首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.

CONTEXT:

The human serum paraoxonase 1 (PON1) is calcium-dependent esterase and associates with the high density serum lipoproteins. PON1 plays a major role in oxidation of high density lipoprotein and low density lipoprotein and prevention of atherogenesis in coronary heart disease. PON1Q and R allele hydrolyses number of substrates like paraoxon (PO) (diethyl p-nitrophenyl phosphate) and phenylacetate.

AIMS:

The aim of the study is to the determination of Q192R polymorphism of PON1 by using non-toxic substrate p-nitrophenylacetate and compares it with the phenotype determined by using PO as substrate.

MATERIALS AND METHODS:

The study group consists of 60 healthy normal patients. Paraoxonase activity was measured using the procedure described by Eckerson (Reference method) and for phenotyping; the ratio of hydrolysis of PO in the presence of 1 M NaCl (salt-stimulated PON1, SALT) to the hydrolysis of phenylacetate (PA) is calculated. In new method (Haagen et al.) arylesterase activity measured using p-nitrophenylacetate and for phenotyping arylesterase, the ratio of inhibition of enzymatic hydrolysis of p-nitrophenylacetate (substrate) by phenyl acetate to non-inhibited hydrolysis of p-nitrophenylacetate (inhibited arylesterase activity (IA-IA0)/non-inhibited arylesterase activity (NIA).

RESULTS:

It was found that paraoxonase activity is trimodally distributed in both the methods. There is no significant difference in the distribution of PON1 phenotypes of both reference method and new method being frequencies 0.946 and 0.376 respectively and there was no significant difference for phenotypic polymorphism for an individual by both methods (χ2= 0.15 and P = 0.9262).

CONCLUSION:

The Q192R polymorphism of PON1 by using non-toxic substrate p-nitrophenylacetate showed trimodal distribution of QQ (homozygous), QR (heterozygous), and RR (homozygous) phenotype and it is comparable with reference method. This method can be used for PON1 phenotype in different pathological and complex disease conditions.  相似文献   

2.
The paraoxonase/arylesterase gene is located close to the cystic fibrosis gene on chromosome 7. Human serum contains two paraoxonase/arylesterase allozymes, A and B, which differ in their substrate specificities and kinetic properties. Purified A, AB, and B esterases were digested with trypsin, and the resultant peptides were compared by high-performance liquid chromatography. The elution profiles were very similar for all three samples, except for (1) one peptide (i.e., peptide A) seen only in the A and AB profiles and (2) another peptide (i.e., peptide B) seen only in the B and AB profiles. Sequencing revealed that peptide A had glutamine at amino acid position 191, whereas peptide B was generated by cleavage on the carboxy side of position 191, presumably because there was a basic (trypsin-specific) amino acid at that position. Working independently, our laboratory and one other laboratory have sequenced the coding region for paraoxonase from human liver cDNA libraries and have identified two polymorphic sites: Arg/Gln at position 191 and Leu/Met at position 54. Using PCR amplification and direct sequencing of nucleotides in both polymorphic regions with genomic DNA, we have estimated the allelic frequencies and have determined their concordance with the serum paraoxonase allozyme phenotypes in 27 unrelated adults and in 16 members of a three-generation pedigree. Among unrelated individuals, the Met/Leu polymorphism at position 54 did not correlate with the serum esterase phenotype. In contrast, the particular amino acid at position 191 correlated perfectly with serum phenotypes: A-type individuals had Gln at position 191, and B-type individuals had Arg at position 191; AB-type serum was found only with the heterozygous (Arg/Gln) combination. Pedigree analysis showed both polymorphisms to be inherited in the expected Mendelian manner and confirmed that only the 191 polymorphism showed concordance with the serum paraoxonase/arylesterase phenotypes.  相似文献   

