首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Kotodesh genotype of the nickel (Ni) hyperaccumulator Alyssum murale was examined to determine the compartmentalization and internal speciation of Ni, and other elements, in an effort to ascertain the mechanism used by this plant to tolerate extremely high shoot (stem and leaf) Ni concentrations. Plants were grown either hydroponically or in Ni enriched soils from an area surrounding an historic Ni refinery in Port Colborne, Ontario, Canada. Electron probe micro-analysis (EPMA) and synchrotron based micro X-ray fluorescence (μ-SXRF) spectroscopy were used to determine the metal distribution and co-localization and synchrotron X-ray and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopies were used to determine the Ni speciation in plant parts and extracted sap. Nickel is concentrated in the dermal leaf and stem tissues of A. murale bound primarily to malate along with other low molecular weight organic ligands and possibly counter anions (e.g., sulfate). Ni is present in the plant sap and vasculature bound to histidine, malate and other low molecular weight compounds. The data presented herein supports a model in which Ni is transported from the roots to the shoots complexed with histidine and stored within the plant leaf dermal tissues complexed with malate, and other low molecular weight organic acids or counter-ions.  相似文献   

2.
Changes in pH and redox potential were studied in the rhizosphere soil of a nickel hyperaccumulator plant (Alyssum murale) and of a crop plant, radish (Raphanus sativus). Differences in rhizosphere pH and reducing activity were found between the lateral and the main roots of both species, but the pH changes in the rhizosphere were similar in both species. Changes in pH were associated with the relative uptakes of cations and anions; whether the concentrations of heavy metals in the growth medium did not have any effect on the rhizosphere pH. The source of nitrogen (ammonium or nitrate) was the major factor determining the pH of the rhizosphere of both species. The redox potential of the rhizosphere was influenced by both the N-source and the concentrations of heavy metals. When heavy metals were not present in the growth medium, and nitrate was the N-source, the reducing capacity of A. murale roots was enhanced. However, the reducing activity of A. murale was always smaller than that of radish. Therefore, the mechanism of metal solubilization by the hyperaccumulator plant does not involve either the reduction of pH in the rhizosphere or the release of reductants from roots. The acidification and reducing activity of the roots of A. murale was always smaller than that of R. sativus.  相似文献   

3.
The genus Alyssum contains >50 Ni hyperaccumulator species; many can achieve >2.5% Ni in dry leaf. In soils with normal Mn levels, Alyssum trichome bases were previously observed to accumulate Ni and Mn to high levels. Here we report concentration and localization patterns in A. murale and A. corsicum grown in soils with nonphytotoxic factorial additions of Ni and Mn salts. Four leaf type subsets based on size and age accumulated Ni and Mn similarly. The greatest Mn accumulation (10 times control) was observed in A. corsicum with 40 mmol Mn kg?1 and 40 mmol Ni kg?1 added to potting soil. Whole leaf Ni concentrations decreased as Mn increased. Synchrotron X-ray fluorescence mapping of whole fresh leaves showed localized in distinct high-concentration Mn spots associated with trichomes, Ni and Mn distributions were strongly spatially correlated. Standard X-ray fluorescence point analysis/mapping of cryofractured and freeze-dried samples found that Ni and Mn were co-located and strongly concentrated only in trichome bases and in cells adjacent to trichomes. Nickel concentration was also strongly spatially correlated with sulfur. Results indicate that maximum Ni phytoextraction by Alyssum may be reduced in soils with higher phytoavailable Mn, and suggest that Ni hyperaccumulation in Alyssum species may have developed from a Mn handling system.  相似文献   

4.
Among the targets of steroid hormones are mitochondria, which as the main source of reactive oxygen species (ROS) in the cell play a central role in the development of various pathologies. We studied the effect of progesterone and its synthetic analogs on mitochondrial ROS production. It was found that progesterone promoted formation of superoxide anion and hydrogen peroxide in mitochondria oxidizing the substrates of complex I of the respiratory chain but did not influence the production of ROS during oxidation of succinate, respiratory chain complex II substrate. Progesterone derivatives—Medroxyprogesterone acetate, Buterol, Acetomepregenol, Megestrol acetate—had different effects on ROS production, depending on their chemical structure. By the stimulation of ROS production in mitochondria (during oxidation of pyruvate + malate), the tested steroids can be arranged in decreasing order as follows: progesterone > Buterol ≈ Acetomepregenol > Medroxyprogesterone acetate = Megestrol acetate. Activation of ROS production by progesterone and by Buterol involves different mechanisms: progesterone acts as an inhibitor of NAD-dependent respiration, while Buterol and Acetomepregenol perhaps form noncovalent complexes by hydrogen bonding of the ester carbonyl at C3 to the SH groups of the respective targets.  相似文献   

