首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The three major salivary glands of the monotreme echidna are described. The parotid is a typical serous gland with tubulo-acinar secretory endpieces and a well-developed system of striated ducts. The mandibular gland, although light microscopically resembling a mucous gland, secretes very little glycoprotein. Its cells are packed instead with serous granules, resembling in fine structure the “bull's eye” granules in the mandibular gland of the European hedgehog Erinaceus europaeus. The sublingual glands secrete an extremely viscous mucous saliva. Expulsion of this saliva through the narrow ducts is probably aided by contraction of the extensive myoepithelial sheaths surrounding the secretory tubules. Application of the glyoxylic acid induced fluorescence method failed to demonstrate adrenergic innervation in any of the glands.  相似文献   

2.
The parotid and mandibular glands of the cotton rat were examined by light and transmission electron microscopy. Parotid gland: Acinar cells were serous in nature, and contained electron-dense granules. Intercalated duct cells contained electron-dense granules. Striated duct cells had small granules of moderate and high electron densities. Mandibular gland: Acinar cells were seromucous in nature, and contained granules of low and moderate electron densities. Intercalated duct cells contained granules of moderate and high electron densities. Striated ducts were comprised of two portions - a secretory portion and a striated portion without granules. The secretory portion had many electron-dense granules. A sexual dimorphism was obserbed in these granules, which were smaller and fewer in females than in males.  相似文献   

3.
 Secreted carbonic anhydrase (isozyme VI; CA VI) was localized by immunohistochemistry in the developing postnatal rat submandibular and parotid glands using a specific monoclonal antibody to the rat enzyme. CA VI immunostaining was not detectable in the glands before birth. In the submandibular gland, granular immunostaining for CA VI was detectable in several terminal tubule cells of 1-day-old rats. At 1 week, the CA VI-positive cells were located at the periphery of the terminal tubules and appeared to be budding off the tubules. These cellular buds gradually increased, and, by 4 weeks, formed acini. CA VI was also detected in the duct lumen from day 1. The immunostaining in the parotid gland was detected sporadically in the acinar cells at 2 or 3 weeks. By 4 weeks, when the gland was almost indistinguishable from the adult one, the number of positive acinar cells had increased. Their number, however, was far smaller than in the adult gland, and the enzyme could not be detected in the duct lumen. CA II was also localized using specific antibodies to the rat isozyme. CA II was detectable in the inter- and intralobular striated ducts at 2 weeks after birth in the submandibular gland and at 3 weeks in the parotid gland. These results suggset that CA VI is secreted into saliva from soon after birth and that CA II appears in parallel with the functional maturation of the ducts. In addition, CA II was transiently expressed by the cellular buds of the submandibular gland at 2 and 3 weeks. Accepted: 7 January 1998  相似文献   

4.
We examined the histochemical localization of carbonic anhydrase (CA) in Bowman's glands by light and electron microscopy. Neither CAI nor CAII was detected immunohistochemically in the duct cells. However, by enzyme histochemistry the duct cells revealed electron-dense precipitates demonstrative of CA in the microvilli and intercellular digitations. The reaction product was also noted in small vesicles in the cytoplasm of duct cells. In cells of the acini, the well-developed short microvilli, basolateral cell membrane, and mitochondria along the basolateral membrane showed strong deposits indicating CA activity. Dense reaction product of CA was also detected in a small core within the electron-lucent granules of the secretory cells, although CAI and CAII were not detected by immunostaining in the secretory granules. Although the functional significance of CA in Bowman's glands is obscure, the enzyme may play a role in regulation of pH and ion balance in the mucous layer covering the olfactory epithelium. The presence of CA activity in the ducts suggests that these structures are not simple tubes serving as a conduit for secretory substances but participate in modifying the luminal content by secreting CA. (J Histochem Cytochem 47:1525-1531, 1999)  相似文献   

5.
Using the indirect immunofluorescent technique with anti-somatostatin serum, the distribution of scattered cells in the duct system of submandibular glands in the Monkey, Macaca irus has been assessed. In both males and females, these cells are located only in some portions of the duct system, e.g. striated ducts and excretory ducts. No immunoreactive cells were observed in the intercalated ducts or in secretory endpieces. The lymphatic node constantly adjacent to the submandibular gland did not contain immunoreactive cells. In the parotid glands, no immunoreactive cells to antisomatostatin immuneserum were ever observed.  相似文献   

