首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 391 毫秒
1.
The PcF Toxin Family (Pfam 09461) includes the characterized phytotoxic protein PcF from Phytophthora cactorum, as well as several predicted protein effectors from other Phytophthora species recently identified by comparative genomics. Here we provide first evidence that such 'putatives', recombinantly expressed in bacteria and purified to homogeneity, similarly to PcF, can trigger defense-related responses on tomato, that is leaf withering and phenylalanine ammonia lyase induction, although with various degrees of effectiveness. In addition, structural prediction by computer-aided homology modeling and subsequent structural/functional comparison after rational engineering of the disulfide-structured protein fold by site-directed mutagenesis, highlighted the surface-exposed conserved amino acid stretch SK(E/C)C as a possible structural determinant responsible for the differential phytotoxicity within this family of cognate protein effectors.  相似文献   

2.
A novel protein factor, named PcF, has been isolated from the culture filtrate of Phytophthora cactorum strain P381 using a highly sensitive leaf necrosis bioassay with tomato seedlings. Isolated PcF protein alone induced leaf necrosis on its host strawberry plant. The primary structure and cDNA sequence of this novel phytotoxic protein was determined, and BLAST searches of Swiss-Prot, EMBL, and GenBank(TM)/EBI data banks showed that PcF shared no significant homology with other known sequences. The 52-residue PcF protein, which contains a 4-hydroxyproline residue along with three S-S bridges, exhibits a high content of acidic sidechains, accounting for its isoelectric point of 4.4. The molecular mass of isolated PcF is 5,622 +/- 0.5 Da as determined by mass spectrometry and matches that calculated from the deduced amino acid sequence with cDNA sequencing. The cDNA sequence indicates that PcF is first produced as a larger precursor, comprising an additional N-terminal, 21-residue secretory signal peptide. Maturation of this protein involves the hydroxylation of proline 49, a feature that is unique among other known secreted fungal phytopathogenic proteins.  相似文献   

3.
It is shown here that Fe2+ and O2 ligands are displaced from the ferroxidase center of the C1 four‐helix bundle of E. coli 24‐mer ferritin under molecular dynamics (MD) aided by a randomly oriented external force applied to the ligand. Under these conditions, ligand egress toward the external aqueous medium occurs preferentially from the same four‐helix bundle, in the case of O2, or other bundle, in the case of Fe2. Viewing ligand egress from the protein as the microscopic reverse of ligand influx into the protein under unbiased MD, these findings challenge current views that preferential gates for recruitment of Fe2+ are 3‐fold channels with human ferritin, or the short path from the ferroxidase center to H93 with bacterial ferritins.  相似文献   

4.
5.
6.
CrtJ from Rhodobacter capsulatus is a regulator of genes involved in the biosynthesis of haem, bacteriochlorophyll, carotenoids as well as structural proteins of the light harvesting‐II complex. Fluorescence anisotropy‐based DNA‐binding analysis demonstrates that oxidized CrtJ exhibits ~ 20‐fold increase in binding affinity over that of reduced CrtJ. Liquid chromatography electrospray tandem ionization mass spectrometric analysis using DAz‐2, a sulfenic acid (–SOH)‐specific probe, demonstrates that exposure of CrtJ to oxygen or to hydrogen peroxide leads to significant accumulation of a sulfenic acid derivative of Cys420 which is located in the helix–turn–helix (HTH) motif. In vivo labelling with 4‐(3‐azidopropyl)cyclohexane‐1,3‐dione (DAz‐2) shows that Cys420 also forms a sulfenic acid modification in vivo when cells are exposed to oxygen. Moreover, a Cys420 to Ala mutation leads to a ~ 60‐fold reduction of DNA binding activity while a Cys to Ser substitution at position 420 that mimics a cysteine sulfenic acid results in a ~ 4‐fold increase in DNA binding activity. These results provide the first example where sulfenic acid oxidation of a cysteine in a HTH‐motif leads to differential effects on gene expression.  相似文献   

