首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maturation of potato (Solanum tuberosum L.) tuber native and wound periderm and development of resistance to periderm abrasion were investigated utilizing cytological and histochemical techniques. Both native and wound periderm consist of three different tissues: phellem, phellogen and phelloderm. It was previously determined that the phellogen walls of immature native periderm are thin and prone to fracture during harvest, leading to periderm abrasion (excoriation). Phellogen walls thicken and become less susceptible to fracture upon maturation of the periderm, leading to resistance to excoriation. We now demonstrate that phellogen cells of immature wound periderm also have thin radial walls and that wound periderm abrasion is due to fracture of these walls. Maturation of the wound periderm is also associated with an increase in the thickness of the phellogen radial walls. Histological analysis with ruthenium red and hydroxylamine-FeCI2, which stain unesterified and highly methyl-esterified pectins, respectively, indicates that the phellogen cell walls of native and wound periderm differ significantly regardless of the stage of maturity. Results obtained by staining with ruthenium red and hydroxylamine-FeCI2 imply that phellogen cell walls of immature native periderm contain methyl-esterified pectin, but are lacking in unesterified (acidic) pectins. Maturation of native periderm is accompanied by an apparent increase in unesterified pectins in the walls of phellogen cells, which may allow for the strengthening of phellogen cell walls via calcium pectate formation. Histological staining of the phellogen walls of wound periderm, on the other hand, implies that these walls are deficient in pectins. Moreover, maturation of wound periderm is not accompanied by an increase in unesterified pectins in these walls. Since peroxidase is known to catalyse the cross-linking of cell wall polymers, we stained native and wound periderm for the presence of peroxidase utilizing guaiacol as a substrate. Peroxidase staining was strong in the phellogen walls of both immature and mature native periderm and we could not detect any differences in staining between them. Peroxidase staining was weak in the phellogen walls of immature wound periderm and was not detectably different in mature wound periderm. Peroxidase data imply that there are distinct differences between native and wound periderm, though our data do not indicate that changes in peroxidase activity are involved in the development of resistance to periderm abrasion that occurs upon maturation of the periderm. However, we cannot rule out the involvement in this process of peroxidase isozymes that have low affinity for the substrates utilized here.  相似文献   

2.
3.
By using a comparative proteomic approach (2‐DE coupled to MS/MS), the development, maturation, and germination of date palm zygotic embryos, have been studied. Proteins were trichloroacetic acid (TCA)–acetone–phenol extracted and resolved by 2‐DE in the 5–8 pH range. The total protein content and the number of spots resolved increased from early (12 weeks after pollination (WAP); 68.96 mg/g DW: 207 spots) to late (17 WAP; 240.85 mg/g DW: 261 spots) stages, decreasing upon germination (from 120.8 mg/g DW: 273 spots in mature embryos to 26.35 mg/g DW: 87 spots in 15 days after germination). Up to 194 spots showed qualitative or quantitative differences between stages. Statistical analysis of spot variation was performed by PCA, obtaining a more accurate grouping of the samples and determining the most discriminant spots. Samples were also clustered based on Pearson distance and Ward's minimum distance. Sixty‐five variable spots were subjected to MS analysis, resulting in 21 identifications. The identified proteins belong to the following functional categories: enzymes of glycolysis, tricarboxylic acid cycle, and carbohydrate biosynthesis, protein translation, storage (glutelin), and stress‐related proteins. The evolution pattern of the functional groups was examined and discussed in terms of metabolism adaptation to the different embryogenic and germination stages.  相似文献   

4.
We describe a 2‐DE proteomic reference map containing 227 basic proteins in the dorsolateral prefrontal cortex region of the human brain. Proteins were separated in the first dimension on pH 6–11 IPG strips using paper‐bridge loading and on 12% SDS‐PAGE in the second dimension. Proteins were subsequently identified by MS and spectra were analyzed using an in‐house proteomics data analysis platform, Proline. The 2‐DE reference map is available via the UCD 2‐DE Proteome Database ( http://proteomics‐portal.ucd.ie:8082 ) and can also be accessed via the WORLD‐2DPAGE Portal ( http://www.expasy.ch/world‐2dpage/ ). The associated protein identification data have been submitted to the PRIDE database (accession numbers 10018–10033). Separation of proteins in the basic region resolves more membrane associated proteins relevant to the synaptic pathology central to many neurological disorders. The 2‐DE reference map will aid with further characterisation of neurological disorders such as bipolar and schizophrenia.  相似文献   