5.
We have previously developed phytoremediation and phytomining technologies employing Alyssum Ni hyperaccumulators to quantitatively extract Ni from soils. Implementation of these technologies requires knowledge of Ni localization patterns for the Alyssum species/ecotypes of interest under realistic growth conditions. We investigated Ni uptake and localization in mature Alyssum murale Kotodesh and AJ9ç leaves. Seedlings were grown in potting mix with an increasing series of NiSO4 addition (0, 5, 10, 20, 40, 80 mmol Ni kg–1), NiC4H6O4 addition (0, 5, 10, 30, 60, 90 mmol Ni kg–1), in Ni-contaminated soil from metal refining operations, and serpentine soil. Plants at Ni levels 0, 5, 10, 20 mmolkg–1 and in native soils grew normally. Plants at 40 mmolkg–1 exhibited the onset of phytotoxicity, and 60, 80, and 90 mmolkg–1 were demonstrably phytotoxic, but symptoms of phytotoxicity abated within 6 months. Cryogenic complement fractures were made from frozen hydrated samples. High-resolution scanning electron microscope (SEM) images were taken of one half. The other half was freeze-dried and examined with SEM and semi-quantitative energy dispersive x-ray analysis. Ni was highly concentrated in epidermal cell vacuoles and Ni and S counts showed a positive correlation. Trichome pedicles and the epidermal tissue from which the trichome grows were primary Ni compartments, but Ni was not distributed throughout trichomes. Palisade and spongy mesophyll and guard/substomatal cells contained lesser Ni concentrations but palisade mesophyll was an increasingly important compartment as Ni soil levels increased. Ni was virtually excluded from vascular tissue and trichome rays.  相似文献   

6.
We recently reported that reactive oxygen species (ROS) plays an excitatory role in modulation of the exercise pressor reflex (EPR) in normal rats. In this study, we further tested two independent hypotheses: 1) ROS interacts with EPR-related ionotropic receptors such as the purinergic receptors (P(2)) and transient receptor potential vanilloid 1 receptors (TRPV1) to indirectly modulate the EPR function; 2) ROS directly affects excitability of muscle afferents by modulating the voltage-gated sodium (Na(v)) channels. To test the first hypothesis, we performed animal experiments to investigate the effect of the SOD mimetic 4-hydroxy-2,2,6,6-tetramethyl piperidine 1-oxyl (Tempol) on the pressor response to hindlimb intra-arterial (IA) injection of either α,β-methylene ATP (a P(2X) agonist) or capsaicin (a TRPV1 agonist) in decerebrate rats. To test the second hypothesis, we used the patch-clamp technique to determine the effect of ROS on Na(v) channels on the soma of muscle afferents. We also performed local microinjection of a sodium channel blocker, tetrodotoxin (TTX), into ipsilateral L4/L5 dorsal root ganglia (DRGs) to investigate whether the blockade of Na(v) channels by TTX affects the EPR function. We found that Tempol did not affect the pressor response to injection of either capsaicin or α,β-methylene ATP but significantly decreased the Na(v) current in small and medium-sized 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled DRG neurons. A membrane-permeant superoxide dismutase, polyethylene glycol (PEG)-SOD, had an effect on the Na(v) current in these neurons similar to that of Tempol. Microinjection of TTX into L4/L5 DRGs dramatically attenuated the pressor response to static contraction induced by electrical stimulation of L4/L5 ventral roots. These data suggest that ROS modulates the EPR by affecting the activity of the Na(v) channels on muscle afferents.  相似文献   

