首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable cell pools are receiving a renewed interest as a potential alternative system to clonal cell lines. The shorter development timelines and the capacity to achieve high product yields make them an interesting approach for recombinant protein production. In this study, stable High Five cell pools are assessed for the production of a simple protein, mCherry, and the more complex HIV-1 Gag-eGFP virus-like particles (VLPs). Random integration coupled to fluorescence-activated cell sorting (FACS) in suspension conditions is applied to accelerate the stable cell pool generation process and enrich it with high producer cells. This methodology is successfully transferred to a bioreactor for VLP production, resulting in a 2-fold increase in VLP yields with respect to shake flask cultures. In these conditions, maximum viable cell concentration improves by 1.5-fold, and by-product formation is significantly reduced. Remarkably, a global increase in the uptake of amino acids in the Gag-eGFP stable cell pool is observed when compared with parental High Five cells, reflecting the additional metabolic burden associated with VLP production. These results suggest that stable High Five cell pools are a robust and powerful approach to produce VLPs and other recombinant proteins, and put the basis for future studies aiming to scale up this system.  相似文献   

2.
Applied Microbiology and Biotechnology - Transient gene expression (TGE) has been used at small and medium scale for the production of biologicals in sufficient quantities to perform pre-clinical...  相似文献   

3.
Virus-like particles (VLPs) offer great promise in the field of nanomedicine. Enveloped VLPs are a class of these nanoparticles and their production process occurs by a budding process, which is known to be the most critical step at intracellular level. In this study, we developed a novel imaging method based on super-resolution fluorescence microscopy (SRFM) to assess the generation of VLPs in living cells. This methodology was applied to study the production of Gag VLPs in three animal cell platforms of reference: HEK 293-transient gene expression (TGE), High Five-baculovirus expression vector system (BEVS) and Sf9-BEVS. Quantification of the number of VLP assembly sites per cell ranged from 500 to 3,000 in the different systems evaluated. Although the BEVS was superior in terms of Gag polyprotein expression, the HEK 293-TGE platform was more efficient regarding the assembly of Gag as VLPs. This was translated into higher levels of non-assembled Gag monomer in BEVS harvested supernatants. Furthermore, the presence of contaminating nanoparticles was evidenced in all three systems, specifically in High Five cells. The SRFM-based method here developed was also successfully applied to measure the concentration of VLPs in crude supernatants. The lipid membrane of VLPs and the presence of nucleic acids alongside these nanoparticles could also be detected using common staining procedures. Overall, a complete picture of the VLP production process was achieved in these three production platforms. The robustness and sensitivity of this new approach broaden the applicability of SRFM toward the development of new detection, diagnosis and quantification methods based on confocal microscopy in living systems.  相似文献   

4.
Lentiviral vectors have drawn considerable attention recently and show great promise to become important delivery vehicles for future gene transfer manipulation. In the present study we have optimized a protocol for preparation of human immunodeficiency virus type-1 (HIV-1)-based defective lentiviral vectors (DLV) and characterized these vectors in terms of their transduction of different cells. Transient co-transfection of 293T packaging cells with DNA plasmids encoding lentiviral vector constituents resulted in production of high-titer DLV (0.5–1.2 × 107IU/mL), which can be further concentrated over 100-fold through a single step ultracentrifugation. These vectors were capable of transducing a variety of cells from both primate and non-primate sources and high transduction efficiency was achieved using concentrated vectors. Assessment of potential generation of RCV revealed no detection of infection by infectious particles in DLV-transduced CEM, SupT-1 and MT-2 cells. Long-term culture of transduced cells showed a stable expression of transgenes without apparent alteration in cellular morphology and growth kinetics. Vector mobilization to untransduced cells mediated by wild-type HIV-1 infection was confirmed in this test. Challenge of transduced human T-lymphocytes with wild-type HIV-1 showed these cells are totally resistant to the viral infection. Considering the effective gene transfer and stable gene expression, safety and anti-HIV activity, these DLV vectors warrant further exploration for their potential use as a gene transfer vehicle in the development of gene therapy protocols. Foundation items: National Institute of Health (S11 NS43499); RCMI (G12RR/AI03061, USA.)  相似文献   