3.
The 5.5 Mb chromosome 7q21-22 ACHE/PON1 locus harbours the ACHE gene encoding the acetylcholine hydrolyzing, organophosphate (OP)-inhibitable acetylcholinesterase protein and the paraoxonase gene PON1, yielding the OP-hydrolyzing PON1 enzyme which also displays arylesterase activity. In search of inherited and acquired ACHE-PON1 interactions we genotyped seven polymorphic sites and determined the hydrolytic activities of the corresponding plasma enzymes and of the AChE-homologous butyrylcholinesetrase (BChE) in 157 healthy Israelis. AChE, arylesterase, BChE and paraoxonase activities in plasma displayed 5.4-, 6.5-, 7.2- and 15.5-fold variability, respectively, with genotype-specific differences between carriers of distinct compound polymorphisms. AChE, BChE and arylesterase but not paraoxonase activity increased with age, depending on leucine at PON1 position 55. In contrast, carriers of PON1 M55 displayed decreased arylesterase activity independent of the - 108 promoter polymorphism. Predicted structural consequences of the PON1 L55M substitution demonstrated spatial shifts in adjacent residues. Molecular modelling showed substrate interactions with the enzyme variants, explaining the changes in substrate specificity induced by the Q192R substitution. Intriguingly, PON1, but not BChE or arylesterase, activities displayed inverse association with AChE activity. Our findings demonstrate that polymorphism(s) in the adjacent PON1 and ACHE genes affect each other's expression, predicting for carriers of biochemically debilitating ACHE/PON1 polymorphisms adverse genome-environment interactions.  相似文献   

4.
We examined levels of malondialdehyde (MDA) (an end-product of lipid peroxidation) and paraoxonase (PON1) (an antioxidant enzyme) activity and PON1 phenotypes in people who were exposed to ionizing radiation for different time periods and doses. A total of 78 individuals (mean age 34 +/- 7 years) were included in the study. Fifty-one of them were radiology workers whereas the control group was composed of 27 healthy volunteers who had never worked in a radiology-related job. Paraoxon was used as substrate for measurement of PON1 activity levels (basal and NaCl-stimulated). Phenylacetate was used as substrate for measurement of arylesterase activity levels. Cumulative levels of serum NaCl-stimulated PON1/arylesterase activities were utilized for phenotypic differentiation. In radiology workers, three different phenotypes were determined based on paraoxonase/arylesterase ratio. The ratios were 1.09 +/- 0.30 for AA (homozygote low activity); 2.91 +/- 1.07 for AB (heterozygote activity) and 4.97 +/- 1.21 for BB (homozygote high activity). There was a statistically meaningful negative correlation between serum MDA levels and PON1 activity levels in all phenotypes (p < 0.05). PON1 activity levels were found to be 25-35% lower in people who were exposed to long-term ( > 5 years) radiation compared to controls. There was no statistically significant correlation between serum arylesterase activity and MDA levels in these subjects (r = -0.185, p > 0.05). PON1 activity levels were decreased whereas serum MDA levels were increased in individuals exposed to radiation for a long period. PON phenotypes of people employed in jobs which expose them to radiation should be determined and based on these findings they should be advised to avoid risk factors inducing oxidative stress, such as smoking, and to consume foods rich in vitamins and trace elements to increase their antioxidant capacity.  相似文献   

5.
'A'-esterase activities (substrates paraoxon and pirimiphos-methyloxon) and arylesterase activities (substrate phenyl acetate) were assayed in the sera of 14 species of birds representing seven different orders and 11 species of mammal representing five different orders. Ten species of birds had no detectable 'A'-esterase, and the remaining four species only low activity, yet all birds showed considerable arylesterase activity (16.8-99.3 mumol/min per ml of serum). Ten species of mammal showed both 'A'- and 'aryl'-esterase activities. In humans, gel filtration of serum completely separated peaks representing paraoxonase and arylesterase activities. Thus, in both birds and humans, serum enzymes exist that express arylesterase activity but not 'A'-esterase activity. These findings suggest that a distinction should be made between these two types of esterase in future classifications.  相似文献   

6.
Serum paraoxonase hydrolyzes paraoxon, the principal metabolite of the insecticide parathion. Serum paraoxonase is polymorphic and controlled by two codominant alleles - PON*A and PON*B representing low and high activity, respectively. Three populations of southeast Asia comprising 194 Chinese, 159 Filipinos and 73 Dravidian Indians were investigated for serum paraoxonase polymorphism. The frequency of PON*B was found to be 0.14 in the Chinese, 0.04 in the Filipinos and 0.18 in Dravidian Indians. The distribution of the PON phenotypes was at Hardy-Weinberg equilibrium in all the three populations studied.  相似文献   