7.
The apical plasma membrane of young Arabidopsis root hairs has recently been found to contain a depolarisation-activated Ca2+ channel, in addition to one activated by hyperpolarisation. The depolarisation-activated Ca2+ channel may function in signalling but the possibility that the root hair apical plasma membrane voltage may oscillate between a hyperpolarized and depolarized state suggests a role in growth control. Plant NADPH oxidase activity has yet to be considered in models of oscillatory voltage or ionic flux despite its predicted electrogenicity and voltage dependence. Activity of root NADPH oxidase was found to be stimulated by restricting Ca2+ influx, suggesting that these enzymes are involved in sensing Ca2+ entry into cells.Key words: calcium, channel, NADPH oxidase, oscillation, root hairElevation of cytosolic free Ca2+ ([Ca2+]cyt) encodes plant cell signals.1 Reactive oxygen species (ROS) are potent regulators of the PM Ca2+ channels implicated in signalling and developmental increases in [Ca2+]cyt.1,2 Plasma membrane (PM) voltage (Vm) also plays a significant part in generating specific [Ca2+]cyt elevations through the opening of voltage-gated Ca2+-permeable channels, allowing Ca2+ influx.1,3 Patch clamp electrophysiological studies on the root hair apical PM of Arabidopsis have revealed co-localisation of hyperpolarisation-activated Ca2+ channels (HACCs),4 ROS-activated HACCs5 and depolarisation-activated Ca2+ channels (DACCs).6 The DACC characterisation pointed to the presence of a Cl-permeable conductance that was activated by moderate hyperpolarisation (−160 mV) but rapidly inactivated when the voltage was maintained at such negative values.6 This may be the R-type anion efflux conductance previously described in Arabidopsis root hair and root epidermal PM.7 Previous studies have shown that root hair PM also harbors K+ channels (mediating inward or outward flux)810 and a H+-ATPase.11 A key problem to address now is how these transporters interact to generate and be influenced by PM Vm, thus gating and in turn being regulated by their companion Ca2+ channels to encode developmental and environmental signals at the hair apex.A seminal study on the relationship between Vm and ionic fluxes in wheat root protoplasts not only confirmed oscillatory events but also determined that the PM can exist in three distinct states.12 In the “pump state” the H+-ATPase predominates, there is net H+ efflux and the hyperpolarized Vm is negative of the equilibrium potential for K+ (EK). In the “K state”, K+ permeability predominates but there is still net H+ efflux and Vm = EK. In the third state, there is net H+ influx and Vm > EK. In this depolarized H+-influx state, the H+-ATPase is thought to be inactive. Oscillations in PM Vm and H+ flux may be more profound in growing cells13,14 and oscillations between these states may explain the temporal changes in H+ flux recently observed at the apex of growing Arabidopsis root hairs.15 Peaks of H+ influx may reflect a depolarized Vm that could activate DACC, suggesting that DACC would play a significant role in growth regulation. The view has arisen that the HACC would be the main driver of growth, primarily because in patch clamp assays its current is greater than DACC46 and because resting Vm is usually found to be hyperpolarized. In a growing cell, with a Vm oscillating between a hyperpolarized and depolarized state, a DACC could just as well be a driver of growth given that the Ca2+ influx it permits could be amplified through intracellular release.The PM H+-ATPase traditionally lies at the core of models of voltage and ionic flux14,16 but in terms of [Ca2+]cyt regulation, the activity of PM NADPH oxidases must also now be considered. The Arabidopsis root hair apical PM also contains an NADPH oxidase (AtrbohC) that catalyses extracellular superoxide production.5 AtrbohC is implicated in the transition to polar growth at normal extracellular pH5 and also osmoregulation.17 NADPH oxidases catalyse the transport of electrons out of the cell and thus, in common with PM redox e efflux systems,18 their activity would depolarize the membrane voltage unless countered by cation efflux or anion influx.19 Two H+ would also be released into the cytosol for every NADPH used. The voltage-dependence of plant NADPH oxidases is unknown but e efflux by animal NADPH oxidases is fairly constant over negative Vm and decreases at very depolarized Vm.20 AtrbohC is implicated in generating oscillatory ROS at the root hair apex and loss of function affects magnitude and duration of apical H+ flux oscillations.15 The latter suggests that AtrbohC function does in some way affect Vm, a situation extending to other root cell types (such as the epidermis) expressing NADPH oxidases.21NADPH oxidase activity in roots is under developmental control but also responds to anoxia and nutrient deficiency22,23 to signal stress conditions. Blockade of PM Ca2+ channels by lanthanides increases superoxide production in tobacco suspension cells.24 This suggests that NADPH oxidases are involved in sensing the cell''s Ca2+ status and the prediction would be that extracellular Ca2+ chelation would increase their activity. To test this, superoxide anion production by excised Arabidopsis roots was measured using reduction of the tetrazolium dye XTT (Sodium, 3′-[1-[phenylamino-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene-sulphonic acid).25,26 Lowering extracellular Ca2+ from 0.5 mM to 1.4 µM by addition of 10 mM EGTA caused a mean 95% increase in diphenyliodinium-sensitive superoxide production (Fig. 1; n = 9), implicating NADPH oxidases as the source of this ROS. Stimulation of NADPH oxidase activity by decreasing Ca2+ influx at first appears contradictory as NADPH oxidases are stimulated by increased [Ca2+]cyt27 (Fig. 1). However, reduction of Ca2+ influx should promote voltage hyperpolarisation (just as block of K+ influx causes hyperpolarisation in root hairs28) and this could feasibly cause increased NADPH oxidase activity. Production of superoxide could then result in ROS-activated HACC activity5 to increase Ca2+ influx.Open in a separate windowFigure 1Superoxide anion production by Arabidopsis roots. Assay medium comprised 10 mM phosphate buffer with 0.5 mM CaCl2, 500 µM XTT, pH 6.0. Production was linear over the 30 min incubation period. Control, mean ± standard error, n = 9. Test additions were: 20 µM of the NADPH oxidase inhibitor diphenylene iodonium (DPI; n = 6); 100 µM of the Ca2+ ionophore A23187,30 to increase [Ca2+]cyt (n = 9); 10 mM of the chelator EGTA (n = 9). Dimethyl sulphoxide [DMSO; 1% (v/v)] was used as a carrier for XTT and DPI and a separate control for this is shown (n = 9).In addition to Vm, activities of PM transporters in vivo will be subject to other levels of regulation such as phosphorylation, nitrosylation and the action of [Ca2+]cyt itself. Distinct spatial separation of transporters will undoubtedly play a significant role in governing Vm and [Ca2+]cyt dynamics, particularly in growing cells. An NADPH oxidase has already been found sequestered in a potential PM microdomain in Medicago.29 While there is still much to do on the “inventory” of PM transporters involved in Ca2+ signalling in any given cell, placing them in context not only requires knowledge of their genetic identity but also modelling of their concerted action.  相似文献   