5.
The current study used three different proteomic strategies, which differed by their extent of intact protein separation, to examine the proteome of a pluripotent mouse embryonic stem cell line, R1. Proteins from whole‐cell lysates were subjected either to 2‐D‐LC, or 1‐DE, or were unfractionated prior to enzymatic digestion and subsequent analysis by MS. The results yielded 1895 identified non‐redundant proteins and, for 128 of these, the specific isoform could be determined based on detection of an isoform‐specific peptide. When compared with two previously published proteomic studies that used the same cell line, the current study reveals 612 new proteins.  相似文献   

6.
Schreiber L  Franke R  Hartmann K 《Planta》2005,220(4):520-530
Native and wound periderm was isolated enzymatically from potato (Solanum tuberosum L. cv. Desirée) tubers at different time intervals between 0 days up to 4 weeks after harvesting. Wound periderm formation was induced by carefully removing native periderm from freshly harvested tubers before storage. The chemical composition of lipids (waxes) obtained by chloroform extraction, as well as the monomeric composition of native and wound suberin polymer after transesterification by boron trifluoride/methanol, was analyzed using gas chromatography and mass spectrometry. Both types of periderm contained up to 20% extractable lipids. Besides linear long-chain aliphatic wax compounds, alkyl ferulates were detected as significant constituents. In wound periderm they amounted to more than 60% of the total extracts. Within 1 month of storage, suberin amounts in the polymer increased 2-fold in native periderm (180 g cm–2), whereas in wound periderm about 75.0 g cm–2 suberin polymer was newly synthesized. Native potato tuber periderm developed a very efficient transport barrier for water with permeances decreasing from 6.4×10–10 m s–1 to 5.5×10–11 m s–1 within 1 month of storage. However, the water permeability of wound periderm was on average 100 times higher with permeances decreasing from 4.7×10–8 m s–1 after 3 days to only 5.4×10–9 m s–1 after 1 month of storage, although suberin and wax amounts in wound periderm amounted to about 60% of native periderm. From this result it must be concluded that the occurrence of suberin with wax depositions in cell walls does not necessarily allow us to conclude that these cell walls must be nearly perfect barriers to water transport. In addition to the occurrence of the lipophilic biopolymer suberin and associated waxes, the still unknown molecular arrangement and precisely localized deposition of suberin within the cell wall must contribute to the efficiency of suberin as a barrier to water transport.  相似文献   

7.
The embryonic epidermis of amniotes is a two-cell layer sheet with a periderm positioned superficial to the basal cell layer which, itself, attaches apically to the basal surface of the periderm and basally to the basal lamina. The presence of the periderm is essential to maintain the basal layer as a two-dimensional monolayer. Wounds to the epidermis that remove selectively just the periderm are healed by a stacking of the basal layer cells that constitute the wound bed. Basal cell stacking involves the desertion of the basal lamina by many of the cells so as to increase their contact area with other basal layer cells. This suggests that a preferential adhesion to the planar basal lamina is not important for the monolayered organization of the basal layer but, instead, association with inner surface of the planar periderm is the principal process that maintains the basal layer as a monolayer. The conversion of the basal layer from monolayer to multilayer during wound healing diminishes its planar area, resulting in movement of the wound borders toward the center of the wound. This is a novel scenario for wound healing.  相似文献   

8.
In contrast to normal healing wounds, chronic wounds commonly show disturbances in proteins regulating wound healing processes, particularly those involved in cell proliferation and protein degradation. Multidimensional protein identification technology MS/MS was conducted to investigate and compare the protein composition of chronic diabetic foot exudates to exudates from split‐skin donor sites of burn victims otherwise healthy. Spectral counting revealed 188 proteins differentially expressed (more than twofold and p‐value <0.05) in chronic wounds. Most were involved in biological processes including inflammation, angiogenesis, and cell mortality. Increased expression of the inflammatory response stimulating S100 proteins, predominantly S100A8 and S100A9 (almost tenfold), was identified. Matrix metalloproteinases (MMPs) MMP1, MMP2, and MMP8 were identified to be elevated in chronic wounds with significant impact on collagen degradation and tissue destruction. Further, proteins with antiangiogenic properties were found at higher expression levels in chronic wounds. Reduced angiogenesis leads to drastic shortage in nutrition supply and causes increased cell death, demonstrated by Annexin A5 exclusively found in chronic wound exudates. However, excessive nucleic and cytosolic material infers cell death occurring not only by apoptosis but also by necrosis. In conclusion, mass spectrometric investigation of exudates from chronic wounds demonstrated dramatic impairment in wound repair with excessive inflammation, antiangiogenic environment, and accelerated cell death.  相似文献   