6.
Summary Salivary glands (parotid, submandibular and sublingual glands) of nine mammalian species were investigated with respect to presence and localization of argyrophil and argentaffin cells. With the exception of the parotid gland of the rat, no positive staining was observed within the examined glands. In the rat parotid distinctly argyrophil cells could be demonstrated in the intercalated ducts. Histochemical studies of the cells, ultrastructural analysis of their cytoplasmic granules as well as their reactions to certain drugs indicate that these cells are of exocrine rather than of endocrine nature. After a subcutaneous injection of pilocarpine, the intensity of the argyrophil staining was markedly reduced. No specific catecholamine fluorescence could be detected within the cells, not even after pretreatment of the animals with high doses of L-DOPA. The membrane-bounded cytoplasmic granules of the intercalated duct cells furthermore displayed a strong positive staining reaction after treatment of ultrathin Vestopal sections with the periodic acid-chromic acid-silver technique of Rambourg et al. (1969).Supported by grants from the Swedish Medical Research Council (Project No. 12X-718), and the Medical Faculty of the University of Umeå. The skilful technical assistance of Miss Siw Domeij is gratefully acknowledged  相似文献   

7.
Summary Using the indirect immunofluorescent technique with anti-somatostatin serum, the distribution of scattered cells in the duct system of submandibular glands in the Monkey, Macaca irus has been assessed. In both males and females, these cells are located only in some portions of the duct system, e.g. striated ducts and excretory ducts. No immunoreactive cells were observed in the intercalated ducts or in secretory endpieces. The lymphatic node constantly adjacent to the submandibular gland did not contain immunoreactive cells. In the parotid glands, no immunoreactive cells to antisomatostatin immuneserum were ever observed  相似文献   

8.
Basic fibroblast growth factor in rat salivary glands   总被引:5,自引:0,他引:5  
We studied the occurrence and localization of basic fibroblast growth factor (bFGF) in rat salivary glands using a specific monoclonal antibody. It was shown that the extract of rat salivary glands has a pronounced stimulatory activity on the growth of bovine capillary endothelial cells, which is blocked by the addition of an antibody against bFGF. The concentration of bFGF in the submandibular/sublingual gland, as determined by radioimmunoassay, was 80% that in the brain. Immunocytochemistry revealed bFGF-immunoreactivity localized primarily in the epithelial cells lining the striated ducts and excretory ducts of the parotid, sublingual and submandibular glands. In addition, intense bFGF-immunoreactivity was observed in the granular convoluted tubule of the submandibular gland, localized predominantly in the agranular pillar cells, which lay in small numbers among the majority of weakly immunostained cells containing many apical secretory granules. At the electron-microscopic level, the immunoreactive material was distributed diffusely in the cytoplasmic matrix and nuclei of all immunoreactive cells, whereas it was absent from all cytoplasmic organelles including the secretory granules. These results indicate that bFGF is localized in different cellular and subcellular compartments from those of other growth factors in the duct system of rat salivary glands.  相似文献   

9.
The mandibular glands of 6 male and 6 female volcano rabbits were examined by means of light and transmission electron microscopy. The acinar cells of the glands were seromucous in nature, and contained faintly basophilic granules. The cells were classified into the light cells containing granules of low or moderate densities and the clear cells having polygonal granules of low density. The preacinar cells were occasionally observed at the site between acinus and intercalated duct. These cells had many weakly basophilic granules which contained fine granular materials of moderate density. The intercalated ducts were composed of light cells containing cored granules. The striated duct cells consisted of light cells and dark cells. Both of them contained a few vacuoles and vesicles, but no secretory granules. No sex-and age-related differences were observed in the mandibular gland of the volcano rabbit. The mandibular gland of the volcano rabbit was similar to the rabbit mandibular gland rather than the pika mandibular gland morphologically.  相似文献   