8.
Mitochondrial proton leak can account for almost 20% of oxygen consumption and it is generally accepted that this process contributes to basal metabolism. In order to clarify the role of basal proton leak in testicular mitochondria, we performed a comparative study with kidney and liver mitochondrial fractions. Proton leak stimulated by linoleic acid and inhibited by guanosine diphosphate (GDP) was detected, in a manner that was correlated with protein levels for uncoupling protein 2 (UCP2) in the three fractions. Modulation of proton leak had an effect on reactive oxygen species production as well as on lipid peroxidation, and this effect was also tissue‐dependent. However, a possible role for the adenine nucleotide transporter (ANT) in testicular mitochondria proton leak could not be excluded. The modulation of proton leak appears as a possible and attractive target to control oxidative stress with implications for male gametogenesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Numerous biochemical studies are aimed at elucidating the sources and mechanisms of formation of reactive oxygen species (ROS) because they are involved in cellular, organ-, and tissue-specific physiology. Mitochondria along with other cellular organelles of eukaryotes contribute significantly to ROS formation and utilization. This review is a critical account of the mitochondrial ROS production and methods for their registration. The physiological and pathophysiological significance of the mitochondrially produced ROS are discussed.  相似文献   

10.
Mitochondria are widely believed to be the source of reactive oxygen species (ROS) in a number of neurodegenerative disease states. However, conditions associated with neuronal injury are accompanied by other alterations in mitochondrial physiology, including profound changes in the mitochondrial membrane potential DeltaPsi(m). In this study we have investigated the effects of DeltaPsi(m) on ROS production by rat brain mitochondria using the fluorescent peroxidase substrates scopoletin and Amplex red. The highest rates of mitochondrial ROS generation were observed while mitochondria were respiring on the complex II substrate succinate. Under this condition, the majority of the ROS signal was derived from reverse electron transport to complex I, because it was inhibited by rotenone. This mode of ROS generation is very sensitive to depolarization of DeltaPsi(m), and even the depolarization associated with ATP generation was sufficient to inhibit ROS production. Mitochondria respiring on the complex I substrates, glutamate and malate, produce very little ROS until complex I is inhibited with rotenone, which is also consistent with complex I being the major site of ROS generation. This mode of oxidant production is insensitive to changes in DeltaPsi(m). With both substrates, ubiquinone-derived ROS can be detected, but they represent a more minor component of the overall oxidant signal. These studies demonstrate that rat brain mitochondria can be effective producers of ROS. However, the optimal conditions for ROS generation require either a hyperpolarized membrane potential or a substantial level of complex I inhibition.  相似文献   

