首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the median frequency of the power spectrum of the surface electromyogram (EMG) are commonly used to detect muscle fatigue. Previous research has indicated that changes in the median frequency are related to decreases in muscle fibre conduction velocity (MFCV) during sustained fatiguing contractions. However, in experimental studies the median frequency has been consistently observed to decrease by a relatively greater amount than MFCV. In this paper, a new estimate of EMG frequency compression, the Spectral Compression Estimate (SCE), is compared with the median frequency of the EMG power spectrum, the median frequency of the EMG amplitude spectrum and MFCV measured during sustained, isometric, fatiguing contractions of the brachioradialis muscle at 30, 50 and 80% maximum voluntary contraction (MVC). The SCE is found to provide a better estimate of the observed changes in MFCV than the median frequency of either the EMG power spectrum or EMG amplitude spectrum.  相似文献   

2.
Endurance and changes in electromyogram (EMG) power spectra were investigated during a fatiguing static contraction at 50% of the maximum EMG amplitude in two jaw-elevator muscles (masseter and temporalis) and five facial muscles (frontalis, corrugator supercilii, zygomaticus major, orbicularis oris, and buccinator). Relatively high endurance was found in orbicularis oris, frontalis, and corrugator supercilii muscles; intermediate endurance was found in zygomaticus major, buccinator, and temporalis muscles; and low endurance was found in the masseter muscle. The last muscle showed a relatively fast linear decrease of the median frequency of the power spectrum. The other muscles showed a much slower, exponential decrease. The median frequency appeared to reflect reliably the changes in the shape of the power spectra during fatigue. Large differences between the shape of power spectra of different muscles in the unfatigued state were found. These, however, were unrelated to endurance and degree of spectral shift during fatigue.  相似文献   

3.
Different behaviours of the EMG power spectrum across increasing force levels have been reported for the masseter muscle. A factor that could explain these different behaviours may be the type of contraction used, as was recently shown for certain upper limb muscles5. The purpose of this study was to compare, between two types of isometric contractions, the behaviour of EMG power spectrum statistics (median frequency (MF) and mean power frequency (MPF)) obtained across increasing force levels. Ten women exerted, while biting in the intercuspal position, three 5 s ramp contractions that increased linearly from 0 to 100% of the maximal voluntary contraction (MVC). They also completed three step contractions (constant EMG amplitude) at each of the following levels: 20, 40, 60 and 80% MVC. EMG signals from the masseter muscle were recorded with miniature surface electrodes. The RMS, as well as the MPF and MF of the power spectrum were calculated at 20, 40, 60 and 80% MVC for each type of contraction. As expected, the RMS values showed similar increases with increasing levels of effort for both types of contractions. Different behaviours for both MPF (contraction*force interaction, ANOVA, P<0.05) and MF (contraction*force interaction, ANOVA, P>0.05) across increasing levels of effort were found between the two types of contraction. The use of step contractions gave rise to a decrease of both MPF and MF with increasing force, while the use of ramp contractions gave rise to an increase in both statistics up to at least 40% MVC followed by a decrease at higher force levels. These findings suggest that the type of contraction used does influence the behaviour of the spectral statistics across increasing force levels and that this could explain the differences obtained in previous studies for the masseter muscle.  相似文献   

4.
The amplitude of the surface EMG does not reach the level achieved during a maximal voluntary contraction force at the end of a sustained, submaximal contraction, despite near-maximal levels of voluntary effort. The depression of EMG amplitude may be explained by several neural and muscular adjustments during fatiguing contractions, including decreased net neural drive to the muscle, changes in the shape of the motor unit action potentials, and EMG amplitude cancellation. The changes in these parameters for the entire motor unit pool, however, cannot be measured experimentally. The present study used a computational model to simulate the adjustments during sustained isometric contractions and thereby determine the relative importance of these factors in explaining the submaximal levels of EMG amplitude at task failure. The simulation results indicated that the amount of amplitude cancellation in the simulated EMG (~ 40%) exhibited a negligible change during the fatiguing contractions. Instead, the main determinant of the submaximal EMG amplitude at task failure was a decrease in muscle activation (number of muscle fiber action potentials), due to a reduction in the net synaptic input to motor neurons, with a lesser contribution from changes in the shape of the motor unit action potentials. Despite the association between the submaximal EMG amplitude and reduced muscle activation, the deficit in EMG amplitude at task failure was not consistently associated with the decrease in neural drive (number of motor unit action potentials) to the muscle. This indicates that the EMG amplitude cannot be used as an index of neural drive.  相似文献   