7.
Recent studies implied that low-density lipoprotein (LDL) modified predominantly by oxidation or glycation, significantly contributes to the formation of atherosclerotic lesions. In contrast to oxidized LDL (ox-LDL), high-density lipoprotein (HDL) is able to prevent accumulation of ox-LDL in arterial walls. This antiatherogenic property of HDL is attributed in part to several enzymes associated with the lipoprotein, including HDL-associated paraoxonase 1 (PON1). In this study we analyzed PON1 arylesterase/paraoxonase activities in relation to serum lipid profile, gender and age in thirty clinically healthy Slovak volunteers. Our results showed that PON1 arylesterase and paraoxonase activities were lower in citrated plasma than in serum by 16.6% and 27.3%, respectively. Among serum lipoproteins, only HDL-cholesterol level showed significant positive correlation with PON1 arylesterase activity (p = 0.042). Likewise, we found a significant relationship between atherogenic index (AI = total cholesterol/HDL-cholesterol) and PON1 arylesterase activity (p = 0.023). No significant correlation could be demonstrated between PON1 paraoxonase activity and serum lipid profile, age or gender. Furthermore, it was found that PON1 paraoxonase/arylesterase activities were higher in women compared with both investigated activities in men, but these differences were not statistically significant. These results confirmed a positive correlation between HDL-cholesterol and PON1 arylesterase activity. Moreover, it was found out that PON1 paraoxonase activity is not influenced either by gender or by age. PON1 arylesterase activity was however affected by gender to a limited extent.  相似文献   

8.
Human serum plasma paraoxonase/arylesterase exhibits a genetic polymorphism for the hydrolysis of paraoxon. One allelic form of the enzyme hydrolyzes paraoxon slowly with a low turnover number and the other(s) hydrolyzes paraoxon rapidly with a high turnover number. Chlorpyrifos-oxon, the active metabolite of the insecticide chlorpyrifos (Dursban), is also hydrolyzed by plasma arylesterase/paraoxonase. A specific assay for measuring hydrolysis of this compound is described. This assay is not subject to interference by the esterase activity of serum albumin. The Km for chlorpyrifos-oxon hydrolysis was 75 microM. Hydrolysis was inhibited by phenyl acetate, EDTA, and organic solvents. Enzyme activity required calcium ions and was stimulated by sodium chloride. Hydrolysis was optimized by using methanol instead of acetone to dissolve substrate. Unlike the multimodal distribution of paraoxonase, the distribution of chlorpyrifos-oxonase activity failed to show clear multimodality. An improvement in the assay for hydrolysis of paraoxon by plasma arylesterase/paraoxonase was achieved by elimination of organic solvents. Plotting chlorpyrifos-oxonase activity vs paraoxonase activity for a human population using the new assay conditions provided an excellent resolution of low activity homozygotes from heterozygotes for this allele. A greater than 40-fold difference in rates of chlorpyrifosoxon hydrolysis observed between rat (low activity) and rabbit sera (high activity) correlated well with the reported large differences in LD50 values for chlorpyrifos in these two animals, consistent with an important role of serum paraoxonase in detoxification of organophosphorus pesticides in vivo.  相似文献   

9.
Plasma paraoxonase hydrolyzes paraoxon, the principal metabolite of the insecticide parathione. A genetic polymorphism for enzyme activity has been previously demonstrated. We describe a new assay based on the differential inhibition by EDTA of plasma paraoxonase from persons with the high-activity allele (PX*H) that suggests a trimodality of activity levels in population studies. The gene frequency of the low activity allele (PX*L) in 531 Seattle blood donors of European origin was .7207. Family studies were consistent with codominant autosomal inheritance of two alleles, PX*L (low) and PX*H (high), coding for products with different activity levels. Biochemical measurements of sera from presumed homozygotes for the two different alleles revealed minor physicochemical differences suggestive of a structural difference between the allelic products. No evidence for linkage of the paraoxonase locus with any of 19 polymorphic markers would be detected.  相似文献   