11.
In hemorrhagic shock, local hypoxia is present and followed by reoxygenation during the therapeutic process. In endothelium, reactive oxygen species (ROS) have been identified as a cause of inflammatory reactions and tissular lesions in ischemic territory during reoxygenation. This study was designed to identify the enzymatic mechanisms of ROS formation during reoxygenation after hypoxia. Because severe shock, in vivo, can affect both O2 and nutriments, we combined hypoxia at a level close to that found in terminal vessels during shock, with glucose depletion, which induces a relevant additional stress. Human umbilical vein endothelial cells (HUVEC) underwent 2 h of hypoxia (Po2 approximately 20 mmHg) without glucose and 1 h of reoxygenation (Po2 approximately 120 mmHg) with glucose. ROS production was measured by the fluorescent marker 2',7'-dichlorodihydrofluorescein diacetate, and cell death by propidium iodide. After 1 h of reoxygenation, fluorescence had risen by 143 +/- 17%. Cell death was equal to 8.6 +/- 2.4%. Antimycin A and stigmatellin, which inhibits the type III mitochondrial respiratory chain complex, reduced ROS production to values of 61 +/- 10 and 59 +/- 7%, respectively, but inhibitors of other chain complexes did not affect it. In addition, the increase in fluorescence was not affected by inhibition of NADPH oxidase, xanthine oxidase, NOS, cyclooxygenase, cytochrome P-450 monooxygenase, or monoamine oxidase. We did not observe any increase in cell death. These results show that, in HUVEC, mitochondria are responsible for ROS production after hypoxia and reoxygenation and suggest that a ROS release site is activated in the cytochrome b of the type III respiratory chain complex.  相似文献   

12.
植物线粒体、活性氧与信号转导   总被引:9,自引:6,他引:9  
活性氧(ROS)的产生是需氧代谢不可避免的结果。在植物细胞中,线粒体电子传递链(ETC)的复合物Ⅰ和Ⅱ是ROS产生的主要的部位。交替氧化酶和可能的内源鱼藤酮不敏感的NADH脱氢酶通过保持ETc的相对氧化状态限制线粒体产生ROS。线粒体基质中的抗氧化酶系统与小分子量的抗氧化剂一道起ROS的解毒作用。ROS除了引起细胞的伤害外,在植物中还能够作为一种普遍存在的信号分子起作用。在低浓度时,ROS能诱导防御基因的表达和引起适应反应;在高浓度时,引起细胞死亡。一氧化氮是植物合成和释放的一种气体,也可作为信号分子调节植物的生长和发育。  相似文献   

13.
The effect of potential-dependent potassium uptake on reactive oxygen species (ROS) generation in mitochondria of rat brain was studied. It was found that the effect of K+ uptake on ROS production in the brain mitochondria under steady-state conditions (state 4) was determined by potassium-dependent changes in the membrane potential of the mitochondria (ΔΨm). At K+ concentrations within the range of 0–120 mM, an increase in the initial rate of K+-uptake into the matrix resulted in a decrease in the steady-state rate of ROS generation due to the K+-induced depolarization of the mitochondrial membrane. The selective blockage of the ATP-dependent potassium channel (K ATP + -channel) by glibenclamide and 5-hydroxydecanoate resulted in an increase in ROS production due to the membrane repolarization caused by partial inhibition of the potential-dependent K+ uptake. The ATP-dependent transport of K+ was shown to be ~40% of the potential-dependent K+ uptake in the brain mitochondria. Based on the findings of the experiments, the potential-dependent transport of K+ was concluded to be a physiologically important regulator of ROS generation in the brain mitochondria and that the functional activity of the native K ATP + -channel in these organelles under physiological conditions can be an effective tool for preventing ROS overproduction in brain neurons.  相似文献   