10.
The principal and accessory submandibular glands of the common vampire bat, Desmodus rotundus, were examined by electron microscopy. The secretory endpieces of the principal gland consist of serous tubules capped at their blind ends by mucous acini. The substructure of the mucous droplets and of the serous granules varies according to the mode of specimen preparation. With ferrocyanide-reduced osmium postfixation, the mucous droplets are moderately dense and homogeneous; the serous granules often have a polygonal outline and their matrix shows clefts in which bundles of wavy filaments may be present. With conventional osmium postfixation, the mucous droplets have a finely fibrillogranular matrix; the serous granules are homogeneously dense. Mucous cells additionally contain many small, dense granules that may be small peroxisomes, as well as aggregates of 10-nm cytofilaments. Intercalated duct cells are relatively unspecialized. Striated ducts are characterized by highly folded basal membranes and vertically oriented mitochondria. Luminal surfaces of all of the secretory and duct cells have numerous microvilli, culminating in a brush borderlike affair in the striated ducts. The accessory gland has secretory endpieces consisting of mucous acini with small mucous demilunes. The acinar mucous droplets contain a large dense region; the lucent portion has punctate densities. Demilune mucous droplets lack a dense region and consist of a light matrix in which fine fibrillogranular material is suspended. A ring of junctional cells, identifiable by their complex secretory granules, separates the mucous acini from the intercalated ducts. The intercalated ducts lack specialized structure. Striated ducts resemble their counterparts in the principal gland. As in the principal gland, all luminal surfaces are covered by an array of microvilli. At least some of the features of the principal and accessory submandibular glands of the vampire bat may be structural adaptations to the exigencies posed by the exclusively sanguivorous diet of these animals and its attendant extremely high intake of sodium chloride.  相似文献   

11.
Salivary glands synthesize and secrete an unusual family of proline-rich proteins (PRPs) that can be broadly divided into acidic and basic PRPs. We studied the tissue-specific expression of these proteins in rabbits, using antibodies to rabbit acidic and basic PRPs as well as antibodies and cDNA probes to human PRPs. By immunoblotting, in vitro translation, and Northern blotting, basic PRPs could be readily detected in the parotid gland but were absent in other salivary glands. In contrast, synthesis in vitro of acidic PRPs was detected in parotid, sublingual, and submandibular glands. Ultrastructural localization with immunogold showed heavy labeling with antibodies to acidic PRPs of secretory granules of parotid acinar cells and sublingual serous demilune cells. Less intense labeling occurred in the seromucous acinar cells of the submandibular gland. With antibodies to basic PRPs, the labeling of the parotid gland was similar to that observed with antibodies to acidic PRPs, but there was only weak labeling of granules of a few sublingual demilune cells, and no labeling of the submandibular gland. These results demonstrate a variable pattern of distribution of acidic and basic PRPs in rabbit salivary glands. These animals are therefore well suited for study of differential tissue expression of PRPs.  相似文献   

12.
Summary The cellular localization of an aminopeptidase N homologous to the brush-border intestinal enzyme and that of human blood group A-substances were investigated using the immunofluorescence technique on thin frozen sections (200 nm) of the digestive tract and associated glands of A+ and A rabbits. Aminopeptidase N was found to be a common specific marker of both the apical region of plasma membrane of acinar cells in submaxillary and parotid glands and pancreas and the brush border of jejunum and colon absorbing cells. In hepatocytes, the enzyme was localized in the sinusoidal domains. Soluble A-substances were present in mucus secretory granules of intestinal goblet cells and those of stomach and gall bladder mucous cells. In contrast, the mucous acini of sublingual and submaxillary glands were devoid of A-antigenicity. The columnar cells of striated ducts of these glands exhibited A-antigenicity. Soluble A-substances were also found in zymogen granules of parotid and pancreas acinar cells and those of stomach chief cells. Moreover, in all cells secreting A-substances, and in the non-secreting absorbing intestinal cells, the glycoproteins of the plasma membrane bore A-determinants. Aminopeptidase N was one of the membrane-bound glycoproteins that bore A-determinants in cells that expressed A-antigenicity.  相似文献   