5.
6.
Simulation studies have predicted that maximum lipase activity is reached with fed-batch operation strategies. In this work, two different fed-batch operational strategies have been studied: constant substrate feeding rate and specific growth rate control. A constant substrate feeding rate strategy showed that maximum aqueous lipolytic activity (55 U/mL) was reached at low substrate feeding rates, whereas lipase tends to accumulate inside the cell at higher rates of substrate addition. In the second fed-batch strategy studied, a feedback control strategy has been developed based on the estimation of state variables (X and mu) from the measurement of indirect variables such as CER by means of mass spectrometry techniques. An on-off controller was then used to maintain the specific growth rate at the desired value by adjusting the substrate feeding rate. A constant specific growth rate strategy gave higher final levels of aqueous lipolytic activity (117 U/mL) at low specific growth rates. At higher specific growth rates the enzyme remained accumulated inside the cell, as was observed with a constant feeding fed-batch strategy. With a constant specific growth rate strategy, lipase production by Candida rugosa was enhanced 10-fold compared to a batch operation. Purification studies have demonstrated that lipolytic and esterasic specific activity ratios of Candida rugosa isoenzymes can be modified by using different operational conditions. These studies have also showed that the isoenzymes obtained in a controlled growth rate strategy are around three- to four-fold more active than those obtained in a constant feeding rate strategy.  相似文献   

7.
An ideal protective HIV-1 vaccine can elicit broadly neutralizing antibodies, capable of preventing HIV transmission. The strategies of designing vaccines include generation of soluble recombinant proteins which mimic the native Env complex and are able to enhance the immunogenicity of gp120. Recent data indicate that the cytoplasmic tail (CT) of the Env protein has multiple functions, which can affect the early steps of infection, as well as viral assembly and antigenic properties. Modifications in the CT can be used to induce conformational changes in functional regions of gp120 and to stabilize the trimeric structure, avoiding immune misdirection and induction of non-neutralizing antibody responses. Env-trimers with modified CTs in virus-like particles (VLPs) are able to induce antibodies with broad spectrum neutralizing activity and high avidity and have the potential for developing an effective vaccine against HIV.  相似文献   

8.
9.
siRNA-directed inhibition of HIV-1 infection   总被引:133,自引:0,他引:133  
RNA interference silences gene expression through short interfering 21 23-mer double-strand RNA segments that guide mRNA degradation in a sequence-specific fashion. Here we report that siRNAs inhibit virus production by targeting the mRNAs for either the HIV-1 cellular receptor CD4, the viral structural Gag protein or green fluorescence protein substituted for the Nef regulatory protein. siRNAs effectively inhibit pre- and/or post-integration infection events in the HIV-1 life cycle. Thus, siRNAs may have potential for therapeutic intervention in HIV-1 and other viral infections.  相似文献   

10.
The HIV-1 protein Vif, essential for in vivo viral replication, targets the human DNA-editing enzyme, APOBEC3G (A3G), which inhibits replication of retroviruses and hepatitis B virus. As Vif has no known cellular homologs, it is an attractive, yet unrealized, target for antiviral intervention. Although zinc chelation inhibits Vif and enhances viral sensitivity to A3G, this effect is unrelated to the interaction of Vif with A3G. We identify a small molecule, RN-18, that antagonizes Vif function and inhibits HIV-1 replication only in the presence of A3G. RN-18 increases cellular A3G levels in a Vif-dependent manner and increases A3G incorporation into virions without inhibiting general proteasome-mediated protein degradation. RN-18 enhances Vif degradation only in the presence of A3G, reduces viral infectivity by increasing A3G incorporation into virions and enhances cytidine deamination of the viral genome. These results demonstrate that the HIV-1 Vif-A3G axis is a valid target for developing small molecule-based new therapies for HIV infection or for enhancing innate immunity against viruses.  相似文献   

11.
12.
QSAR studies of HIV-1 integrase inhibition   总被引:4,自引:0,他引:4  
  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) is the primary cause of the acquired immunodeficiency syndrome (AIDS), which is a slow, progressive and degenerative disease of the human immune system. The pathogenesis of HIV-1 is complex and characterized by the interplay of both viral and host factors. An intense global research effort into understanding the individual steps of the viral replication cycle and the dynamics during an infection has inspired researchers in the development of a wide spectrum of antiviral strategies. Practically every stage in the viral life cycle and every viral gene product is a potential target. In addition, several strategies are targeting host proteins that play an essential role in the viral life cycle. This review summarizes the main genetic approaches taken in such antiviral strategies.  相似文献   

14.
15.
Mononuclear phagocyte (macrophages and microglia) dysfunction plays a significant role in the pathogenesis of human immunodeficiency virus (HIV) associated dementia (HAD) through the production and release of soluble neurotoxic factors including glutamate. The mechanism of glutamate regulation by HIV-1 infection remains unclear. In this report, we investigated whether the enzyme glutaminase is responsible for glutamate generation by HIV-1 infected monocyte-derived macrophages. We tested the functionality of novel small molecule inhibitors designed to specifically block the activity of glutaminase. Glutaminase inhibitors were first characterized in a kinetic assay with crude glutaminase from rat brain revealing an uncompetitive mechanism of inhibition. The inhibitors were then tested in vitro for their ability to prevent glutamate generation by HIV-infected macrophages, their effect upon macrophage viability, and HIV infection. To validate these findings, glutaminase specific siRNA was tested for its ability to prevent glutamate increase during infection. Our results show that both glutaminase specific small molecule inhibitors and glutaminase specific siRNA were effective at preventing increases in glutamate by HIV-1 infected macrophage. These findings support glutaminase as a potential component of the HAD pathogenic process and identify a possible therapeutic avenue for the treatment of neuroinflammatory states such as HAD.  相似文献   