5.
The goal of the present study was to compare electromyogram (EMG) power spectra obtained from step (constant force level) and ramp (progressive increase in the force level) isometric contractions. Data windows of different durations were also analysed for the step contractions, in order to evaluate the stability of EMG power spectrum statistics. Fourteen normal subjects performed (1) five ramp elbow extensions ranging from 0 to 100% of the maximum voluntary contraction (MVC) and (2) three stepwise elbow extensions maintained at five different levels of MVC. Spectral analysis of surface EMG signals obtained from triceps brachii and anconeus was performed. The mean power frequency (MPF) and the median frequency (MF) of each power spectrum were obtained from 256-ms windows taken at 10, 20, 40, 60 and 80% MVC for each type of contraction and in addition on 512-, 1024- and 2048-ms windows for the step contractions. No significant differences (P greater than 0.05) were found in the values of both spectral statistics between the different window lengths. Even though no significant differences (P greater than 0.05) were found between the ramp and the step contractions, significant interactions (P less than 0.05) between these two types of contraction and the force level were found for both the MPF and the MF data. These interactions point out the existence of different behaviours for both the MPF and the MF across force levels between the two types of contraction.  相似文献   

6.
Fourteen young subjects (7 men and 7 women) performed a fatiguing isometric contraction with the elbow flexor muscles at 20% of maximal voluntary contraction (MVC) force on three occasions. Endurance time for session 3 [1,718 +/- 1,189 (SD) s] was longer than for session 1 (1,225 +/- 683 s) and session 2 (1,410 +/- 977 s). Five men and four women increased endurance time between session 1 and 3 by 60 +/- 28% (responders), whereas two men and three women did not (-3 +/- 11%; nonresponders). The MVC force was similar for the responders and nonresponders, both before and after the fatiguing contraction. Fatiguing contractions were characterized by an increase in the electromyogram (EMG) amplitude and number of bursts during the fatiguing contractions. The responders achieved a similar level of EMG at exhaustion but a reduced rate of increase in the EMG across sessions. The rate of increase in EMG across sessions declined for the nonresponders, but it remained greater than that of the responders. The increase in burst rate during the contractions declined across sessions with a negative relation between burst rate and endurance time (r = -0.42). Normalized force fluctuations increased during the fatiguing contractions, and there was a positive relation (r = 0.60) between the force fluctuations and burst rate. Changes in mean arterial pressure and heart rate during the fatiguing contraction were similar for the responders and nonresponders across the three sessions. The results indicate that those subjects who increased the endurance time of a submaximal contraction across three sessions did so by altering the level and pattern of muscle activation.  相似文献   

7.
The interpretation of the electromyogram (EMG) of dynamic contractions might be difficult because the movement per se introduces additional factors that could affect its characteristics. There is a lack of studies concerning the reproducibility of surface EMG registrations during dynamic contractions. The aim was to investigate the during-the-day reproducibility (using intra-class correlation; ICC) of the peak torque (PT) and the EMG variables (without removing the electrodes) of dynamic contractions. Ten healthy subjects performed three sets of 10 dynamic maximum right-knee extensions with a one-hour interval in between, using an isokinetic dynamometer and the PT was determined. EMG signals were recorded from the right vastus lateralis, rectus femoris and vastus medialis muscles using surface electrodes and the mean frequency of the power spectrum (MNF [Hz]) and the signal amplitude (RMS [microV]), were computed. The ability to relax in-between the maximum extensions was calculated as a ratio of the RMS during the passive flexion phase and the RMS during the active extension phase of each contraction cycle: the signal amplitude ratio (SAR). Both PT (ICC = 0.99) and RMS (ICC = 0.83-0.98) had good reproducibility. The reproducibility of MNF was good for all muscles when the mean of contraction nos.: 1-10 was used. Vastus lateralis had the highest ICC among the three muscles. The reproducibility of SAR was generally poor (ICC < 0.60). The present study showed good reproducibility for common EMG variables (MNF and RMS) obtained during maximum isokinetic contractions.  相似文献   