7.
Proper folding of the (Gly‐Xaa‐Yaa)n sequence of animal collagens requires adjacent N‐ or C‐terminal noncollagenous trimerization domains which often contain coiled‐coil or beta sheet structure. Collagen‐like proteins have been found recently in a number of bacteria, but little is known about their folding mechanism. The Scl2 collagen‐like protein from Streptococcus pyogenes has an N‐terminal globular domain, designated Vsp, adjacent to its triple‐helix domain. The Vsp domain is required for proper refolding of the Scl2 protein in vitro. Here, recombinant Vsp domain alone is shown to form trimers with a significant α‐helix content and to have a thermal stability of Tm = 45°C. Examination of a new construct shows that the Vsp domain facilitates efficient in vitro refolding only when it is located N‐terminal to the triple‐helix domain but not when C‐terminal to the triple‐helix domain. Fusion of the Vsp domain N‐terminal to a heterologous (Gly‐Xaa‐Yaa)n sequence from Clostridium perfringens led to correct folding and refolding of this triple‐helix, which was unable to fold into a triple‐helical, soluble protein on its own. These results suggest that placement of a functional trimerization module adjacent to a heterologous Gly‐Xaa‐Yaa repeating sequence can lead to proper folding in some cases but also shows specificity in the relative location of the trimerization and triple‐helix domains. This information about their modular nature can be used in the production of novel types of bacterial collagen for biomaterial applications.  相似文献   

8.
The solution structure of the Bacillus subtilis protein YndB has been solved using NMR to investigate proposed biological functions. The YndB structure exhibits the helix‐grip fold, which consists of a β‐sheet with two small and one long α‐helix, forming a hydrophobic cavity that preferentially binds lipid‐like molecules. Sequence and structure comparisons with proteins from eukaryotes, prokaryotes, and archaea suggest that YndB is very similar to the eukaryote protein Aha1, which binds to the middle domain of Hsp90 and induces ATPase activity. On the basis of these similarities, YndB has been classified as a member of the activator of Hsp90 ATPase homolog 1‐like protein (AHSA1) family with a function that appears to be related to stress response. An in silico screen of a compound library of ~18,500 lipids was used to identify classes of lipids that preferentially bind YndB. The in silico screen identified, in order of affinity, the chalcone/hydroxychalcone, flavanone, and flavone/flavonol classes of lipids, which was further verified by 2D 1H‐15N HSQC NMR titration experiments with trans‐chalcone, flavanone, flavone, and flavonol. All of these compounds are typically found in plants as precursors to various flavonoid antibiotics and signaling molecules. The sum of the data suggests an involvement of YndB with the stress response of B. subtilis to chalcone‐like flavonoids released by plants due to a pathogen infection. The observed binding of chalcone‐like molecules by YndB is likely related to thesymbiotic relationship between B. subtilis and plants. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
Indirect immunofluorescence of mouse caput and caudal sperm shows distinctly different distributions of Spam1 protein, which is associated with structural and functional differences of the molecule. Spam1 is uniformly distributed over the surface of the head of caput sperm while in caudal sperm, light and confocal microscopy demonstrate that it is localized to the anterior and posterior regions. The hyaluronidase activity of Spam1 in acrosome‐intact caput sperm was significantly lower (4.3‐fold; P < 0.0001) than that of caudal sperm. The increase in enzymatic activity in caudal sperm is accompanied by a reduction in the molecular weight (MW): in extracts from caput sperm there was a major band at ∼74 kDa and a minor band at ∼67 kDa; while for the cauda there was a major band at ∼67 kDa and minor bands at ∼70 and ∼56 kDa. Additionally, the bands from caput sperm were 4.9 to 7.7‐fold less intense than those from caudal sperm. This decreased affinity for the polyclonal anti‐Spam1 suggests the presence of different surface characteristics of the molecule from the two epididymal regions. Computer analysis of the protein structure from Spam1 cDNA sequence reveals four putative N‐linked glycosylation sites, and enzymatic deglycosylation suggests that all sites are functional. After endoglycosidase activity of extracts from caput and caudal sperm, both show a major band with a MW of ∼56 kDa, the size of the membrane‐anchored polypeptide backbone. Based on the difference in size and intensity of the Spam1 bands and hyaluronidase activities from caput and caudal sperm, the data suggest that the activation of Spam1 during epididymal maturation is regulated by deglycosylation. Mol. Reprod. Dev. 52:196–206, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
Plants use a highly evolved immune system to exhibit defense response against microbial infections. The plant TIR domain, together with the nucleotide‐binding (NB) domain and/or a LRR region, forms a type of molecule, named resistance (R) proteins, that interact with microbial effector proteins and elicit hypersensitive responses against infection. Here, we report the first crystal structure of a plant TIR domain from Arabidopsis thaliana (AtTIR) solved at a resolution of 2.0 Å. The structure consists of five β‐strands forming a parallel β‐sheet at the core of the protein. The β‐strands are connected by a series of α‐helices and the overall fold mimics closely that of other mammalian and bacterial TIR domains. However, the region of the αD‐helix reveals significant differences when compared with other TIR structures, especially the αD3‐helix that corresponds to an insertion only present in plant TIR domains. Available mutagenesis data suggest that several conserved and exposed residues in this region are involved in the plant TIR signaling function.  相似文献   