10.
To examine the effect of phospholipids on PON1 activities, purified PON1 was exposed to phospholipids prior to the determination of arylesterase and paraoxonase activities. Phosphatidylcholines with saturated acyl chains (C10-C16) showed a stimulation of both activities, chain length-dependent, with a greater stimulation of arylesterase activity, suggesting the implication of lipid bilayer in the stimulatory action. Such a preferable stimulation of arylesterase activity was more remarkable with phosphatidylcholines with polyunsaturated acyl chains or oxidized chains at sn-2 position, implying that the packing degree of acyl chain may be also important for the preferable stimulation of arylesterase activity. Separately, 1-palmitoyl-lysoPC also stimulated arylesterase activity preferably, indicating that the micellar formation of lipids around PON1 also contributes to the stimulatory action. Additionally, phosphatidylglycerols slightly enhanced arylesterase activity, but not paraoxonase activity. In contrast, phosphatidylserine and phosphatidic acid (> or =0.1 mM) inhibited both activities Further, such a preferable stimulation of arylesterase activity by phosphatidylcholines was also reproduced with VLDL-bound PON1, although to a less extent. These data indicate that phosphatidylcholines with polyunsaturated acyl chains or oxidized chain, or lysophosphatidylcholine cause a preferable stimulation of arylesterase activity, thereby contributing to the decrease in the ratio of paraoxonase activity to arylesterase activity.  相似文献   

11.
To examine the effect of phospholipids on PON1 activities, purified PON1 was exposed to phospholipids prior to the determination of arylesterase and paraoxonase activities. Phosphatidylcholines with saturated acyl chains (C10-C16) showed a stimulation of both activities, chain length-dependent, with a greater stimulation of arylesterase activity, suggesting the implication of lipid bilayer in the stimulatory action. Such a preferable stimulation of arylesterase activity was more remarkable with phosphatidylcholines with polyunsaturated acyl chains or oxidized chains at sn-2 position, implying that the packing degree of acyl chain may be also important for the preferable stimulation of arylesterase activity. Separately, 1-palmitoyl-lysoPC also stimulated arylesterase activity preferably, indicating that the micellar formation of lipids around PON1 also contributes to the stimulatory action. Additionally, phosphatidylglycerols slightly enhanced arylesterase activity, but not paraoxonase activity. In contrast, phosphatidylserine and phosphatidic acid (≥0.1 mM) inhibited both activities Further, such a preferable stimulation of arylesterase activity by phosphatidylcholines was also reproduced with VLDL-bound PON1, although to a less extent. These data indicate that phosphatidylcholines with polyunsaturated acyl chains or oxidized chain, or lysophosphatidylcholine cause a preferable stimulation of arylesterase activity, thereby contributing to the decrease in the ratio of paraoxonase activity to arylesterase activity.  相似文献   

12.
The objective of this study was to investigate serum paraoxonase and arylesterase activities, and lipid hydroperoxide (LOOH) and total thiol (total free sulfhydryl groups, -SH) levels along with lipid parameters in patients with knee osteoarthritis. Thirty-six patients with knee osteoarthritis and 30 healthy individuals were enrolled in the study. Serum paraoxonase and arylesterase activities were measured spectrophotometrically. LOOH levels were measured by ferrous oxidation with xylenol orange assay (FOX-2). Serum high-density lipoprotein-cholesterol (HDL-C), -SH levels, paraoxonase and arylesterase activities were significantly lower in the patient group than those in the controls (P < 0.05, for all), while LOOH and low-density lipoprotein (LDL) levels were significantly higher. In conclusion, paraoxonase and arylesterase activities were decreased significantly in patients with knee osteoarthritis. Lower serum paraoxonase-1 activity and lower level of HDL-C seem to be related to increased oxidative stress and inflammatory condition in these patients. It is known that paraoxonases reduce oxidative stress in serum and tissues thereby protecting against cardiovascular disease, particularly atherosclerosis. Thus, decreased paraoxonase and arylesterase activities play a role in the pathogenesis of atherosclerosis through increased susceptibility to lipid peroxidation in patients with osteoarthritis.  相似文献   

