首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green bottle flies occur frequently around human environments in Japan. Many species of green bottle flies have been studied with regard to their importance in forensic examinations or clinical therapies, but the bacterial communities associated with this group of flies have not been comprehensively investigated. In this research, 454 pyrosequencing was used to reveal the bacterial communities in green bottle flies collected in different seasons. Meanwhile, the bacteria were screened with selective media and tested for antibiotic susceptibility. Samples collected in three different seasons harbored distinctive bacterial communities. The predominant genera associated with green bottles flies were Staphylococcus in spring, Ignatzschineria in summer, and Vagococcus, Dysgonomonas, and an unclassified Acetobacteraceae in autumn. An upward trend in bacterial community diversity was observed from spring to autumn. Changes in climatic conditions could be the cause of these seasonal variations in fly-associated bacterial communities. The species of isolated antibiotic-resistant bacteria also differed across seasons, but it was difficult to correlate seasonal changes in antibiotic-resistant bacteria with changes in whole communities. A number of multiple-antibiotic-resistant bacteria were isolated, and some of these strains were closely affiliated with pathogens such as Enterococcus faecalis and Enterococcus faecium, which could cause serious threats to public health. Overall, this research provided us with information about the composition and seasonality of bacterial communities in green bottle flies, and highlighted the risks of fly-mediated dissemination of antibiotic-resistant pathogens.  相似文献   

2.
House flies associate with microbes throughout their life history. Bacteria ingested by adult flies enter the alimentary canal and face a hostile environment including antimicrobial defenses. Because the outcome of this interaction impacts bacterial survival and dissemination, our primary objective was to understand the temporospatial dynamics of fly-bacteria associations. We concurrently examined the temporospatial fate of GFP-expressing Pseudomonas aeruginosa (GFP-P. aeruginosa) in the house fly alimentary canal along with antimicrobial peptide (AMP) expression. Motile, viable GFP-P. aeruginosa were found in all regions of the alimentary canal and were culturable throughout the observation period (2–24 h). A significant decrease in recoverable bacteria occurred between 2 and12 h, followed by an increase between 12 and 24 h. qRT-PCR analysis showed expression of the AMPs cecropin, diptericin, and defensin both locally (gut) and systemically. Furthermore, mRNA of all AMPs were expressed throughout gut tissues, with some tissue-specific temporal variation. Interestingly, fluctuation in recoverable P. aeruginosa was associated with AMP protein expression in the gut (immunofluorescent signal detection), but not with mRNA (qRTPCR). In regards to vector competence, flies excreted GFP-P. aeruginosa throughout the 24 h period, serving as both reservoirs and disseminators of this bacterium. Collectively, our data show flies can harbor and disseminate P. aeruginosa, and that the interactions of fly defenses with bacteria can influence vector competence.  相似文献   

3.
A likely symbiotic association between tephritid fruit flies and gut bacteria has been recognized since the beginning of the last century. However, direct evidence for a link between gut bacteria and fruit fly fitness is still limited or absent for many species. Similar to other tephritids, the gut of Bactrocera minax (Enderlein) (Diptera: Tephritidae) is known to contain bacteria throughout the life stage, but what, if any, impact these bacteria have on B. minax fitness is entirely unknown. In order to elucidate the effects of bacteria on the fitness of B. minax, resident bacteria were isolated from the adult gut using culture-dependent techniques. Adult fly diets were subsequently supplemented with three bacterial isolates (Klebsiella pneumonia, Citrobacter braakii and Pantoea dispersa), or bacteria were removed from flies by antibiotics treatment: untreated adults provided a control. Adult fitness parameters (male and female longevity, female fecundity, male copulation number) were measured for the two treatments and one control group. Results were complex depending on the fitness parameter measured and the bacterial species. Compared to the controls, antibiotic treated B. minax had significantly decreased fecundity, but male and female longevity was increased. When flies were fed diets supplemented with any of the three bacterial isolates, female fecundity was significantly enhanced. However, only Citrobacter braakii significantly increased male mating frequency than control males. The results show that gut bacteria directly influence fitness of B. minax, but impacts are dependent on the bacterial species and the fitness parameters measured.  相似文献   