13.
We examined the immunocytochemical localization of amylase in cryofixed serous acinar cells of gerbil major salivary glands by indirect immunostaining, using anti-gerbil parotid amylase antibody and protein A-gold complex. Fresh tissue blocks were quickly frozen by the metal-contact method, using liquid helium, and were freeze-substituted with either osmium-acetone solution or glutaraldehyde-containing acetone. They were then embedded in an epoxy resin mixture which was polymerized at 60 degrees C. Some tissue blocks substituted with aldehyde-acetone solution were embedded in Lowicryl K4M, polymerized at -30 degrees C. Thin sections of epoxy resin-embedded materials were treated with an oxidizing agent before immunostaining. The labeling density on the materials processed by various protocols for preparatory procedures was quantitatively compared to examine the usefulness of application of cryofixation to immunocytochemistry. The central dense core of heterogeneous secretory granules in the serous acinar cells of the parotid and sublingual glands was heavily labeled with immunogold, regardless of substitution media and embedding resins employed. The immunolabeling pattern clearly distinguished between the dense core and the surrounding matrix. Labeling density in the cryofixed materials was about 1.5 times greater than in those processed by conventional chemical fixation. Seromucous secretory granules in the submandibular gland acinar cells were only faintly labeled. The results obtained indicate that application of immunostaining to quick-frozen, substitution-fixed tissues is useful for high-resolution immunocytochemistry.  相似文献   

14.
Kallikrein has been localized in rodent kidney and salivary glands by means of an immunoglobulin-enzyme bridge technique. In sections of kidney, anti-kallikrein antibodies bound to the apical region of certain distal tubule segments in the cortex, to reabsorption droplets of proximal convoluted tubules, and to certain duct segments in the papilla. In salivary glands of both male and female rats and mice, and apical rim of most striated duct cells of submandibular, parotid and sublingual glands and granular tubules of submandibular glands exhibited immunoreactivity. Granular intercalated duct cells in female submandibular glands also displayed immunostaining for kallikrein. Phenylephrine administration resulted in loss of immunoreactive granules from the granular convoluted tubule cells of male mouse submandibular gland. This response was paralleled by a biochemically demonstrable decrease in kallikrein-like tosylarginine methyl ester (TAME) esterase activity.  相似文献   

15.
The distribution of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) has been examined in resting parotid acinar cells as well as during decreased and increased secretory granule production. In resting acinar cells, TPPase activity was restricted to the trans Golgi saccules and AcPase activity was localized in GERL and immature secretory granules. Although secretory granule production is diminished during ethionine intoxication, no significant alteration in the distribution of either TPPase or AcPase was noted. However, marked changes in enzyme localization, especially of TPPase, occurred during accelerated secretory granule production. The alterations were essentially the same for all of the conditions studied (recovery from ethionine treatment, recovery from a protein depletion diet, secretory stimulation with isoproterenol, and postnatal maturation of the parotid gland). During maximal secretory granule production, TPPase activity was localized not only in the trans Golgi saccules, but also in GERL-like cisternae and immature secretory granules. The immature secretory granules were often in continuity with the GERL-like cisternae. At the same time that the TPPase activity was increased, the AcPase activity was frequently diminished. These modulations in enzyme activity provide evidence that GERL is derived from the trans Golgi saccule.  相似文献   

16.
 Carbonic anhydrase VI (CA VI) is a secreted enzyme produced predominantly by serous acinar cells of submandibular and parotid glands. We have investigated the developmental pattern of CA VI production by these glands in the sheep, from fetal life to adulthood, using immunohistochemistry. Also, a specific radioimmunoassay for CA VI was used to measure changes in enzyme expression in the parotid gland postnatally. CA VI is detectable by immunohistochemistry in parotid excretory ducts from 106 days gestation (term is 145 days), in striated ducts from 138 days and in acinar cells from 1 day postnatal. The duct cell content of CA VI declined as the acinar cell population increased, a feature also of CA VI immunoreactivity in the submandibular gland. Production of CA VI by submandibular duct cells was detectable initially at 125 days gestation, and acinar production was not seen before 29 days post-natal. Apart from the differing ontogeny of CA VI production in ducts and acini of parotid and submandibular glands, there was a parallel pattern of CA VI expression during the development of these major salivary glands.With the development of the acinar tissues in the postnatal lamb, there was a dramatic increase (about 600-fold) in the level of expression of CA VI in the parotid gland between days 7 and 59 as measured by radioimmunoassay. Accepted: 19 December 1996  相似文献   