14.
Wasilewski M  Wojtczak L 《FEBS letters》2005,579(21):4724-4728
Long-chain N-acylethanolamines (NAEs) have been found to uncouple oxidative phosphorylation and to inhibit uncoupled respiration of rat heart mitochondria [Wasilewski, M., Wieckowski, M.R., Dymkowska, D. and Wojtczak, L. (2004) Biochim. Biophys. Acta 1657, 151-163]. The aim of the present work was to investigate in more detail the mechanism of the inhibitory effects of NAEs on the respiratory chain. In connection with this, we also investigated a possible action of NAEs on the generation of reactive oxygen species (ROS) by respiring rat heart mitochondria. It was found that unsaturated NAEs, N-oleoylethanolamine (N-Ole) and, to a greater extent, N-arachidonoylethanolamine (N-Ara), inhibited predominantly complex I of the respiratory chain, with a much weaker effect on complexes II and III, and no effect on complex IV. Saturated N-palmitoylethanolamine had a much smaller effect compared to unsaturated NAEs. N-Ara and N-Ole were found to decrease ROS formation, apparently due to their uncoupling action. However, under specific conditions, N-Ara slightly but significantly stimulated ROS generation in uncoupled conditions, probably due to its inhibitory effect on complex I. These results may contribute to our better understanding of physiological roles of NAEs in protection against ischemia and in induction of programmed cell death.  相似文献   

15.
MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1’s role in regulating mitochondrial function to date. In the present study, we measured cardiac mitochondrial function from isolated permeabilized muscle fibers in previously phenotyped MuRF1 transgenic and MuRF1?/? mouse models to determine the role of MuRF1 in intermediate energy metabolism and ROS production. We identified a significant decrease in reactive oxygen species production in cardiac muscle fibers from MuRF1 transgenic mice with increased α-MHC driven MuRF1 expression. Increased MuRF1 expression in ex vivo and in vitro experiments revealed no alterations in the respiratory chain complex I and II function. Working perfusion experiments on MuRF1 transgenic hearts demonstrated significant changes in glucose oxidation. This is an factual error as written; however, total oxygen consumption was decreased. This data provides evidence for MuRF1 as a novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1 expression may be cardioprotective in ischemia reperfusion injury, in addition to its inhibition of apoptosis via proteasome-mediate degradation of c-Jun. The lack of mitochondrial function phenotype identified in MuRF1?/? hearts may be due to the overlapping interactions of MuRF1 and MuRF2 with energy regulating proteins found by yeast two-hybrid studies reported here, implying a duplicity in MuRF1 and MuRF2’s regulation of mitochondrial function.  相似文献   

16.
利用荧光探针直接测定线粒体活性氧的形成   总被引:20,自引:0,他引:20  
目的与方法:根据荧光探针-还原型二氯荧光素(2‘,7‘-dichlorodihydrofluorescin,DCFH)可与活性氧(reactive oxygen species,ROS)反应生成荧光物一氧化型二氯荧光素(2‘,7‘-dichlorofluorecin,DCF)的原理,设计了利用荧光分光光度计直接定量检测线粒体活性氧生成并可观察在各种实验条件下线粒体活性氧产生动态变化的方法。结果与结论:线粒体在态4呼吸状态下,DCF的荧光强度随时间呈线性增加,表明活性氧以恒定速率产生。将荧光强度随时间变化的数据点拟合,线性回归直线斜率与活性氧产生的速率呈正比,测定中加入叠氮钠和丙二酸可分别使线粒体活性氧产生增加和减少。DCF荧光强度增加速率与线粒体浓度在一定范围内呈线性关系。复管实验表明重复性良好。  相似文献   

17.
The term 'phytoremediation' is used to describe the clean-up of heavy metals from contaminated soils by plants. In this study, we examined Alyssum argenteum and Alyssum maritimum for their ability to accumulate Cd2+. We also exemined Ni2+ accumulation by A. maritimum with comparison with the known Ni-hyperaccumulator A. argenteum , in a hydroponic system. Both species were tolerant to low levels of Cd2+, and accumulated high quantities under the experimental conditions. Only very low levels of Ni2+ were found in the shoot of A. maritimum , defining it as a non-hyperaccumulator. The role of the antioxidative enzyme system was investigated in relation to Ni2+ and Cd2+ stress. In both species, superoxide dismutase (SOD) activity was elevated at high Cd2+ concentrations, while ascorbate peroxidase (APX) activity remained unchanged and glutathione reductase (GR) activity was reduced. In the presence of Ni2+, A. maritimum exhibited a typical antioxidative defense mechanism, as evidenced by the elevated activities of all three enzymes tested. A. argenteum exhibited a different enzyme response pattern, with a significant reduction in SOD activity, and elevated APX and GR activities only at the highest Ni2+ concentration.  相似文献   