4.
Indigenous gut bacteria of the Formosan subterranean termite (Coptotermes formosanus Shiraki, Isoptera: Rhinotermitidae) were used as shuttle systems to deliver, express and spread foreign genes in termite colonies. The gut bacterium Enterobacter cloacae was transformed with a recombinant plasmid (pEGFP) containing genes encoding ampicillin resistance and green fluorescent protein (GFP). In laboratory experiments, termite workers and soldiers from three colonies were fed with filter paper inoculated with transformed bacteria. Transformed bacteria were detected in termite guts by growing the entire gut flora under selective conditions and checking the cultures visually for fluorescence. We demonstrated that (1) transformed bacteria were ingested within a few hours and the GFP gene was expressed in the termite gut; (2) transformed bacteria established a persistent population in the termite gut for up to 11 weeks; (3) transformed bacteria were efficiently transferred throughout a laboratory colony, even when the donor (termites initially fed with transformed bacteria) to recipient (not fed) ratio was low; (4) transformed E. cloacae were transferred into soil; however, they did not accumulate over time and the GFP plasmid was not transferred to other soil bacteria. In the future, transgenic bacteria may be used to shuttle detrimental genes into termite colonies for improved pest control.  相似文献   

5.
The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans.  相似文献   

6.
7.
Synanthropic flies have been implicated in the rapid dissemination of antibiotic-resistant bacteria and resistance determinants in the biosphere. These flies stably harbor a considerable number of bacteria that exhibit resistance to various antibiotics, but the mechanisms underlying this phenomenon remain unclear. In this study, we investigated the persistence of antibiotic-resistant bacteria in the digestive tract of houseflies and green bottle flies, using Proteus mirabilis as a model microorganism. One resistant strain carried the blaTEM and aphA1 genes, and another carried a plasmid containing qnrD gene. Quantitative PCR and 454 pyrosequencing were used to monitor the relative abundance of the Proteus strains, as well as potential changes in the overall structure of the whole bacterial community incurred by the artificial induction of Proteus cultures. Both antibiotic-resistant and -sensitive P. mirabilis strains persisted in the fly digestive tract for at least 3 days, and there was no significant difference in the relative abundance of resistant and sensitive strains despite the lower growth rate of resistant strains when cultured in vitro. Therefore, conditions in the fly digestive tract may allow resistant strains to survive the competition with sensitive strains in the absence of antibiotic selective pressure. The composition of the fly-associated bacterial community changed over time, but the contribution of the artificially introduced P. mirabilis strains to these changes was not clear. In order to explain these changes, it will be necessary to obtain more information about bacterial interspecies antagonism in the fly digestive tract.  相似文献   

8.
The housefly (Musca domestica) is an important host for a variety of bacteria, including some pathogenic and antibiotic-resistant strains. To further investigate the relationship between the housefly and the bacteria it harbors, it is necessary to understand the fate of microorganisms during the larval metamorphosis. The major bacterial communities in three developmental stages of the housefly (maggot, pupa, and adult fly) were investigated by a culture-independent method, polymerase chain reaction–denaturing gradient gel electrophoresis (PCR?DGGE) analysis of 16S rRNA genes. The bacteria that were identified using DGGE analysis spanned phyla Proteobacteria, Firmicutes, and Bacteroidetes. Changes in the predominant genera were observed during the housefly development. Bacteroides, Koukoulia, and Schineria were detected in maggots, Neisseria in pupae, and Macrococcus, Lactococcus, and Kurthia in adult flies. Antibiotic-resistant bacteria were screened using a selective medium and tested for antibiotic susceptibility. Most resistant isolates from maggots and pupae were classified as Proteus spp., while those from adult flies were much more diverse and spanned 12 genera. Among 20 tested strains across the three stages, 18 were resistant to at least two antibiotics. Overall, we demonstrated that there are changes in the major bacterial communities and antibiotic-resistant strains as the housefly develops.  相似文献   

9.
Antibiotic resistance among enterococci and γ-proteobacteria is an increasing problem in healthcare settings. Dense colonization of the gut by antibiotic-resistant bacteria facilitates their spread between patients and also leads to bloodstream and other systemic infections. Antibiotic-mediated destruction of the intestinal microbiota and consequent loss of colonization resistance are critical factors leading to persistence and spread of antibiotic-resistant bacteria. The mechanisms underlying microbiota-mediated colonization resistance remain incompletely defined and are likely distinct for different antibiotic-resistant bacterial species. It is unclear whether enterococci or γ-proteobacteria, upon expanding to high density in the gut, confer colonization resistance against competing bacterial species. Herein, we demonstrate that dense intestinal colonization with vancomycin-resistant Enterococcus faecium (VRE) does not reduce in vivo growth of carbapenem-resistant Klebsiella pneumoniae. Reciprocally, K. pneumoniae does not impair intestinal colonization by VRE. In contrast, transplantation of a diverse fecal microbiota eliminates both VRE and K. pneumoniae from the gut. Fluorescence in situ hybridization demonstrates that VRE and K. pneumoniae localize to the same regions in the colon but differ with respect to stimulation and invasion of the colonic mucus layer. While VRE and K. pneumoniae occupy the same three-dimensional space within the gut lumen, their independent growth and persistence in the gut suggests that they reside in distinct niches that satisfy their specific in vivo metabolic needs.  相似文献   

