首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural killer (NK) cells are involved in immune responses against tumors and microbes. NK‐cell activation is regulated by intrinsic and extrinsic mechanisms that ensure NK tolerance and efficacy. Here, we show that the cytoplasmic signaling molecules Dok1 and Dok2 are tyrosine phosphorylated upon NK‐cell activation. Overexpression of Dok proteins in human NK cells reduces cell activation induced by NK‐cell‐activating receptors. Dok1 and Dok2 gene ablation in mice induces an NK‐cell maturation defect and leads to increased IFN‐γ production induced by activating receptors. Taken together, these results reveal that Dok1 and Dok2 proteins are involved in an intrinsic negative feedback loop downstream of NK‐cell‐activating receptors in mouse and human.  相似文献   

2.
Although the means by which NK cells may contribute to anti viral defense are still incompletely understood, various studies merge to a better comprehension of pathways that mediate NK cell activation (NK cell mediated cytotoxic activity and cytokine production) and their implications during the immune response towards a variety of viruses. Characterization of a specific expression pattern of ligands for NK receptors on virally infected cells and consequent modulation of NK cell activity have provided new insights in the field. A major break through to a direct evidence of a role for NK cells and NK cell receptors in immune protection against viral infection, was the recent implication of the murine activating Ly49H receptors in immune protection against MCMV infection. Although much remains to be learned concerning implication of NK cells in HIV infection, various reports have documented alteration in NK cell function and numbers during the course of HIV infection or treatment of AIDS. This review will focus on the current knowledge about the factors which might influence NK cell activation during various viral challenge and an emerging view of their alteration during HIV infection.  相似文献   

3.
4.
Natural killer (NK) cells are well recognized for their ability to provide a first line of defence against viral pathogens and they are increasingly being implicated in immune responses against certain bacterial and parasitic infections. Reciprocally, viruses have devised numerous strategies to evade the activation of NK cells and have influenced the evolution of NK-cell receptors and their ligands. NK cells contribute to host defence by their ability to rapidly secrete cytokines and chemokines, as well as to directly kill infected host cells. In addition to their participation in the immediate innate immune response against infection, interactions between NK cells and dendritic cells shape the nature of the subsequent adaptive immune response to pathogens.  相似文献   

5.
Dendritic cells and innate defense against tumor cells   总被引:1,自引:0,他引:1  
Tumor growth results from a delicate balance between intrinsic dysregulation of oncogenes, tumor suppressor and stability genes counteracted by extrinsic defenses composed of immune cells shaping tumor immunogenicity. Although immune subversion might be the ultimate outcome of this process, a complex network of cellular interactions take place eventually leading to tumor specific cognate immune responses. The links between innate and cognate antitumor immunity eliciting protective T cell responses are instigated by cytokines, chemokines and damage associated molecular patterns. The intricate differentiation pathway whereby dendritic cells could undergo an efficient maturation program in the tumor microenvironment appears crucial. We will discuss the role of innate effectors and cancer therapies in the process of defense against tumor cells.  相似文献   

6.
Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.  相似文献   

7.
Innate immunity as the first line of the immune system, provides initial protection against various pathogens and infections. Recent studies suggest a link between cell stress response and immune response upon exogenous insults in the lung. The key proteins in cellular stress responses were demonstrated to be involved in the activation and regulation of the immune signaling pathways. Further research on the function of these stress proteins in innate immunity defenses, particularly in pulmonary diseases and inflammation may help to clarify the disease pathogenesis and provide potential therapeutic treatments for various infectious and inflammatory lung diseases.  相似文献   

8.
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) specialized in the stimulation of na?ve T lymphocytes, which are key components of antiviral and antitumor immunity. DCs are 'sentinels' of the immune system endowed with the mission to (1) sense invading pathogens as well as any form of tissue distress and (2) alert the effectors of the immune response. They represent a very heterogeneous population including subsets characterized by their anatomical locations and specific missions. Beyond their unique APC features, DCs exhibit a large array of effector functions that play critical roles in the induction and regulation of the cell-mediated as well as humoral immune responses. In the course of the antitumor immune response, DCs are unique in engulfing tumor cells killed by natural killer (NK) cells and cross-presenting tumor-associated antigens to cytotoxic T lymphocytes (CTLs). However, while DCs mediate antitumor immune responses by stimulating tumor-specific CTLs and NK cells, direct tumoricidal mechanisms have been recently evoked. This review addresses the other face of DCs to directly deliver apoptotic signals to stressed cells, their role in tumor cell death, and its implication in the design of DC-based cancer immunotherapies.  相似文献   