16.
《Process Biochemistry》2010,45(12):1852-1856
Over-expression of anti-apoptotic cloned-genes is a widely used strategy for inhibiting apoptosis in mammalian cell culture. In our previous study, we reported Bombyx mori 30K gene improved the production of recombinant proteins in Chinese hamster ovary (CHO) cells. In this study, we reengineered the CHO cells with the 30Kc6 gene and 30Kc19 gene for the production of a therapeutic monoclonal antibody (mAb) directed against the glycoprotein receptor of human platelets. After the medium was changed from serum containing one to serum-free one, expression of 30Kc6 in CHO cells increased the cell viability by 40.8% in 4 days and mAb production by 2.3-fold in 5 days. However, no significant changes in cell viability and mAb production were observed for the cells expressing 30Kc19. In the case of the cells expressing 30Kc6, the specific production rate was also improved. The expression of the 30Kc6 gene increased the cell viability and productivity because it maintained the mitochondrial membrane potential (MMP) and reduced the downstream cascade responses for apoptosis. These results indicate that 30Kc6 outperformed 30Kc19 in terms of cell death-protective capability and the production of monoclonal antibodies in CHO cells.  相似文献   

17.
18.
Infection by human immunodeficiency virus type 1 (HIV-1) involves the fusion of viral and cellular membranes mediated by formation of the gp41 trimer-of-hairpins. A designed protein, 5-Helix, targets the C-terminal region of the gp41 ectodomain, disrupting trimer-of-hairpins formation and blocking viral entry. Here we show that the nanomolar inhibitory potency of 5-Helix (IC50 approximately 6 nm) is 4 orders of magnitude larger than its subpicomolar binding affinity (K(D) approximately 0.6 pm). This discrepancy results from the transient exposure of the 5-Helix binding site on gp41. As a consequence, inhibitory potency is determined by the association rate, not by binding affinity. For a series of 5-Helix variants with mutations in their gp41 binding sites, the IC50 and K(D) values poorly correlate. By contrast, an inverse relationship between IC50 values and association rate constants (k(on)) extends for over 2 orders of magnitude. The kinetic dependence to inhibition places temporal restrictions on an intermediate state of HIV-1 membrane fusion and suggests that access to the C-terminal region of the gp41 ectodomain is largely free from steric hindrance. Our results support the importance of association kinetics in the development of improved HIV-1 fusion inhibitors.  相似文献   

19.
Polyoxometalates (POMs) are interesting biomedical agents due to their versatile anticancer and antiviral properties, such as remarkable anti-HIV activity. Although POMs are tunable and easily accessible inorganic drug prototypes in principle, their full potential can only be tapped by enhancing their biocompatibility, for example, through organic functionalization. We have therefore investigated the HIV-1 protease inhibition potential of functionalized Keggin- and Dawson-type POMs with organic side chains. Their inhibitory performance was furthermore compared to other POM types, and the buffer dependence of the results is discussed. In addition, chemical shift mapping NMR experiments were performed to exclude POM-substrate interactions. Whereas the introduction of organic side chains into POMs is a promising approach in principle, the influence of secondary effects on the reaction system also merits detailed investigation.  相似文献   

20.
Continuous high-titer HIV-1 vector production   总被引:14,自引:0,他引:14  
Human immunodeficiency virus type 1 (HIV-1)-based vectors are currently made by transient transfection, or using packaging cell lines in which expression of HIV-1 Gag and Pol proteins is induced. Continuous vector production by cells in which HIV-1 Gag-Pol is stably expressed would allow rapid and reproducible generation of large vector batches. However, attempts to make stable HIV-1 packaging cells by transfection of plasmids encoding HIV-1 Gag-Pol have resulted in cells which secrete only low levels of p24 antigen (20-80 ng/ml), possibly because of the cytotoxicity of HIV-1 protease. Infection of cells with HIV-1 can result in stable virus production; cell clones that produce up to 1,000 ng/ml secreted p24 antigen have been described. Here we report that expression of HIV-1 Gag-Pol by a murine leukemia virus (MLV) vector allows constitutive, long-term, high-level (up to 850 ng/ml p24) expression of HIV-1 Gag. Stable packaging cells were constructed using codon-optimized HIV-1 Gag-Pol and envelope proteins of gammaretroviruses; these producer cells could make up to 10(7) 293T infectious units (i.u.)/ml (20 293T i.u./cell/day) for at least three months in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号