10.
Interaction potentials between soil microarthropods and microorganisms were investigated with Folsomia candida (Insecta, Collembola) in microcosm laboratory experiments. Microscopic analysis revealed that the volumes of the simple, rod-shaped guts of adult specimens varied with their feeding activity, from 0.7 to 11.2 nl. A dense layer of bacterial cells, associated with the peritrophic membrane, was detected in the midgut by scanning electron microscopy. Depending on the molting stage, which occurred at intervals of approximately 4 days, numbers of heterotrophic, aerobic gut bacteria changed from 4.9 × 102 to 2.3 × 106 CFU per specimen. A total of 11 different taxonomic bacterial groups and the filamentous fungus Acremonium charticola were isolated from the guts of five F. candida specimens. The most abundant isolate was related to Erwinia amylovora (96.2% DNA sequence similarity to its 16S rRNA gene). F. candida preferred to feed on Pseudomonas putida and three indigenous gut isolates rather than eight different type culture strains. When luciferase reporter gene-tagged bacterial strains were pulse fed to F. candida, gut isolates were continuously shed for 8 days to several weeks but Escherichia coli HB101 was shed for only 1 day. Ratios of ingested to released bacterial cells demonstrated that populations of nonindigenous gut bacteria like Sinorhizobium meliloti L33 and E. coli HB101 were reduced by more than 4 orders of magnitude but that the population of gut isolate Alcaligenes faecalis HR4 was reduced only 500-fold. This work demonstrates that F. candida represents a frequently changeable but selective habitat for bacteria in terrestrial environments and that microarthropods have to be considered factors that modify soil microbial communities.  相似文献   

11.
Several dietary ingredients may affect the bacterial community structure and metabolism in the porcine gut and may therefore influence animals'' health and performance. This study investigated the effects of cereal source and calcium-phosphorus (CaP) level in the diet on bacterial microbiota and metabolites, nutrient intake, and gut environment in weaned pigs. Pigs (n = 8/treatment) were fed wheat-barley- or corn-based diets with an adequate or high CaP level for 14 days. Effects on microbiota in the stomach, ileum, and midcolon were assessed using quantitative PCR. Data showed that Enterobacteriaceae, Campylobacter spp., and Helicobacter spp., which all contain highly immune reactive lipopolysaccharide (LPS), were abundant at all gut sites. Diet effects on bacteria and metabolites were moderate and occurred mainly in the upper gut, whereas no effects on bacteria, fermentation products, and LPS could be observed in the colon. Differences in carbohydrate intake with corn versus wheat-barley diets selectively stimulated Bifidobacterium in the stomach and ileum. There was a growth advantage for a few bacterial groups in the stomach and ileum of pigs fed the high versus adequate CaP level (i.e., gastric Enterobacteriaceae and ileal Enterococcus, Bacteroides-Prevotella-Porphyromonas, and Campylobacter). Interestingly, gastrointestinal pH was not affected by dietary CaP level. The present findings demonstrate the stability of the bacterial community and gut environment toward dietary changes even in young pigs. The results on stimulation of gastric and ileal Bifidobacterium by corn diets may be employed in nutritional strategies to support gut health after weaning.  相似文献   

12.
Wu G  Li X  Fan X  Wu H  Wang S  Shen Z  Xi T 《Peptides》2011,32(6):1139-1145
In this study, the activity of S-thanatin (an analog of antimicrobial peptide derived from thanatin) against different bacterial pathogens frequently which can cause therapeutic problems was tested. The result showed minimal inhibitory concentrations (MICs) of S-thanatin against all isolates of the Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Klebsiella ornithinolytica and Klebsiella oxytoca were in the range of 4-16 μg/ml, no matter which antibiotic the bacterial was resistant or susceptible, while almost all MICs to Gram-positive bacterial were >128 μg/ml except Enterococcus faecium. S-thanatin was more effective toward Gram-negative strains, especially for Enterobacter and Klebsiella. The MICs of S-thanatin were no significantly different in the same species regardless of antibiotic sensitive or -resistant isolates to single or multiple antibiotic (P > 0.05). Likewise, no notable difference could be observed between E. coli, K. pneumoniae, E. cloacae, E. aerogenes, K. ornithinolytica which were sensitive to S-thanatin (P > 0.05). It was implied that the antimicrobial activity of S-thanatin was independent on multi-drug resistance spectrum of bacteria.  相似文献   