12.
HP1454 is a protein of 303 amino acids found in the extracellular milieu of Helicobacter pylori. The protein structure, crystallized in the orthorhombic C2221 space group with one molecule per asymmetric unit, has been determined using the single‐wavelength anomalous dispersion method. HP1454 exhibits an elongated bent shape, composed of three distinct domains. Each domain possesses a fold already present in other structures: Domain I contains a three‐strand antiparallel β‐barrel flanked by a long α‐helix, Domain II is an anti‐parallel three‐helix bundle, and Domain III a β‐sheet flanked by two α‐helices. The overall assembly of the protein does not bear any similarity with known structures. Proteins 2014; 82:2868–2873. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
14.
The sensor histidine kinases of two‐component signal‐transduction systems (TCSs) are essential for bacteria to adapt to variable environmental conditions. The two‐component regulatory system BaeS/R increases multidrug and metal resistance in Salmonella and Escherichia coli. In this study, we report the X‐ray structure of the periplasmic sensor domain of BaeS from Serratia marcescens FS14. The BaeS sensor domain (34–160) adopts a mixed α/β‐fold containing a central four‐stranded antiparallel β‐sheet flanked by a long N‐terminal α‐helix and additional loops and a short C‐terminal α‐helix on each side. Structural comparisons revealed that it belongs to the PDC family with a remarkable difference in the orientation of the helix α2. In the BaeS sensor domain, this helix is situated perpendicular to the long helix α1 and holds helix α1 in the middle with the beta sheet, whereas in other PDC domains, helix α2 is parallel to helix α1. Because the helices α1 and α2 is involved in the dimeric interface, this difference implies that BaeS uses a different dimeric interface compared with other PDC domains. Proteins 2017; 85:1784–1790. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
Thermus thermophilus proline dehydrogenase ( TtProDH) catalyzes the first step in proline catabolism. The thermostable flavoenzyme consists of a distorted triosephosphate isomerase (TIM) barrel and three N‐terminal helices: αA, αB, and αC. Using maltose‐binding protein (MBP) fused constructs, it has been recently demonstrated that helix αC is crucial for TtProDH catalysis and for tetramerization through positioning of helix α8. Here, the structural features that determine the thermostability of TtProDH are reported. Selective disruption of two ion pairs in the dimerization interface of several MBP‐TtProDH variants result in the formation of monomers. The newly created monomers have improved catalytic properties but their melting temperatures are decreased by more than 20 °C. Sequence comparison suggests that one of the ion‐pairs involved in dimerization is unique for ProDHs from Thermus species. In summary, intermolecular ion‐pairs improve the thermostability of TtProDH and a trade‐off is made between thermostability and catalytic activity.  相似文献   

