6beta-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6alpha-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 microM concentration. Other inhibitors, such as alpha-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6alpha-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 microM). This might give an explanation for the limited formation of 6alpha-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   

10.
Eugenol used as a flavor has potential carcinogenicity. DNA adduct formation via 2,3-epoxidation pathway has been thought to be a major mechanism of DNA damage by carcinogenic allylbenzene analogs including eugenol. We examined whether eugenol can induce oxidative DNA damage in the presence of cytochrome P450 using [32P]-5'-end-labeled DNA fragments obtained from human genes relevant to cancer. Eugenol induced Cu(II)-mediated DNA damage in the presence of cytochrome P450 (CYP)1A1, 1A2, 2C9, 2D6, or 2E1. CYP2D6 mediated eugenol-dependent DNA damage most efficiently. Piperidine and formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at T and G residues of the 5'-TG-3' sequence, respectively. Interestingly, CYP2D6-treated eugenol strongly damaged C and G of the 5'-ACG-3' sequence complementary to codon 273 of the p53 gene. These results suggest that CYP2D6-treated eugenol can cause double base lesions. DNA damage was inhibited by both catalase and bathocuproine, suggesting that H2O2 and Cu(I) are involved. These results suggest that Cu(I)-hydroperoxo complex is primary reactive species causing DNA damage. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine was significantly increased by CYP2D6-treated eugenol in the presence of Cu(II). Time-of-flight-mass spectrometry demonstrated that CYP2D6 catalyzed O-demethylation of eugenol to produce hydroxychavicol, capable of causing DNA damage. Therefore, it is concluded that eugenol may express carcinogenicity through oxidative DNA damage by its metabolite.  相似文献   

11.
Studies to identify the cytochrome P450 (CYP) isoform(s) involved in chlorpromazine 7-hydroxylation were performed using human liver microsomes and cDNA-expressed human CYPs. The kinetics of chlorpromazine 7-hydroxylation in human liver microsomes showed a simple Michaelis-Menten behavior. The apparent Km and Vmax values were 3.4+/-1.0 microM and 200.5+/-83.7 pmol/min/mg, respectively. The chlorpromazine 7-hydroxylase activity in human liver microsomes showed good correlations with desipramine 2-hydroxylase activity (r = 0.763, p < 0.05), a marker activity for CYP2D6, and phenacetin O-deethylase activity (r = 0.638, p < 0.05), a marker activity for CYP1A2. Quinidine (an inhibitor of CYP2D6) completely inhibited while alpha-naphthoflavone (an inhibitor of CYP1A2) marginally inhibited the chlorpromazine 7-hydroxylase activity in a human liver microsomal sample showing high CYP2D6 activity. On the other hand, alpha-naphthoflavone inhibited the chlorpromazine 7-hydroxylase activity to 55-65% of control in a human liver microsomal sample showing low CYP2D6 activity. Among eleven cDNA-expressed CYPs studied, CYP2D6 and CYP1A2 exhibited significant activity for the chlorpromazine 7-hydroxylation. The Km values for the chlorpromazine 7-hydroxylation of both cDNA-expressed CYP2D6 and CYP1A2 were in agreement with the Km values of human liver microsomes. These results suggest that chlorpromazine 7-hydroxylation is catalyzed mainly by CYP2D6 and partially by CYP1A2.  相似文献   

12.
Substances K-48 and HI-6, oxime-type acetylcholinesterase (AChE) reactivators, were tested for their potential to inhibit the activities of human liver microsomal cytochromes P450 (CYP). The compounds were shown to bind to microsomal cytochromes P450 with spectral binding constants of 0.25 ± 0.05 μM (K-48) and 0.54 ± 0.15 μM (HI-6). To find which cytochrome P450 from the human liver microsomal fraction interacts with these compounds, an inhibition of enzyme activities specific for nine individual CYP enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) was studied. The results have shown no prominent inhibition of individual CYP activities with both compounds except the CYP2E1 activity and the HI-6 reactivator. However, the inhibition of this activity was less than 50% which makes the possible drug interactions highly unlikely. Hence, the interaction of K-48 and HI-6 oxime-type AChE reactivators with human liver microsomal CYP enzymes does not seem to be clinically significant and both compounds could be taken in this respect as antidotal drugs with low risk of drug interactions.  相似文献   