8.
Recording a superimposed electrically-induced contraction at the limit of endurance during voluntary contraction is used as an indicator of failure of muscle activation by the central nervous system and discards the existence of peripheral muscle fatigue. We questioned on the reliability of this method by using other means to explore peripheral muscle failure. Fifteen normal subjects sustained handgrip at 60% of maximal voluntary contraction (MVC) until exhaustion. During sustained contraction, the power spectrum analysis of the flexor digitorum surface electromyogram allowed us to calculate the leftward shift of median frequency (MF). A superimposed 60 Hz 3 s pulse train (burst superimposition) was delivered to the muscle when force levelled off close to the preset value. Immediately after the fatigue trial had ended, the subject was asked to perform a 5 s 60% MVC and we measured the peak contractile response to a 60 Hz 3 s burst stimulation. Recordings of the compound evoked muscle action potential (M-wave) allowed us to explore an impairment of neuromuscular propagation. A superimposed contraction was measured in 7 subjects in their two forearms, whereas it was absent in the 8 others. Despite these discrepancies, all subjects were able to reproduce a 3 s 60% MVC immediately after the fatigue trial ended and there was no post-fatigue decrease of contraction elicited by the 60 Hz 3 s burst stimulation, as well as no M-wave decrease in amplitude and conduction time. Thus, there was no indication of peripheral muscle fatigue. MF decrease was present in all individuals throughout the fatiguing contraction and it was not correlated with the magnitude of superimposed force. These observations indicate that an absence of superimposed electrically-induced muscle contraction does not allow us to conclude the existence of a sole peripheral muscle fatigue in these circumstances.  相似文献   

9.
The maximal force and median frequency (MF) of the electromyogram (EMG) power density spectrum (PDS) have been compared in disused (6 weeks' immobilization) and control (contralateral) human adductor pollicis muscles during fatigue induced by voluntary or electrically-triggered (30 Hz) contractions. The results indicated that after 6 weeks' immobilization, MF was not significantly different in disused and control muscles although the force and integrated EMG were drastically reduced during a maximal voluntary contraction (MVC; by 55% and 45%, respectively, n = 8). During sustained 60 s MVC, the force decreased at the same rate in immobilized and control muscles, but the shift of MF towards lower frequency values was smaller (P less than 0.05) in disused muscle as compared to control by (14% vs 28%, respectively). In electrically-induced fatigue, the force decrease and the MF shift were larger after inactivity (41% and 43% in one subject, and 50% and 54% in the other subject, respectively) as compared to control (29% and 34% in one subject, and 37% and 38% in the other subject, respectively). These results emphasize the caution that should be exercised when EMG signals are quantified by computing the power density spectrum. The different effects of fatigue during voluntary and electrically-imposed contractions in disused and control muscles indicated that immobilization induced changes in the neural command for the contraction which compensated, at least in part, for its decreased contractile efficiency and resistance to fatigue.  相似文献   

10.
The purpose of this study was to determine, for different back muscles, if the median frequency (MF) of the electromyographic (EMG) power spectrum changes according to the position of the time window during a 5 s step contraction. Twenty males with no known back problems were standing upright in a dynamometer allowing lower limb and pelvis stabilization. Trunk extension efforts were performed by pushing on a force platform positioned at the T4 level while the extension moment at L5/S1 was displayed as visual feedback. The EMG signals from four homologous back muscles (multifidus at L5, ilicostalis lumborum at L3, and longissimus at L1 and T10) were collected using active surface electrodes during two 5 s static step contractions performed at five force levels (10, 20, 40, 60 and 80% of the maximal voluntary contraction). The root mean square (RMS) and MF values of the EMG signals corresponding to three 250 ms time windows (beginning, middle and end of each step contraction) were computed. The RMS values of several back muscles increased from the first to the third time window for contractions performed at high force levels only. However, a concomitant decrease in the MF values was observed only for the left multifidus muscle. It was concluded that muscle fatigue does not generally manifest itself during 5 s step contractions through the EMG signal. However, it is recommended to use step contractions lasting less than 5 s and to choose a time window located in the first 1-3 s to completely eliminate the possible effects of fatigue.  相似文献   