17.
Using monoclonal antibody specific to rat carbonic anhydrase isozyme VI (CA VI), the isozyme was localized in the lacrimal gland. A minority of acini (less than 10% of the total) contained a few immunoreactive acinar cells. Enzyme histochemistry indicated that the CA VI-positive cells were the only cells possessing CA in the lacrimal acini. In the acinar cells, the reaction product for CA VI was distributed in the secretory granules and cytosol between secretory granules. Except for mitochondrial enzyme (CA V) activity, the intracellular distribution of enzyme activity was similar to that of CA VI immunoreactivity, suggesting that rat lacrimal acinar cells contain only CA VI and CA V. CA VI in the secretory granules was discharged into the acinar lumen and is considered to carry out its function on the surface of the conjunctiva and cornea. The cytosolic CA VI may function in situ and be involved in electrolyte and water secretion by the acinar cells. Polyclonal antibody to rat erythrocyte CA (CA I and CA II) stained only the interlobular ducts. In contrast, all the ductal elements exhibited CA enzyme activity. This discrepancy between immunohistochemistry and enzyme histochemistry suggests the presence of CA isozyme(s) other than CA I, CA II and CA VI in the lacrimal duct.  相似文献   

18.
Summary Nerve growth factor (NGF) was localized in the mouse submandibular gland by means of indirect immunofluorescence applied to 0.5 mthick sections of freeze-dried, plastic-embedded tissue. The antibody to NGF (IgG-fraction) was raised in rabbits immunized with pure 2.5 S NGF from submandibular glands of adult male mice.In the male gland anti-NGF bound selectively to the secretory granules was present in the cells of the granular ducts. Immunoreactive granules extended from the perinuclear region toward the apical pole. In the female gland immunoreactive cells and granules were considerably less abundant than in males. Immunofluorescence was confined to individual secretory cells located in the wall of the granular striated duct.In the present study no support was found for the hypothesis suggesting that immunoreactive NGF is formed within the secretory granules during their transport from the perinuclear region to the apical pole.  相似文献   

19.
Synopsis the structure and cytochemistry of GERL was studied in several different exocrine secretory cells, including the exorbital lacrimal gland, parotid, lingual serous (von Ebner's), submandibular, and sublingual salivary glands, and exocrine pancreas of the rat; the lacrimal, parotid and pancreas of the guinea-pig; and the lacrimal gland of the monkey. GERL was morphologically and cytochemically similar in all cell types studied. It was located in the inner Golgi region and consisted of cisternal and tubular portions. Immature secretory granules were in continuity with GERL through multiple tubular connections. Modified cisternae of endoplasmic reticulum, with ribosomes only on one surface, closely paralleled parts of GERL. GERL and immature granules were intensely reactive for acid phosphatase activity, while the inner Golgi saccules were reactive for thiamine pyrophosphatase and nucleoside diphosphatase activities. In the rat exorbital lacrimal and parotid glands, reaction product for endogenous peroxidase, a secretory enzyme, was present in the endoplasmic reticulum, Golgi saccules, immature and mature secretory granules. GERL was usually free of reaction product or contained only a small amount. The widespread occurrence of GERL in secretory cells, and its intimate involvement with the formation of granules, suggest that it is an integral component of the secretory process.  相似文献   

20.
Human salivary carbonic anhydrase (HCA VI) was purified by inhibitor affinity chromatography and its location in the human parotid and submandibular glands identified, using a polyclonal antiserum raised against the purified enzyme in rabbits in conjunction with the peroxidase-antiperoxidase complex method. The antibodies raised against the purified enzyme in rabbits did not crossreact with the HCA II or I. However, they slightly recognized human IgA; the antiserum was therefore absorbed with human IgA before immunohistochemical use. HCA VI-specific staining was detected in the cytoplasm and particularly in the secretory granules of the serous acinar cells of both parotid and submandibular glands, the staining of the secretory granules being most distinct in paraformaldehyde-fixed tissues. Some epithelial cells and the luminal content of the striated ducts also gave a specific HCA VI staining. Staining specific for HCA II was also found in the granules of the serous acinar cells, particularly in the submandibular gland when Carnoy fluid fixation was used. Slight HCA II-specific staining was also detected in the striated ductal cells in the Carnoy fluid-fixed specimens. No staining specific for HCA I was detected. The results indicate that the serous acinar cells in human parotid and submandibular glands contain abundant HCA II and HCA VI. Interestingly, only HCA VI is secreted into the saliva, although both enzymes appear to be located in structures resembling the secretory granules in the acinar cells. The enzymes probably form a mutually complementary system regulating the salivary buffer capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号