9.
Involvement of polyamine oxidase in wound healing   总被引:3,自引:1,他引:2  
Hydrogen peroxide (H(2)O(2)) is involved in plant defense responses that follow mechanical damage, such as those that occur during herbivore or insect attacks, as well as pathogen attack. H(2)O(2) accumulation is induced during wound healing processes as well as by treatment with the wound signal jasmonic acid. Plant polyamine oxidases (PAOs) are H(2)O(2) producing enzymes supposedly involved in cell wall differentiation processes and defense responses. Maize (Zea mays) PAO (ZmPAO) is a developmentally regulated flavoprotein abundant in primary and secondary cell walls of several tissues. In this study, we investigated the effect of wounding on ZmPAO gene expression in the outer tissues of the maize mesocotyl and provide evidence that ZmPAO enzyme activity, protein, and mRNA levels increased in response to wounding as well as jasmonic acid treatment. Histochemically detected ZmPAO activity especially intensified in the epidermis and in the wound periderm, suggesting a tissue-specific involvement of ZmPAO in wound healing. The role played by ZmPAO-derived H(2)O(2) production in peroxidase-mediated wall stiffening events was further investigated by exploiting the in vivo use of N-prenylagmatine (G3), a selective and powerful ZmPAO inhibitor, representing a reliable diagnostic tool in discriminating ZmPAO-mediated H(2)O(2) production from that generated by peroxidase, oxalate oxidase, or by NADPH oxidase activity. Here, we demonstrate that G3 inhibits wound-induced H(2)O(2) production and strongly reduces lignin and suberin polyphenolic domain deposition along the wound, while it is ineffective in inhibiting the deposition of suberin aliphatic domain. Moreover, ZmPAO ectopic expression in the cell wall of transgenic tobacco (Nicotiana tabacum) plants strongly enhanced lignosuberization along the wound periderm, providing evidence for a causal relationship between PAO and peroxidase-mediated events during wound healing.  相似文献   

10.
Protein expression changes induced in thioglycolate‐elicited peritoneal murine macrophages (MΦ) by infection with type III Group B Streptococcus (GBS) are described. Proteins from control MΦ and MΦ incubated 2 h with live or heat‐inactivated GBS were separated by 2‐DE. Proteins whose expression was significantly different in infected MΦ, as compared with control cells, were identified by MS/MS analysis. Changes in the expression level of proteins involved in both positive and negative modulation of phagocytic functions, stress response and cell death were induced in MΦ by GBS infection. In particular, expression of enzymes playing a key role in production of reactive oxygen species was lowered in GBS‐infected MΦ. Significant alterations in the expression of some metabolic enzymes were also observed, most of the glycolytic and of the pentose‐cycle enzymes being down‐regulated in MΦ infected with live GBS. Finally, evidence was obtained that GBS infection affects the expression of enzymes or enzyme subunits involved in ATP synthesis and in adenine nucleotides interconversion processes.  相似文献   

11.
Cork (phellem) formation in Quercus suber stem was studied by proteomic analysis of young shoots of increasing age (Y0, Y1 and Y4) and recently-formed phellem (Y8Ph) and xylem (Y8X) from an 8-year-old branch. In this study 99 proteins were identified, 45 excised from Y8X and 54 from Y8Ph. These ones, specifically associated with phellem, are of "carbohydrate metabolism" (28%), "defence" (22%), "protein folding, stability and degradation" (19%), "regulation/signalling" (11%), "secondary metabolism" (9%), "energy metabolism" (6%), and "membrane transport" (2%). The identification in phellem of galactosidases, xylosidases, apiose/xylose synthase, laccases and diphenol oxidases suggests intense cell wall reorganization, possibly with participation of hemicellulose/pectin biosynthesis and phenol oxidation. The identification of proteasome subunits, heat shock proteins, cyclophylin, subtilisin-like proteases, 14-3-3 proteins, Rab2 protein and enzymes interacting with nucleosides/nucleic acids gives additional evidence for cellular reorganization, involving cellular secretion, protein turnover regulation and active control processes. The high involvement in phellem of defence proteins (thioredoxin-dependent peroxidase, glutathione-S-transferase, SGT1 protein, cystatin, and chitinases) suggests a strong need for cell protection from the intense stressful events occurring in active phellem, namely, desiccation, pests/disease protection, detoxification and cell death. Identically, highly enhanced defence functions were previously reported for potato periderm formation.  相似文献   