13.
This study aimed to elucidate the bacteriological events occurring within the gut of Calliphora vicina, selected as the European representative of blow flies held responsible for the spread of anthrax during epidemics in certain parts of the world. Green-fluorescent-protein-carrying derivatives of Bacillus anthracis were used. These lacked either one of the virulence plasmids pXO1 and pXO2 and were infected, or not infected, with a worm intestine phage (Wip4) known to influence the phenotype and survival of the pathogen. Blood meals were prepared for the flies by inoculation of sheep blood with germinated and, in case of pXO2+ strains, encapsulated cells of the four B. anthracis strains. After being fed for 4 h an initial 10 flies were externally disinfected with peracetic acid to ensure subsequent quantitation representing ingested B. anthracis only. Following neutralization, they were crushed in sterile saline. Over each of the ensuing 7 to 10 days, 10 flies were removed and processed the same way. In the absence of Wip4, strains showed steady declines to undetectable in the total B. anthracis counts, within 7–9 days. With the phage infected strains, the falls in viable counts were significantly more rapid than in their uninfected counterparts. Spores were detectable in flies for longer periods than vegetative bacteria. In line with the findings in both biting and non-biting flies of early workers our results indicate that B. anthracis does not multiply in the guts of blow flies and survival is limited to a matter of days.  相似文献   

14.
Enterobacter cloacae, one of the indigenous gut bacteria of the Formosan subterranean termite (Coptotermes formosanus), was genetically modified with a transposon Tn5 vector containing genes (tcdA1 and tcdB1) encoding orally insecticidal proteins from the entomopathogenic bacterium Photorhabdus luminescens subsp. laumondii TT01, a symbiont of the entomopathogenic nematode Heterorhabditis bacteriophora, for termite control. In the laboratory, termites were fed filter paper inoculated with the recombinant bacteria. The chromosomal expression of the introduced genes showed that there were insecticidal activities against termite workers and soldiers challenged with the transformed bacteria. After termites were fed recombinant bacteria, the termite mortality was 3.3% at day 5, and it increased from 8.7% at day 9 to 93.3% at day 29. All the dead termites contained the recombinant bacteria in their guts. Transfer of the recombinant bacteria occurred between donor workers (initially fed recombinant bacteria) and recipient workers (not fed). More than 20% of the recipient termites ingested recombinant bacteria within 2 h, and 73.3% of them had ingested recombinant bacteria after 12 h. The method described here provides a useful alternative for sustainable control of the Formosan subterranean termite (C. formosanus) and other social insects, such as the imported red fire ant (Solenopsis invicta).  相似文献   

15.
Vertebrate metamorphosis is often marked by dramatic morphological and physiological changes of the alimentary tract, along with major shifts in diet following development from larva to adult. Little is known about how these developmental changes impact the gut microbiome of the host organism. The metamorphosis of the sea lamprey (Petromyzon marinus) from a sedentary filter-feeding larva to a free-swimming sanguivorous parasite is characterized by major physiological and morphological changes to all organ systems. The transformation of the alimentary canal includes closure of the larval esophagus and the physical isolation of the pharynx from the remainder of the gut, which results in a nonfeeding period that can last up to 8 months. To determine how the gut microbiome is affected by metamorphosis, the microbial communities of feeding and nonfeeding larval and parasitic sea lamprey were surveyed using both culture-dependent and -independent methods. Our results show that the gut of the filter-feeding larva contains a greater diversity of bacteria than that of the blood-feeding parasite, with the parasite gut being dominated by Aeromonas and, to a lesser extent, Citrobacter and Shewanella. Phylogenetic analysis of the culturable Aeromonas from both the larval and parasitic gut revealed that at least five distinct species were represented. Phenotypic characterization of these isolates revealed that over half were capable of sheep red blood cell hemolysis, but all were capable of trout red blood cell hemolysis. This suggests that the enrichment of Aeromonas that accompanies metamorphosis is likely related to the sanguivorous lifestyle of the parasitic sea lamprey.  相似文献   

16.
Insects are major vectors of plant and animal disease, and bacterial phytopathogens are often disseminated by flies. We have previously reported that some isolates of the phytopathogenic bacterial species Erwinia carotovora infect Drosophila and activate an immune response. Using a genetic screen, we have now identified two genes that are required by E. carotovora to infect Drosophila. One of these genes has a regulatory role whereas the other, evf, confers an infectious phenotype: its transfer to non-infectious Erwinia strains or to several enterobacteria improves survival in the gut and triggers the immune response. Overexpression of Erwinia virulence factor (evf) allowed bacteria to colonize the apical side of the gut epithelium and in some cases to spread to the body cavity. Our results demonstrate a specific interaction between plant pathogens and flies that promote their dissemination.  相似文献   