11.
Appropriate reliability is a necessary condition for the use of surface EMG for evaluation of hamstring muscle function in cases of knee joint pathologies or ligament injuries. The aim of the study was to investigate the test-retest reliability of power spectrum and amplitude of surface electromyographic (EMG) measurements of semitendinosus (ST) and biceps femoris (BF) during ramp isometric contractions. Eleven males performed maximum isometric contractions (MVC) of the knee flexors in two sessions, a week apart with simultaneous recording of surface EMG of the BF and ST. Intra class correlation (ICC) and standard error measurements (SEM) were applied to assess test-retest reliability of the averaged EMG (aEMG) and the median frequency (MF) over 10 levels of force, from 0% to 100% of the maximum. The ICC values ranged from 0.38 to 0.96 for the aEMG with SEM values reaching 11.37% of MVC. For the MF, the ICCs ranged from 0.44 to 0.98 (SEM range 4.49–18.19 Hz). In our set up, ramp contractions can be used to examine hamstring EMG patterns with acceptable reliability.  相似文献   

12.
The purpose of this study was to determine test-retest reliability for median frequency (MDF) and amplitude of surface EMG during sustained fatiguing contractions of the quadriceps. Twenty-two healthy subjects (11 males and 11 females) were tested on two days held one week apart. Surface EMG was recorded from rectus femoris (RF), vastus lateralis (VL) and vastus medialis (VM) during sustained isometric contractions at 80% and 20% of maximal voluntary contraction (MVC) held to exhaustion. Quadriceps fatigue was described using four measures for both MDF and amplitude of EMG: initial, final, normalized final and slope. For both MDF and amplitude, the initial, final and normalized EMG showed moderate to high reliability for all three muscle groups at both contraction levels (ICC=0.59-0.88 for MDF; ICC=0.58-0.99 for amplitude). Slope of MDF and amplitude was associated with a large degree of variability and low ICCs for the 80% but not the 20% MVC. MDF and amplitude of EMG during sustained contractions of the quadriceps are reproducible; normalized final values of MDF and amplitude show better reliability than slope.  相似文献   

13.
Influence of amplitude cancellation on the simulated surface electromyogram.   总被引:11,自引:0,他引:11  
The purpose of the study was to quantify the influence of selected motor unit properties and patterns of activity on amplitude cancellation in the simulated surface electromyogram (EMG). The study involved computer simulations of a motor unit population with physiologically defined recruitment and rate coding characteristics that activated muscle fibers whose potentials were recorded on the skin over the muscle. Amplitude cancellation was quantified as the percent difference in signal amplitude when motor unit potentials were summed before and after rectification. The simulations involved varying the level of activation for the motor unit population, the recording configuration, the upper limit of motor unit recruitment, peak discharge rates, the amount of motor unit synchronization, muscle fiber length, the thickness of the subcutaneous tissue, and the motor unit properties that change with advancing age. The results confirmed a previous experimental report (Day SJ and Hulliger M, J Neurophysiol 86: 2144-2158, 2001) that amplitude cancellation in the surface EMG can reach 62% at maximal activation. A decrease in the range of amplitudes of the motor unit potentials, as can occur during fatiguing contractions, increased amplitude cancellation up to approximately 85%. Differences in the amount of amplitude cancellation were observed across all simulated conditions, and resulted in substantial changes in the absolute magnitude of the EMG signal. The most profound factors influencing amplitude cancellation were the number of active motor units and the duration of the action potentials. The effects of amplitude cancellation were minimal (<5%) when the EMG amplitude was normalized to maximal values, with the exception of variations in peak discharge rate and recruitment range, which resulted in differences up to 17% in the normalized EMG signal across conditions. These results indicate the amount of amplitude cancellation that can occur in various experimental conditions and its influence on absolute and relative measures of EMG amplitude.  相似文献   