12.
Mammary gland is made up of a branching network of ducts that end in alveoli. Terminally differentiated mammary epithelial cells (MECs) constitute the innermost layer of aveoli. They are milk‐secreting cuboidal cells that secrete milk proteins during lactation. Little is known about the expression profile of proteins in the metabolically active MECs during lactation or their functional role in the lactation process. In the present investigation, we have reported the proteome map of MECs in lactating cows using 2DE MALDI‐TOF/TOF MS and 1D‐Gel‐LC‐MS/MS. MECs were isolated from milk using immunomagnetic beads and confirmed by RT‐PCR and Western blotting. The 1D‐Gel‐LC‐MS/MS and 2DE‐MS/MS based approaches led to identification of 431 and 134 proteins, respectively, with a total of 497 unique proteins. Proteins identified in this study were clustered into functional groups using bioinformatics tools. Pathway analysis of the identified proteins revealed 28 pathways (p < 0.05) providing evidence for involvement of various proteins in lactation function. This study further provides experimental evidence for the presence of many proteins that have been predicted in annotated bovine genome. The data generated further provide a set of bovine MEC‐specific proteins that will help the researchers to understand the molecular events taking place during lactation.  相似文献   

13.
Two‐dimensional blue native/SDS‐PAGE is widely applied to investigate native protein–protein interactions, particularly those within membrane multi‐protein complexes. MS has enabled the application of this approach at the proteome scale, typically by analysis of picked protein spots. Here, we investigated the potential of using LC‐MS/MS as an alternative for SDS‐PAGE in blue native (BN) analysis of protein complexes. By subjecting equal slices from BN gel lanes to label‐free semi‐quantitative LC‐MS/MS, we determined an abundance profile for each protein across the BN gel, and used these profiles to identify potentially interacting proteins by protein correlation profiling. We demonstrate the feasibility of this approach by considering the oxidative phosphorylation complexes I–V in the native human embryonic kidney 293 mitochondrial fraction, showing that the method is capable of detecting both the fully assembled complexes as well as assembly/turnover intermediates of complex I (NADH:ubiquinone oxidoreductase). Using protein correlation profiling with a profile for subunits NDUFS2, 3, 7 and 8 we identified multiple proteins possibly involved in the biogenesis of complex I, including the recently implicated chaperone C6ORF66 and a novel candidate, C3ORF60.  相似文献   

14.
Chinese hamster ovary (CHO) cells are the major mammalian host for producing various therapeutic proteins. Among CHO cells, the dihydrofolate reductase‐deficient CHO DG44 cell line has been used as a popular mammalian host because of the availability of a well‐characterized genetic selection and amplification system. However, this cell line has not been studied at the proteome level. Here, the first detailed proteome analysis of the CHO DG44 cell line is described. A protein reference map of the CHO DG44 cell line was established by analyzing whole cellular proteins using 2‐DE with various immobilized pH gradients (pHs 3–10, 5–8, and 3–6) in the first dimension and a 12% acrylamide gel in the second dimension. The map is composed of over 1400 silver‐stained protein spots. Among them, 179 protein spots, which represent proteins associated with various biological processes and cellular compartments, were identified based on MALDI‐TOF‐MS and MS/MS. This proteome database should be valuable for better understanding of CHO cell physiology and protein expression patterns which may lead to efficient therapeutic protein production.  相似文献   