17.
The effects of dietary mannan oligosaccharide (MOS) (Bio-Mos®, Alltech, USA) on the growth, survival, physiology, bacteria and morphology of the gut and immune response to bacterial infection of tropical rock lobsters (Panulirus ornatus) juvenile were investigated. Dietary inclusion level of MOS at 0.4% was tested against the control diet (trash fish) without MOS inclusion. At the end of 56 days of rearing period, a challenged test was also conducted to evaluate the bacterial infection resistant ability of the lobsters fed the two diets. Lobster juvenile fed MOS diet attained 2.86 ± 0.07 g of total weigh and 66.67 ± 4.76% survival rate which were higher (P < 0.05) than the lobsters fed control diet (2.35 ± 0.14 g total weight and 54.76 ± 2.38% survival rate, respectively) thus providing the higher (P < 0.05) specific growth rate (SGR) and average weekly gain (AWG) of lobsters fed MOS diet. Physiological condition indicators such as wet tail muscle index (Tw/B), wet hepatosomatic index (Hiw) and dry tail muscle index (Td/B) of the lobsters fed MOS supplemented diet were higher (P < 0.05) than that of the lobsters fed the control diet. Bacteria in the gut (both total aerobic and Vibrio spp.) and gut's absorption surface indicated by the internal perimeter/external perimeter ratio were also higher (P < 0.05) when the lobsters were fed MOS diet. Lobsters fed MOS diet were in better immune condition showed by higher THC and GC, and lower bacteraemia. Survival, THC, GC were not different among the lobsters fed either MOS or control diet after 3 days of bacterial infection while bacteraemia was lower in the lobsters fed MOS diet. After 7 days of bacterial infection the lobsters fed MOS diet showed higher survival, THC, GC and lower bacteraemia than the lobsters fed the control diet. The experimental trial demonstrated the ability of MOS to improve the growth performance, survival, physiological condition, gut health and immune responses of tropical spiny lobsters juveniles.  相似文献   

18.
《Anaerobe》2001,7(3):113-118
An in vivo study was carried to determine the effect of HP-inulin, a high-molecular-weight fraction of chicory-derived inulin, on the human gut microflora composition. Ten healthy volunteers were allowed a free-living diet whereby they also ingested 8 g/d of maltodextrin for 14 days and this was followed by 8 g/d HP-inulin for 14 days. Nine of the ten volunteers completed the trial. The trial was conducted in a double blind manner and faeces were collected periodically such that predominant groups of gut bacteria i.e. total bacterial populations, Bacteroides spp., Bifidobacterium spp., Clostridium perfringens/histolyticum sub-group and lactobacilli/enterococci could be enumerated. To overcome difficulties with culture-based techniques, the bacteria were enumerated using fluorescent in situ hybridisation (FISH). A small but statistically significant increase in bifidobacteria was observed when data from the volunteers were pooled. Similarly, a statistically significant increase was observed in clostridial numbers, although the magnitude of change in this bacterial group was about ten times less than that seen with bifidobacteria. HP-inulin intake had little or no effect on numbers of total bacteria,Bacteroides spp., or lactobacilli and enterococci present in the gut microflora of the volunteers. This study has confirmed the prebiotic nature of HP-inulin. However, in this trial the effects were most marked in those volunteers with low starting levels of bifidobacteria—indicating that there may be a relationship between prebiotic effect and initial bifidobacterial numbers.  相似文献   

19.
The midgut microbial community in insect vectors of disease is crucial for an effective immune response against infection with various human and animal pathogens. Depending on the aspects of their development, insects can acquire microbes present in soil, water, and plants. Sand flies are major vectors of leishmaniasis, and shown to harbor a wide variety of Gram-negative and Gram-positive bacteria. Sand fly larval stages acquire microorganisms from the soil, and the abundance and distribution of these microorganisms may vary depending on the sand fly species or the breeding site. Here, we assess the distribution of two bacteria commonly found within the gut of sand flies, Pantoea agglomerans and Bacillus subtilis. We demonstrate that these bacteria are able to differentially infect the larval digestive tract, and regulate the immune response in sand fly larvae. Moreover, bacterial distribution, and likely the ability to colonize the gut, is driven, at least in part, by a gradient of pH present in the gut.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号