9.
Xenotransplantation of genetically engineered porcine chondrocytes may provide a therapeutic solution for the repair of cartilage defects of various types. However, the mechanisms underlying the humoral and cellular responses that lead to rejection of xenogeneic cartilage are not well understood. In this study, we investigated the interaction between human NK cells and isolated porcine costal chondrocytes (PCC). Our data show that freshly isolated NK cells adhere weakly to PCC. Consequently, PCC were highly resistant to cytolysis mediated by freshly isolated NK cells. However, the presence of human natural Abs in the coculture was often sufficient to trigger cytotoxicity against PCC. Furthermore, IL-2 stimulation of NK cells or activation of PCC with the proinflammatory cytokines TNF-α or IL-1α resulted in increased adhesion, which was paralleled by increased NK cell-mediated lysis of PCC. NK cell adhesion to PCC could be blocked by Abs against human LFA-1 and porcine VCAM-1. NKG2D and NKp44 were involved in triggering cytotoxicity against PCC, which expressed ligands for these activating NK cell receptors. Our data further suggest that NKp30 and NKp46 may contribute to the activation of NK cells by PCC under certain conditions. Finally, comparative studies confirmed that PCC are more resistant than porcine aortic endothelial cells to human NK cell-mediated lysis. Thus, the data demonstrate that human NK cells can kill pig chondrocytes and may therefore contribute to rejection of xenogeneic cartilage. In addition, we identify potential targets for intervention to prevent the NK cell response against pig xenografts.  相似文献   

10.
Natural killer (NK) cells are key players of the innate immune system. NK cells provide protection against infectious pathogens and malignancies in cell. This characteristic may be attributable to their intrinsic diverse potentialities and also their cooperation with adaptive immune lymphocytes, known as B and T cells. The growth, recurrence, and metastasis of cancer cells, and the failure of cytoreductive therapies against cancer cells are due to the small population of intratumor stem-like cells, called cancer stem cells (CSCs). Furthermore, NK cells can efficiently eradicate heterogeneous tumor cells after a long-term treatment. Therefore, NK cell–based therapy is a promising strategy to target and break CSC-associated resistance to anticancer drugs treatment. In this review, we have presented an overview of the emerging knowledge of the characteristics, diversities, and mechanism-driven immune surveillance of human NK cells and advances in NK cell–based immunotherapies. Finally, we will discuss how these cells can be applied to introduce the next generation of vaccine- and immune-based approaches to prevent drug resistance.  相似文献   

11.
IGF-I mediated survival pathways in normal and malignant cells   总被引:8,自引:0,他引:8  
The type-I and -II insulin-like growth factors (IGF-I, II) are now established as survival- or proliferation-factors in many in vitro systems. Of note IGFs provide trophic support for multiple cell types or organ cultures explanted from various species, and delay the onset of programmed cell death (apoptosis) through the mitochondrial (intrinsic pathway) or by antagonizing activation of cytotoxic cytokine signaling (extrinsic pathway). In some instances, IGFs protect against other forms of death such as necrosis or autophagy. The effect of IGFs on cell survival appears to be context specific, being determined both by the cell origin (tissue specific) and the cellular stress that induces loss of cellular viability. In many human cancers, there is a strong association with dysregulated IGF signaling, and this association has been extensively reviewed recently. IGF-regulation is also disrupted in childhood cancers as a consequence of chromosomal translocations. IGFs are implicated also in acute renal failure, traumatic injury to brain tissue, and cardiac disease. This article focuses on the role of IGFs and their cellular signaling pathways that provide survival signals in stressed cells.  相似文献   