18.
Cardiovascular death is frequently associated with atherosclerosis, a chronic multifactorial disease and a leading cause of death worldwide. Genetically engineered mouse models have proven useful for the study of the mechanisms underlying cardiovascular diseases. The apolipoprotein E-deficient mouse has been the most widely used animal model of atherosclerosis because it rapidly develops severe hypercholesterolemia and spontaneous atherosclerotic lesions similar to those observed in humans. In this review, we provide an overview of the cardiac and vascular phenotypes and discuss the interplay among nitric oxide, reactive oxygen species, aging and diet in the impairment of cardiovascular function in this mouse model.  相似文献   

19.
In genetically susceptible human and/or experimental animals, heavy metals such as mercury, gold, and silver have been shown to highly induce adverse immunological reactions such as allergy and autoimmunity, in which mast cell degranulation is implicated as playing a role. We previously reported that silver activates mast cells and induces Ca2+ influx without stimulating intracellular signaling events required for activation of store-operated Ca2+ channels (SOCs). The purpose of the present study was to elucidate the possible involvement of reactive oxygen species (ROS) in the biological effects of silver. Analysis using oxidant-sensitive fluorescent probes such as dichlorodihydrofluorescein and scopoletin, as well as MCLA-amplified chemiluminescence, showed that silver induced intracellular production and/or extracellular release of ROS. Silver induced mast cell degranulation in a Ca2+ -dependent manner. Unlike IgE antigen, silver-induced Ca2+ influx was not affected by depletion of internal Ca2+ stores. Instead, the metal-induced Ca2+ influx was abolished and reversed by the cell-impermeant thiol-reducing agent dithiothreitol, indicating the regulation by oxidation of vicinal thiols on the cell surface. Consistent with this view, Ca2+ influx was blocked by the glutathione peroxidase mimetic ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the superoxide dismutase mimetic manganese(III) tetrakis 4-(benzoic acid)porphyrin, but not by exogenously added catalase or superoxide dismutase. These findings indicate that silver evokes the release of ROS and oxidation of thiols critical for the activation of a Ca2+ channel other than SOC. Such a novel ROS-dependent pathway might play a role in mast cell degranulation in metal-induced allergic and autoimmune reactions.  相似文献   

20.
Serotonin (5‐hydroxytryptamine) is a bioactive indoleamine with neurotransmitter function in vertebrates, which represents an emerging signaling molecule in plants, playing key roles in the development and defense. In this study, the role of reactive oxygen species (ROS) and jasmonic acid (JA)–ethylene (Et) signaling in root developmental alterations induced by serotonin was investigated. An Arabidopsis thaliana mutant defective at the RADICAL‐INDUCED CELL DEATH1 (RCD1) locus was resistant to paraquat‐induced ROS accumulation in primary roots and showed decreased inhibition or root growth in response to serotonin. A suite of JA‐ and Et‐related mutants including coronatine insensitive1, jasmonic acid resistant1 (jar1), etr1, ein2 and ein3 showed tolerance to serotonin in the inhibition of primary root growth and ROS redistribution within the root tip when compared with wild‐type (WT) seedlings. Competence assays between serotonin and AgNO3, a well‐known blocker of Et action, showed that primary root growth in medium supplemented with serotonin was normalized by AgNO3, whereas roots of eto3, an Et overproducer mutant, were oversensitive to serotonin. Comparison of ROS levels in WT, etr1, jar1 and rcd1 primary root tips using the ROS‐specific probe 2′,7′‐dichlorofluorescein diacetate and confocal imaging showed that serotonin inhibition of primary root growth likely occurs independently of its conversion into melatonin. Our results provide compelling evidence that serotonin affects ROS distribution in roots, involving RCD1 and components of the JA–Et signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号