14.
Peak torque, work, mean power and electromyographic (EMG) activity were recorded for each of 150 repeated isokinetic maximal shoulder flexions (45 degrees-90 degrees) in 23 healthy females. From the EMG signals of trapezius, deltoid, infraspinatus and biceps brachii the mean power frequency and the signal amplitude were determined in real time. The mechanical output showed a steep decrease during the first 40 contractions, followed by a plateau maintained until the end. In all muscles, except the biceps brachii, significant decreases in mean power frequency occurred during the first 40 contractions, showing a tendency to stabilize around the same absolute frequency value. Signal amplitude increased in the trapezius, the deltoid and the infraspinatus, but was constant in the biceps brachii. For some individuals rather high EMG activity was recorded in the muscles during the time the arm was supposed to be passively extended to the starting position, and this was found to be associated with lower strength and endurance levels. Longitudinal analyses showed that the mean power frequencies correlated better than the signal amplitudes with the three mechanical variables. The results suggest that the initial steep decrease in mechanical performance and mean power frequency is caused by fatiguing of type 2 motor units.  相似文献   

15.
The purpose of this study was to determine the electromyographic (EMG) power spectral characteristics of seven trunk muscles bilaterally during two complex isometric activities extension-rotation and flexion-rotation, in both genders to describe the frequency-domain parameters. Eighteen normal young subjects volunteered for the study. The subjects performed steadily increasing isometric extension-rotation and flexion-rotation contractions in a standard trunk posture (40 degrees flexed and 40 degrees rotated to the right). A surface EMG was recorded from the external and internal oblique, rectus abdominis, pectoralis, latissimus dorsi, and erector spinae muscles at the 10th thoracic and the 3rd lumbar vertebral levels, at 1 kHz and 25%, 50%, 75% and 100% of maximal voluntary contraction (MVC). The median frequency (MF), mean power frequency (MPF), frequency spread and peak power were obtained from fast Fourier transform analysis. The MF and MPF for both extension-rotation and flexion-rotation increased with the grade of contraction for both males and females. The EMG spectra in flexion-rotation were different from those of extension-rotation (P < 0.001). The left external and right internal oblique muscles played the role of antagonists in trunk extension-rotation. There was an increase in the MF of the trunk muscles with increasing magnitude of contraction. Frequency-domain parameters for both the male and female subjects were significantly different (P < 0.001).  相似文献   

16.
The purposes of this study were 1) to evaluate gender differences in back extensor endurance capacity during isometric and isotonic muscular contractions, 2) to determine the relation between absolute load and endurance time, and 3) to compare men [n = 10, age 22.4 +/- 0.69 (SE) yr] and women (n = 10, age 21.7 +/- 1.07 yr) in terms of neuromuscular activation patterns and median frequency (MF) shifts in the electromyogram (EMG) power spectrum of the lumbar and hip extensor muscles during fatiguing submaximal isometric trunk extension exercise. Subjects performed isotonic and isometric trunk extension exercise to muscular failure at 50% of maximum voluntary contraction force. Women exhibited a longer endurance time than men during the isometric task (146.0 +/- 10.9 vs. 105.4 +/- 7.9 s), but there was no difference in endurance performance during the isotonic exercise (24.3 +/- 3.4 vs. 24.0 +/- 2.8 repetitions). Absolute load was significantly related to isometric endurance time in the pooled sample (R(2) = 0.34) but not when men and women were analyzed separately (R(2) = 0.05 and 0.04, respectively). EMG data showed no differences in neuromuscular activation patterns; however, gender differences in MF shifts were observed. Women demonstrated a similar fatigability in the biceps femoris and lumbar extensors, whereas in men, the fatigability was more pronounced in the lumbar musculature than in the biceps femoris. Additionally, the MF of the lumbar extensors demonstrated a greater association with endurance time in men than in women (R(2) = 0.45 vs. 0.19). These findings suggest that gender differences in muscle fatigue are influenced by muscle contraction type and frequency shifts in the EMG signal but not by alterations in the synergistic activation patterns.  相似文献   

17.
Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 +/- 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 +/- 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 +/- 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 +/- 5.3%), but it ended at a similar value (45.4 +/- 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003).  相似文献   