12.
Macrophages are cells of the immune system that protect organisms against invading pathogens by fulfilling critical roles in innate and adaptive immunity and inflammation. They originate from circulating monocytes and show a high degree of heterogeneity, which reflects the specialization of function given by different anatomical locations. Differentiation of monocytes towards a macrophage phenotype is also accompanied by an increase of resistance against various apoptotic stimuli, a required characteristic that allows macrophages to accomplish their function in a stressful environment.Apoptosis, a form of programmed cell death, is a tightly regulated process, needed to maintain homeostasis by balancing proliferation with cellular demise. Caspases, a family of cysteine proteases that are highly conserved in multicellular organisms, function as central regulators of apoptosis. FLIP (FLICE-inhibitory protein), anti-apoptotic members of the Bcl2 family and inhibitors of apoptosis (IAP) are the main three groups of anti-apoptotic genes that counteract caspase activation through both the extrinsic and intrinsic apoptotic pathways.Modulation of the apoptotic machinery during viral and bacterial infections, as well as in various malignancies, is a wellestablished mechanism that promotes the survival of affected cells. The involvement of anti-apoptotic genes in the survival of monocytes/macrophages, either physiological or pathological, will be described in this review. How viral and bacterial infections that target cells of the monocytic lineage affect the expression of anti-apoptotic genes is important in understanding the pathological mechanisms that lead to manifested disease. The latest therapeutic approaches that target anti-apoptotic genes will also be discussed.Key Words: Apoptosis, monocytes/macrophages, HIV, anti-apoptotic genes, tuberculosis.  相似文献   

13.
As a part of the innate immune system, natural killer (NK) cells are cytotoxic lymphocytes that can exert cytotoxic activity against infected or transformed cells. Furthermore, due to their expression of a functional Fc receptor, they have also been eluded as a major effector fraction in antibody-dependent cellular cytotoxicity. These characteristics have led to multiple efforts to use them for adoptive immunotherapy against various malignancies.  There are now at least 70 clinical trials testing the safety and efficacy of NK cell products around the world in early-phase clinical trials. NK cells are also being tested in the context of tumor retargeting via chimeric antigen receptors, other genetic modification strategies, as well as tumor-specific activation strategies such as bispecific engagers with or without cytokine stimulations. One advantage of the use of NK cells for adoptive immunotherapy is their potential to overcome HLA barriers. This has led to a plethora of sources, such as cord blood hematopoietic stem cells and induced pluripotent stem cells, which can generate comparatively high cytotoxic NK cells to peripheral blood counterparts. However, the variety of the sources has led to a heterogeneity in the characterization of the final infusion product. Therefore, in this review, we will discuss a comparative assessment strategy, from characterization of NK cells at collection to final product release by various phenotypic and functional assays, in an effort to predict potency of the cellular product.  相似文献   

14.
Host resistance against pathogens depends on a complex interplay of innate and adaptive immune mechanisms. Acting as an early line of defence, the immune system includes activation of neutrophils, tissue macrophages, monocytes, dendritic cells, eosinophils and natural killer (NK) cells. NK cells are lymphoid cells that can be activated without previous stimulation and are therefore like macrophages in the first line of defence against tumor cells and a diverse range of pathogens. NK cells mediate significant activity and produce high levels of proinflammatory cytokines in response to infection. Their cytotoxicity production is induced principally by monocyte-, macrophage- and dendritic cell-derived cytokines, but their activation is also believed to be cytokine-mediated. Recognition of infection by NK cells is accomplished by numerous activating and inhibitory receptors on the NK cells' surface that selectively trigger the cytolytic activity in a major histocompability complex-independent manner. NK cells have trypanocidal activity of fibroblast cells and mediate direct destruction of extracellular epimastigote and trypomastigote forms of T. cruzi and T. lewisi in vitro; moreover, they kill plasmodia-infected erythrocytes directly through cell-cell interaction. This review provides a more detailed analysis of how NK cells recognize and respond to parasites and how they mediate cytotoxicity against tumor cells. Also the unique role of NK cells in innate immunity to infection and the relationship between parasites and carcinogenesis are discussed.  相似文献   

15.
J L Cook  A M Lewis  Jr 《Journal of virology》1987,61(7):2155-2161
Adenovirus type 2 (Ad2)-transformed hamster and rat cells are susceptible to lysis by natural killer (NK) cells from the host of origin and are nontumorigenic in immunocompetent hamsters and rats, respectively. These NK-cell-susceptible, virus-transformed cells are, however, highly tumorigenic in athymic (nude) mice--animals with intact NK-cell responses. In vitro lysis of these xenogeneic, Ad2-transformed cells by nude-mouse NK cells was found to be defective. In contrast, Ad2-transformed hamster and rat cells were highly susceptible to lysis by nude-rat NK cells. Furthermore, xenogeneic, Ad2-transformed hamster cells were nontumorigenic in nude rats unless the NK-cell responses of the challenged animals were compromised. The results of the nude-rat studies show that thymus-dependent, cytotoxic T-lymphocyte-mediated, host cellular immune responses are not essential for rejection of xenogeneic cells transformed by nononcogenic Ad2. The data suggest instead that immunologically nonspecific host cellular immune responses, such as those mediated by NK cells, are sufficient for rejection of Ad2-transformed cells. These results indicate that biologically important differences exist in the NK-cell-mediated defenses mounted by nude mice and nude rats against transformed cells that may account for the different patterns of tumor induction by various neoplastic cell types in these athymic animals.  相似文献   