13.
Human microsomes and hepatocytes obtained from non-transplantable livers of brain-dead donors are very useful in predicting the in vivo metabolism of xenobiotics in humans. Fresh liver specimens obtained from therapeutic liver resection are also useful for research in cases where non-transplantable livers are not readily available. In the present study, the effect of warm ischemic duration, in the course of hepatic surgery, on the activities of liver cytochrome P450 (CYP) CYP1A, CYP2C, CYP2D, CYP2E1 and CYP3A were evaluated in a porcine model. Partial occlusion (portal vein and hepatic artery occlusion) decreased the activities of CYP2C, CYP2E and CYP3A, but not those of CYP1A and CYP2D. CYP3A, known to account for an average 30% of total P450 content in the human liver was the most susceptible to the warm ischemia. These results demonstrate that the activities of CYP isoforms, particularly those of CYP3A, are markedly affected by warm ischemia; it is, therefore, essential that care should be exercised when using microsomes prepared from surgically removed livers.  相似文献   

14.
Proteomic approaches have been used for detection and identification of cytochromes P450 forms from highly purified membrane preparations of human liver. These included the protein separation by 2D-and/or 1D-electrophoresis and molecular scanning of a SDS-PAGE gel fragment in a range 45–66 kDa (this area corresponds molecular weights of cytochromes P450). The analysis of protein content was statistically evaluated by means of an original 1D-ZOOMER software package which allowed to carry out the processing of mass spectra mixture instead of individual mass spectra used by standard techniques. In the range 45–66 kDa we identified 13 microsomal membrane proteins including such cytochrome P450 forms as CYPs 1A2, 1B1, 2A6, 2E1, 2C8, 2C9, 2C10, 2D6, 3A4, 4A11, 4F2. Study of enzymatic activities of human liver microsomal cytochrome P450 isoforms CYP 1A, 2B, 3A, and 2E revealed the decrease in the rates of O-dealkylation and N-demethylation catalyzed by CYP 450 1A1/1A2 and 3A4 under pathological conditions, whereas 7-benzyloxyresorufin-O-debenzylase activity (which characterizes the total activity of CYP 2B and CYP 2C), the activities of CYP 2E1 (methanol oxidation), 7-pentoxyresorufin-O-dealkylation (CYP 2B), 7-ethoxy-and 7-methoxycoumarin-O-dealkylases (CYP 2B1) remained basically unchanged.  相似文献   

15.
The human cytochrome P450 2D6 (CYP2D6) is a primary enzyme involved in the metabolism of about 25% of commonly used therapeutic drugs. CYP2D6 belongs to the CYP2D subfamily, a gene cluster located on chromosome 22, which comprises the CYP2D6 gene and pseudogenes CYP2D7P and CYP2D8P. Although the chemical and physiological properties of CYP2D6 have been extensively studied, there has been no study to date on molecular evolution of the CYP2D subfamily in the human genome. Such knowledge could greatly contribute to the understanding of drug metabolism in humans because it makes us to know when and how the current metabolic system has been constructed. The knowledge moreover can be useful to find differences in exogenous substrates in a particular metabolism between human and other animals such as experimental animals. Here, we conducted a preliminary study to investigate the evolution and gene organization of the CYP2D subfamily, focused on humans and four non-human primates (chimpanzees, orangutans, rhesus monkeys, and common marmosets). Our results indicate that CYP2D7P has been duplicated from CYP2D6 before the divergence between humans and great apes, whereas CYP2D6 and CYP2D8P have been already present in the stem lineages of New World monkeys and Catarrhini. Furthermore, the origin of the CYP2D subfamily in the human genome can be traced back to before the divergence between amniotes and amphibians. Our analyses also show that reported chimeric sequences of the CYP2D6 and CYP2D7 genes in the chimpanzee genome appear to be exchanged in its genome database.  相似文献   