18.
A number of studies have been published that have used variables of the electromyogram (EMG) power spectrum during dynamic exercise. Despite these studies there is a shortage of studies of the validity of surface EMG registrations during repetitive dynamic contractions with respect to fatigue. The aim of this study was to investigate if the surface EMG variables mean frequency (MNF [Hz]) and the signal amplitude (RMS [microV]) are valid indicators of muscular fatigue (defined as "any exercise-induced reduction in the capacity to generate force or power output") during maximum repeated isokinetic knee extensions (i.e. criterion validity using peak torque). Twenty-one healthy volunteers performed 100 isokinetic knee extensions at 90 degrees s(-1). EMG signals were recorded from the vastus lateralis, the rectus femoris and the vastus medialis of the right thigh by surface electrodes. MNF and RMS of the EMG together with peak torque (PT [Nm]) were determined for each contraction. MNF showed consequently higher correlation coefficients with PT than RMS did. Positive correlations generally existed between MNF and PT. The majority of the subjects had positive correlations between RMS and PT (i.e. decreases both in PT and in RMS).In conclusion, at the individual level MNF generally - in contrast to RMS - showed good criterion validity with respect to biomechanical fatigue during dynamic maximum contractions.  相似文献   

19.
While much is known about the physiological basis of local muscular fatigue, little is known about the kinematic and electromyographic (EMG) consequences of brief fatiguing isometric contractions. Five male subjects performed a horizontal elbow flexion-extension reversal movement over 90° in 250 ms to reversal before and after one of five single maximal isometric elbow flexions ranging in duration from 15–120 s. Surface EMG signals were recorded from the biceps brachii, the long head of the triceps, the clavicular portion of the pectoralis major, and the posterior deltoid. Spatial and temporal errors were computed from potentiometer output. During the fatiguing bouts, maximum voluntary force dropped linearly an average of 4% in the 15 s condition and 58% in the 120 s condition relative to maximum force. The associated biceps rectified-integrated EMG signal increased from the onset of each fatigue bout for 15–30 s, then decreased over the remainder of the longer bouts. Following the fatigue bout, subjects undershot the target distance on the first movement trial in all conditions. Following short fatigue durations (i.e. 15–30 s), the peak biceps EMG amplitude was disrupted and movement velocity decreased, but both measures recovered within seconds. As fatigue duration increased, progressive decreases in peak velocity occurred with increased time to reversal, reduced EMG amplitude, and longer recovery times. However, the relative timing of the EMG pattern was maintained suggesting the temporal structure was not altered by fatigue. The findings suggest that even short single isometric contractions can disrupt certain elements of the motor control system.  相似文献   

20.
The influence of repetitive dynamic fatiguing contractions on the neuromuscular characteristics of the human triceps surae was investigated in 10 subjects. The load was 50% of the torque produced during a maximal voluntary contraction, and the exercise ended when the ankle range of motion declined to 50% of control. The maximal torque of the triceps surae and the electromyographic (EMG) activities of the soleus and medial gastrocnemius were studied in response to voluntary and electrically induced contractions before and after the fatiguing task and after 5 min of recovery. Reflex activities were also tested by recording the Hoffmann reflex (H reflex) and tendon reflex (T reflex) in the soleus muscle. The results indicated that whereas the maximal voluntary contraction torque, tested in isometric conditions, was reduced to a greater extent (P < 0.05) at 20 degrees of plantar flexion (-33%) compared with the neutral position (-23%) of the ankle joint, the EMG activity of both muscles was not significantly reduced after fatigue. Muscle activation, tested by the interpolated-twitch method or the ratio of the voluntary EMG to the amplitude of the muscle action potential (M-wave), as well as the neuromuscular transmission and sarcolemmal excitation, tested by the M-wave amplitude, did not change significantly after the fatiguing exercise. Although the H and T reflexes declined slightly (10-13%; P < 0.05) after fatigue, these adjustments did not appear to have a direct deleterious effect on muscle activation. In contrast, alterations in the mechanical twitch time course and postactivation potentiation indicated that intracellular Ca(2+)-controlled excitation-contraction coupling processes most likely played a major role in the force decrease after dynamic fatiguing contractions performed for short duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号