16.
Autophagy plays an evolutionarily conserved role in host defense against pathogens. Autophagic protection mechanisms against microbes range from regulating immune signaling responses to directly targeting the pathogens for lysosomal degradation. Toll-like receptors (TLRs) that detect conserved molecular features shared by pathogens regulate several innate immune responses including autophagy. Our recent study demonstrates that autophagy reported in response to TLR4-stimulation in macrophages is selective autophagy of aggresome-like induced structures (ALIS), and p62 (also known as SQSTM1) plays an essential role in this process. Treatment of macrophages with either Escherichia coli or lipopolysaccharide (LPS) results in the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), leading to an increase in the levels of p62 mRNA and protein, assembly of ALIS and their autophagic degradation. This study revealed a signaling role for p62, distinct from its known function as a bacterial-targeting factor, which might be critical for cellular stress response during infection.  相似文献   

17.
Immunotherapy based on T cell responses to the tumor is believed to involve killing of cancer cells by induction of apoptosis. The predominant mechanisms are death ligand-induced signaling mainly by TNF-related apoptosis-inducing ligand (TRAIL) mediated by CD4 T cells, monocytes and dendritic cells, and perforin/granzyme mediated apoptosis mediated by CD8 T cells and NK cells. Resistance against TRAIL involves loss of TRAIL death receptors and/or activation of the MEK and/or Akt signal pathways. Resistance to CD8 CTL responses also involves activation of the MEK and/or Akt pathways. Apoptosis induced by immune responses is regulated by the Bcl-2 family of proteins. Many reagents have been developed against the Bcl-2 antiapoptotic proteins and clinical trials combining them with immunotherapy are awaited. The second group of agents that regulate the Bcl-2 family of proteins are the signal pathway inhibitors. Clinical trials with inhibitors of RAS, RAF or MEK are in progress and would appear an exciting combination with immunotherapy. One of the main drivers of resistance to apoptosis are adaptive mechanisms that allow cancer cells to overcome endoplasmic reticulum (ER) stress. These adaptive mechanisms inhibit practically all known apoptotic pathways and create an acidic environment that may reduce infiltration of lymphocytes against the tumor. The signal pathway inhibitors may be effective against these adaptive processes but additional agents that target ER stress pathways are in development. In conclusion, combination of immunotherapy with agents that target antiapoptotic mechanisms in cancer cells offers a new approach that requires evaluation in clinical trials.  相似文献   

18.
Protein kinase B (Akt1) holds a central role for cellular growth, development, and survival, but the cellular pathways of Akt1 that prevent inflammatory demise in the vascular system remain undefined. Employing a constitutively active form of Akt1 (myristoylated Akt1) in endothelial cells (ECs), we demonstrate that Akt1 not only modulates intrinsic pathways of EC injury that involve genomic DNA destruction, but also uniquely regulates extrinsic mechanisms of cellular inflammation mediated by phosphatidylserine exposure (PS) and microglial activation. Activation of Akt1 is necessary and sufficient to prevent apoptotic EC destruction, since inhibition of the phosphatidylinositide-3-kinase pathway as well as transfection of ECs with a dominant-negative Akt1 mutant abrogates vascular protection. Furthermore, we illustrate that control of microglial activation by Akt1 is directly dependent on the modulation of EC membrane PS exposure. Akt1 provides a novel capacity to foster EC survival through the prevention of cysteine protease degradation of Bcl-x(L) that is intimately linked to the specific inhibition of caspase 1-, 3-, and 9-like activities and the modulation of mitochondrial membrane potential and cytochrome c release. Our work elucidates the critical role of Akt1 during cellular inflammation and identifies new downstream targets of Akt1 that may offer therapeutic potential against vascular disease.  相似文献   

19.
20.
Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号