13.
Plasma paraoxonase is a polymorphic enzyme that hydrolyzes paraoxon, the neurotoxic, active metabolite of the insecticide parathion. This enzyme is specified by at least two alleles with frequencies of about .7 and .3 among Caucasoid populations. A specific assay was developed that measured the activity of human plasma paraoxonase without interference from serum albumin which contributes significantly to the hydrolytic breakdown of paraoxon at the high pH values used in many previous assays. There was an 11-fold variation in paraoxonase activities, and the population distribution was at least bimodal. However, this specific assay did not improve the discrimination between the three genetic classes: (1) homozygotes for the low-activity allele, (2) heterozygotes, and (3) homozygotes for the high-activity allele. Chlorpyrifos oxon--the neurotoxic metabolite of the organophosphorus insecticide chlorpyrifos (Dursban)--was hydrolyzed by the same plasma fraction that hydrolyzed paraoxon. There was only four- to fivefold variability in enzyme activity, and the population distribution was unimodal. Homozygotes for low paraoxonase activity ranged over almost the entire spectrum of chlorpyrifos oxonase activity. Possible differences in susceptibility to chlorpyrifos toxicity therefore are unlikely to be predicted by the paraoxonase genotype alone. The ratio of paraoxonase over that of chlorpyrifos oxonase provided an excellent method for genetic typing of the paraoxonase polymorphism, as did the substitution of phenylacetate for chlorpyrifos as the substrate.  相似文献   

14.
Gel filtration chromatography resolves human serum paraoxonase into two fractions: (1) a high molecular weight fraction that is completely inhibited by EDTA and coelutes with arylesterase (E.C.3.1.1.2); and (2) a second fraction that is closely associated with albumin, is only partially inhibited by EDTA, and has relatively little arylesterase activity under the assay conditions used. The activity of the high molecular weight fraction is stimulated by NaCl, whereas the albumin associated activity is partially inhibited by NaCl and is not present in serum derived from an analbuminemic individual. Our data suggest that albumin itself, rather than a protein bound to or cofractionating with albumin, mediates paraoxonase activity. The variation in levels of the activity of the nonalbumin, high molecular weight enzyme is responsible for the observed polymorphism of paraoxonase activity in human serum or plasma. An optimal assay of polymorphic paraoxonase activity should be based on activity measurements of the nonalbumin fraction. It is considered likely that only the nonalbumin fraction is responsible for in vivo hydrolysis of paraoxon.  相似文献   

15.
We aimed to evaluate the association of serum paraoxonase and arylesterase activities and oxidative/antioxidative status in patients with fibromyalgia. Forty-two patients with fibromyalgia and 53 healthy controls were included in the study. Serum paraoxonase and arylesterase activities were measured spectrophotometrically. Oxidative and antioxidative status were evaluated by measuring serum lipid hydroperoxide (LOOH) levels, total antioxidant status (TAS) and free sulfhydryl groups (-SH = total thiol). Lipid parameters were determined by routine laboratory methods. Serum paraoxonase and arylesterase activities, and TAS were lower in patients with fibromyalgia than in controls (P < 0.001, for all), and the -SH level was also lower in the patient group (P = 0.03). LOOH levels were higher in the patient group than in controls (P = 0.01). Our results suggest that patients with fibromyalgia were exposed to oxidative stress, and paraoxonase and arylesterase activities were decreased in these patients. Patients with fibromyalgia might be prone to development of atherosclerosis with reduced paraoxonase and arylesterase activities.  相似文献   

16.
To determine the causes responsible for a preferential decrease of paraoxonase activity, which has been observed in the serum of patients with cardiovascular diseases, the inactivation or inhibition of paraoxonase 1 (PON1) by various endogenous factors was examined using paraoxon or phenyl acetate as a substrate. When purified PON1 was incubated with various endogenous oxidants or aldehydes, they failed to cause a preferential reduction of paraoxonase activity, suggesting no participation of the inactivation mechanism in the preferential loss of paraoxonase activity. Next, when we examined the inhibition of PON1 activity by endogenous lipids, monoenoic acids such as palmitoleic acid or oleic acid inhibited paraoxonase activity preferentially, in contrast to a parallel inhibition of both activities by polyunsaturated or saturated acids. Noteworthy, oleoylglycine inhibited paraoxonase activity, but not arylesterase activity, complying with the selective inhibition of paraoxonase activity. Moreover, such a selective inhibition of paraoxonase activity was also expressed by lysophosphatidylglycerol or lysophosphatidylinositol, but not by lysophosphatidylserine or lysophosphatidylcholine, indicating the importance of the type of head group. Furthermore, such a preferential or selective inhibition of paraoxonase activity was also observed with PON1 associated with HDL or plasma. These data suggest that some negatively charged lipids may correspond to factors causing the preferential inhibition of paraoxonase activity of PON1.  相似文献   