16.
We newly developed 10 Salmonela typhimurium TA1538 strains each co-expressing a form of human cytochrome P450s (P450 or CYP) together with NADPH-cytochrome P450 reductase (CPR) for highly sensitive detection of mutagenic activation of mycotoxins, polycyclic aromatic hydrocarbons, heterocyclic amines, and aromatic amines at low substrate concentrations. Each form of P450 (CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 or CYP3A5) expressed in the TA1538 cells efficiently catalyzed the oxidation of a representative substrate. Aflatoxin B1 was mutagenically activated effectively by CYP1A1, CYP1A2, and CYP3A4 and weakly by CYP2A6 and CYP2C8 expressed in S. typhimurium TA1538. CYP1A1 and CYP1A2 were responsible for the mutagenic activation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-acetylaminofluorene. Benzo[a]pyrene was also activated efficiently by CYP1A1 and weakly by CYP1A2, CYP2C9, CYP2C19, and CYP3A4 expressed in TA1538. These results suggest that the newly developed S. typhimurium TA1538 strains are applicable for detecting the activation of promutagens of which mutagenic activation is not or weakly detectable with N-nitrosamine-sensitive YG7108 strains expressing human P450s.  相似文献   

17.
Benzene is an occupational hazard and environmental toxicant found in cigarette smoke, gasoline, and the chemical industry. The major health concern associated with benzene exposure is leukemia. The toxic effects of benzene are dependent on its metabolism by the cytochrome P450 enzyme system. Previous research has identified CYP2E1 as the primary P450 isozyme responsible for benzene metabolism at low concentrations, whereas CYP2B1 is involved at higher concentrations. Our studies using microsomal preparations from human, mouse, and rat indicate that CYP2E1 is the P450 isozyme primarily responsible for benzene metabolism in lung and in liver. CYP2B isozymes have little involvement in benzene metabolism by either lung or liver. Our results also indicate that isozymes of the CYP2F subfamily may play a role in benzene metabolism by lung.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous class of environmental contaminants. The compound phenanthrene is a model PAH. A novel fluorometric method for measuring phenanthrene metabolism in vitro was developed and verified with direct measurement of [14C]phenanthrene using dog liver microsomes. The fluorometric assay and direct measurement of [14C]phenanthrene metabolism were used to show that CYP6D1, a house fly cytochrome P450, is the major house fly P450 involved in phenanthrene metabolism. Phenanthrene was metabolized by microsomes from the LPR strain of house fly that overexpresses CYP6D1, but metabolism was not observed in the CS strain that has a lower level of CYP6D1. Furthermore, the majority of phenanthrene metabolism was inhibited by a CYP6D1-specific antibody. This study increases the number of known substrates of CYP6D1 and identifies polyaromatic hydrocarbons as potential substrates of CYP6D1. The utility of CYP6D1 as an agent in bioremediation and the utility of the new fluorometric assay for understanding PAH metabolism in insects and mammals are discussed.  相似文献   

19.
Reduction of toxic metabolite formation of acetaminophen   总被引:5,自引:0,他引:5  
Acetaminophen is a widely used over-the-counter drug that causes severe hepatic damage upon overdose. Cytochrome P450-dependent oxidation of acetaminophen results in the formation of the toxic N-acetyl-p-benzoquinone-imine (NAPQI). Inhibition of cytochrome P450 enzymes responsible for NAPQI formation might be useful--besides N-acetylcysteine treatment--in managing acetaminophen overdose. Investigations were carried out using human liver microsomes to test whether selective inhibition of cytochrome P450s reduces NAPQI formation. Selective inhibition of CYP3A4 and CYP1A2 did not reduce, whereas the inhibition of CYP2A6 and CYP2E1 significantly decreased NAPQI formation. Furthermore, selective CYP2E1 inhibitors that are used in human therapy were tested for their inhibitory effect on NAPQI formation. 4-Methylpyrazole, disulfiram, and diethyl-dithiocarbamate were the most potent inhibitors with IC(50) values of 50 microM, 8 microM, and 33 microM, respectively. Although cimetidin is used in the therapy of acetaminophen overdose as an inhibitor of cytochrome P450, it is not able to reduce NAPQI formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号