15.
16.
The effects of di(2‐ethylhexyl) phthalate (DEHP) on proteins secreted by HepG2 cells were studied using a proteomic approach. HepG2 cells were exposed to various concentrations of DEHP (0, 2.5, 5, 10, 25, 50, 100, and 250 μM) for 24 or 48 h. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) and comet assays were then conducted to determine the cytotoxicity and genotoxicity of DEHP, respectively. The MTT assay showed that 10 μM DEHP was the maximum concentration that did not cause cell death. In addition, the DNA damage in HepG2 cells exposed to DEHP was found to increase in a dose‐ and time‐dependent fashion. Proteomic analysis using two different pI ranges (4–7 and 6–9) and large size 2‐DE revealed the presence of 2776 protein spots. A total of 35 (19 up‐ and 16 down‐regulated) proteins were identified as biomarkers of DEHP by ESI‐MS/MS. Several differentiated protein groups were also found. Proteins involved in apoptosis, transportation, signaling, energy metabolism, and cell structure and motility were found to be up‐ or down‐regulated. Among these, the identities of cystatin C, Rho GDP inhibitor, retinol binding protein 4, gelsolin, DEK protein, Raf kinase inhibitory protein, triose phosphate isomerase, cofilin‐1, and haptoglobin‐related protein were confirmed by Western blot assay. Therefore, these proteins could be used as potential biomarkers of DEHP and human disease associated with DEHP.  相似文献   

17.
Edwardsiella ictaluri is a facultative intracellular Gram‐negative bacterium causing enteric septicemia of catfish (ESC), the most prevalent disease affecting farm‐raised channel catfish in the United States. Despite its economic importance, studies addressing high‐throughput proteomics were not possible because of lack of comprehensive protein database. Here, we report the first high‐throughput proteomics analysis of E. ictaluri using 2‐D LC ESI MS/MS and 2‐DE MALDI TOF/TOF MS. Proteins identified in this study and predicted from the whole E. ictaluri genome were clustered into functional groups using clusters of orthologous groups (COG), and their subcellular locations were predicted. Possible functional relationships among proteins were determined using pathway analysis. The total number of unique E. ictaluri proteins identified using both 2‐D LC and 2‐DE approaches was 788, of which 15.48% (122) were identified by both methods while 78.43% (618) and 6.09% (48) were unique in 2‐D LC and 2‐DE, respectively. COG groupings and subcellular localizations were quite similar between our data set and proteins predicted from the whole genome. Twelve pathways were significantly represented in our dataset (p <0.05). Results from this study provided experimental evidence for many proteins that were predicted from the E. ictaluri genome annotation, and they should accelerate future functional and comparative studies aimed at understanding virulence mechanisms of this important pathogen.  相似文献   

18.
Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM-40) is a matricellular protein that functions in wound healing. Fibrinogen is a plasma protein involved in many aspects of wound healing, such as inflammation, fibrosis and thrombosis. In this study, the binding of SPARC to both native and plasmin-cleaved fibrinogen under physiological conditions was examined by the use of a surface plasmon resonance (SPR) biosensor. We show that SPARC binds to plasmin-cleaved fibrinogen, but not to native fibrinogen. SPARC binds to both fibrinogen fragments D and E fg D and fg E with similar dissociation constants (8.67 x 10(-8) M for Fg D and 1.61 x 10(-7) M for Fg E). Results from endothelial cell proliferation assays show that the binding of SPARC to Fg E suppressed the inhibition of proliferation by SPARC, whereas the binding of SPARC to Fg D did not influence the activity of SPARC on the cell cycle. The interaction of SPARC with fibrinogen fragments D and E, which are produced as a result of proteolytic activation of fibrinolysis, reveals potential storage sites in provisional extracellular matrix for SPARC during the wound healing process and indicates a regulatory role of SPARC in fibrinolysis and angiogenesis.  相似文献   

19.
The filamentous fungus Aspergillus fumigatus has become the most important airborne fungal pathogen causing life‐threatening infections in immunosuppressed patients. We established a 2‐D reference map for A. fumigatus. Using MALDI‐TOF‐MS/MS, we identified 381 spots representing 334 proteins. Proteins involved in cellular metabolism, protein synthesis, transport processes and cell cycle were most abundant. Furthermore, we established a protocol for the isolation of mitochondria of A. fumigatus and developed a mitochondrial proteome reference map. 147 proteins represented by 234 spots were identified.  相似文献   

20.
It was demonstrated that biogenic elicitors, arachidonic acid and chitosan, locally and systemically stimulated wound healing in potato tuber tissues by increasing the number of wound periderm layers, accelerating the development of cork cambium (phellogen), and inducing proteinase inhibitors. The signal molecules, jasmonic and salicylic acids, had different effects on the development of wound periderm: jasmonic acid locally and systemically stimulated potato wound healing and elevated the level of proteinase inhibitors, whereas salicylic acid did not have any effect on wound healing and even blocked the formation of proteinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号