16.
17.
The NLRP1 inflammasome responds to microbial challenges such as Bacillus anthracis infection and is implicated in autoimmune disease such as vitiligo. Human NLRP1 contains both an N‐terminal pyrin domain (PYD) and a C‐terminal caspase recruitment domain (CARD), with the latter being essential for its association with the downstream effector procaspase‐1. Here we report a 2.0 Å crystal structure of the human NLRP1 CARD as a fusion with the maltose‐binding protein. The structure reveals the six‐helix bundle fold of the NLRP1 CARD, typical of the death domain superfamily. The charge surface of the NLRP1 CARD structure and a procaspase‐1 CARD model suggests potential mechanisms for their association through electrostatic attraction. Proteins 2013; 81:1266–1270. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Franca EF  Freitas LC  Lins RD 《Biopolymers》2011,95(7):448-460
Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle‐like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N‐acetyl groups in the particles. The polysaccharide chains of highly N‐deacetylated particles where the N‐acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two‐fold helix and five‐fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two‐fold helix with ? and ψ values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N‐acetyl groups are unevenly distributed. Systems with 60% or higher N‐acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N‐acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3‐HO3(n)···O5(n +1) hydrogen bond, which in turn controls particle aggregation. © 2011 Wiley Periodicals, Inc. Biopolymers 95: 448–460, 2011.  相似文献   

19.
Protein stability can be enhanced by the incorporation of non-natural amino acids and semi-rigid peptidomimetics to lower the entropic penalty upon protein folding through preorganization. An example is the incorporation of aminoisobutyric acid (Aib, α-methylalanine) into proteins to restrict the Φ and Ψ backbone angles adjacent to Aib to those associated with helix formation. Reverse-turn analogs were introduced into the sequences of HIV protease and ribonuclease A that enhanced their stability and retained their native enzymatic activity. In this work, a chimeric protein, design_4, was engineered, in silico, by replacing the C-terminal helix of full sequence design protein (FSD-1) with a semi-rigid helix mimetic. Residues 1–16 of FSD-1 was ligated in silico with the N-terminus of a phenylbipyridyl-based helix mimetic to form design_4. The designed chimeric protein was stable and maintained the designed fold in a 100-nanosecond molecular dynamics simulation at 280 K. Its β-hairpin adopted conformations that formed three additional hydrogen bonds. Compared to FSD-1, design_4 contained fewer peptide bonds and internal degrees of freedom; it should, therefore, be more resistant to proteolytic degradation and denaturation.  相似文献   

20.
Adhesion to host tissue is one of the key steps of the bacterial pathogenic process. Xanthomonas citri ssp. citri possesses a non‐fimbrial adhesin protein, XacFhaB, required for bacterial attachment, which we have previously demonstrated to be an important virulence factor for the development of citrus canker. XacFhaB is a 4753‐residue‐long protein with a predicted β‐helical fold structure, involved in bacterial aggregation, biofilm formation and adhesion to the host. In this work, to further characterize this protein and considering its large size, XacFhaB was dissected into three regions based on bioinformatic and structural analyses for functional studies. First, the capacity of these protein regions to aggregate bacterial cells was analysed. Two of these regions were able to form bacterial aggregates, with the most amino‐terminal region being dispensable for this activity. Moreover, XacFhaB shows features resembling pathogen‐associated molecular patterns (PAMPs), which are recognized by plants. As PAMPs activate plant basal immune responses, the role of the three XacFhaB regions as elicitors of these responses was investigated. All adhesin regions were able to induce basal immune responses in host and non‐host plants, with a stronger activation by the carboxyl‐terminal region. Furthermore, pre‐infiltration of citrus leaves with XacFhaB regions impaired X. citri ssp. citri growth, confirming the induction of defence responses and restraint of citrus canker. This work reveals that adhesins from plant pathogens trigger plant defence responses, opening up new pathways for the development of protective strategies for disease control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号