17.
Paraoxonase 1 (PON1) seems to have a relevant role in detoxifying processes and in atherosclerosis. The aim of this study was to determine PON1 activity, the total antioxidant capacity, as well as entire lipid profile in children for screening of possible risk of atherosclerosis development. Serum PON1 arylesterase/paraoxonase activities were determined spectrophotometrically. The total antioxidant capacity of the serum was measured by TEAC method. Parameters of lipid profile were analyzed by routine laboratory methods. It has been shown that PON1 arylesterase/ paraoxonase activities were very similar to values found in adults. In children, no significant correlation between PON1 arylesterase activity and HDL was observed. PON1 paraoxonase activity correlated only with atherogenic index. PON1 arylesterase activity was significantly higher in girls than in boys. The antioxidant capacity was inversely related to the body mass index. In this study, PON1 activity was determined in healthy children aged 11 to 12 years and we found a similarity in PON1 activities of children and adults. Moreover, the results of our study support the hypothesis that higher body weight of children may contribute to a greater risk for development of atherosclerosis in which oxidative stress plays a role.  相似文献   

18.
We analyzed, for the first time, both in vitro and in vivo, the effect of very low density lipoprotein (VLDL), or of pure triglycerides, on high-density lipoprotein (HDL)-associated paraoxonase1 (PON1) catalytic activities. Incubation of serum or HDL from healthy subjects with VLDL (0-330 μg protein/mL) significantly decreased serum PON1 lactonase or arylesterase activities by up to 11% or 24%, and HDL-associated PON1 lactonase or arylesterase activities by up to 32% or 46%, respectively, in a VLDL dose-dependent manner. VLDL (0-660μg protein/mL) also inhibited recombinant PON1 (rePON1) lactonase or arylesterase activities by up to 20% or 42%, respectively. Similar inhibitory effect was noted upon rePON1 incubation with pure triglyceride emulsion. Bezafibrate therapy to three hypertriglyceridemic patients (400 mg/day, for one month) significantly decreased serum triglyceride concentration by 67%, and increased serum HDL cholesterol levels by 48%. PON1 arylesterase or paraoxonase activities in the patients' HDL fractions after drug therapy were significantly increased by 86-88%, as compared to PON1 activities before treatment. Similarly, HDL-PON1 protein levels significantly increased after bezafibrate therapy. Finally, bezafibrate therapy improved HDL biological activity, as HDL obtained after drug therapy showed increased ability to induce cholesterol efflux from J774A.1 macrophages, by 19%, as compared to HDL derived before therapy. We thus conclude that VLDL triglycerides inhibit PON1 catalytic activities, and bezafibrate therapy significantly improved HDL-PON1 catalytic and biological activities. ? 2012 International Union of Biochemistry and Molecular Biology, Inc.  相似文献   

19.
The paraoxonase gene family contains at least three members: PON1, PON2, and PON3. The physiological roles of the corresponding gene products are still uncertain. Until recently, only the serum paraoxonase/arylesterase (PON1) had been purified and characterized. Here we report the purification, cloning, and characterization of rabbit serum PON3. PON3 is a 40-kDa protein associated with the high density lipoprotein fraction of serum. In contrast to PON1, PON3 has very limited arylesterase and no paraoxonase activities but rapidly hydrolyzes lactones such as statin prodrugs (e.g. lovastatin). These differences facilitated the complete separation of PON3 from PON1 during purification. PON3 hydrolyzes aromatic lactones and 5- or 6-member ring lactones with aliphatic substituents but not simple lactones or those with polar substituents. We cloned PON3 from total rabbit liver RNA and expressed it in mammalian 293T/17 cells. The recombinant PON3 has the same apparent molecular mass and substrate specificity as the enzyme purified from serum. Rabbit serum PON3 is more efficient than rabbit PON1 in protecting low density lipoprotein from copper-induced oxidation. This is the first report that identifies a second PON enzyme in mammalian serum and the first to describe an enzymatic activity for PON3.  相似文献   

20.
Studies on red cell arylesterase activity were performed for two years by potentiometric titration using phenylacetate as substrate. From April to October enzymes had higher arylesterase activity than the rest of the year. During that period an increase of arylesterase activity by L-phyenyl-alanine had not been shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号