首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim was to study a broader phenotype of language‐related diagnoses and problems in three generations of relatives of children with specific language impairment (SLI). Our study is based on a family history interview of the parents of 59 children with SLI and of 100 matched control children, exploring the prevalence of problems related to language, reading, attention, school achievement and social communication as well as diagnoses such as attention‐deficit hyperactivity disorder (ADHD), autism, Asperger syndrome, dyslexia, mental retardation, cleft palate and stuttering. The results show a spectrum of language‐related problems in families of SLI children. In all three generations of SLI relatives, we found significantly higher prevalence rates of language, literacy and social communication problems. The risk of one or both parents having language‐related diagnoses or problems was approximately six times higher for the children with SLI (85%) than for the control children (13%) (odds ratio = 37.2). We did not find a significantly higher prevalence of the diagnoses ADHD, autism or Asperger syndrome in the relatives of the children with SLI. However, significantly more parents of the children with SLI had problems with attention/hyperactivity when compared with the parents of controls. Our findings suggest common underlying mechanisms for problems with language, literacy and social communication, and possibly also for attention/hyperactivity symptoms.  相似文献   

2.
Deficits in phonological short-term memory and aspects of verb grammar morphology have been proposed as phenotypic markers of specific language impairment (SLI) with the suggestion that these traits are likely to be under different genetic influences. This investigation in 300 first-degree relatives of 93 probands with SLI examined familial aggregation and genetic linkage of two measures thought to index these two traits, non-word repetition and tense marking. In particular, the involvement of chromosomes 16q and 19q was examined as previous studies found these two regions to be related to SLI. Results showed a strong association between relatives' and probands' scores on non-word repetition. In contrast, no association was found for tense marking when examined as a continuous measure. However, significant familial aggregation was found when tense marking was treated as a binary measure with a cut-off point of −1.5 SD, suggestive of the possibility that qualitative distinctions in the trait may be familial while quantitative variability may be more a consequence of non-familial factors. Linkage analyses supported previous findings of the SLI Consortium of linkage to chromosome 16q for phonological short-term memory and to chromosome 19q for expressive language. In addition, we report new findings that relate to the past tense phenotype. For the continuous measure, linkage was found on both chromosomes, but evidence was stronger on chromosome 19. For the binary measure, linkage was observed on chromosome 19 but not on chromosome 16.  相似文献   

3.
Autism spectrum disorder(ASD) is diagnosed on the basis of core impairments in pragmatic language skills, which are found across all ages and subtypes. In contrast, there is significant heterogeneity in language phenotypes, ranging from nonverbal to superior linguistic abilities, as defined on standardized tests of vocabulary and grammatical knowledge. The majority of children are verbal but impaired in language, relative to age-matched peers. One hypothesis is that this subgroup has ASD and co-morbid specific language impairment(SLI). An experiment was conducted comparing children with ASD to children with SLI and typically developing controls on aspects of language processing that have been shown to be impaired in children with SLI: repetition of nonsense words. Patterns of performance among the children with ASD and language impairment were similar to those with SLI, and contrasted with the children with ASD and no language impairment and typical controls, providing further evidence for the hypothesis that a subgroup of children with ASD has co-morbid SLI. The findings are discussed in the context of brain imaging studies that have explored the neural bases of language impairment in ASD and SLI, and overlap in the genes associated with elevated risk for these disorders.  相似文献   

4.
This study presents experimental results examining the production of perfective past tense forms of Greek in eighteen individuals with Specific Language Impairment (SLI) in comparison to typically developing children. We found that both individuals with SLI and typically developing children were more accurate in producing sigmatic than non-sigmatic verb forms. On the other hand, children with SLI were found to be impaired in their use of sigmatic forms and to over-rely on non-sigmatic forms, relative to typically developing children. We discuss linguistic and neuro-psychological accounts of these findings. In addition, we compare the SLI data with data from individuals with a different genetic disorder (Williams Syndrome), and show that individuals with Williams Syndrome exhibit different performance patterns.  相似文献   

5.
Children who fail to develop language normally-in the absence of explanatory factors such as neurological disorders, hearing impairment, or lack of adequate opportunity-are clinically described as having specific language impairment (SLI). SLI has a prevalence of approximately 7% in children entering school and is associated with later difficulties in learning to read. Research indicates that genetic factors are important in the etiology of SLI. Studies have consistently demonstrated that SLI aggregates in families. Increased monozygotic versus dizygotic twin concordance rates indicate that heredity, not just shared environment, is the cause of the familial clustering. We have collected five pedigrees of Celtic ancestry that segregate SLI, and we have conducted genomewide categorical linkage analysis, using model-based LOD score techniques. Analysis was conducted under both dominant and recessive models by use of three phenotypic classifications: clinical diagnosis, language impairment (spoken language quotient <85) and reading discrepancy (nonverbal IQ minus non-word reading >15). Chromosome 13 yielded a maximum multipoint LOD score of 3.92 under the recessive reading discrepancy model. Simulation to correct for multiple models and multiple phenotypes indicated that the genomewide empirical P value is <.01. As an alternative measure, we also computed the posterior probability of linkage (PPL), obtaining a PPL of 53% in the same region. One other genomic region yielded suggestive results on chromosome 2 (multipoint LOD score 2.86, genomic P value <.06 under the recessive language impairment model). Our findings underscore the utility of traditional LOD-score-based methods in finding genes for complex diseases, specifically, SLI.  相似文献   

6.
This study reports on the sensitivity of sentence repetition as a marker of specific language impairment (SLI) in different subgroups of children in middle childhood and examines the role of memory and grammatical knowledge in the performance of children with and without language difficulties on this task. Eleven year old children, 197 with a history of SLI and 75 typically developing (TD) peers were administered sentence repetition, phonological short term memory (PSTM) and grammatical morphology tasks. Children with a history of SLI were divided into four subgroups: specific language impairment, non-specific language impairment, low cognition with resolved language and resolved. Performance on the sentence repetition task was significantly impaired in all four subgroups of children with a history of SLI when compared to their age peers. Regression analyses revealed grammatical knowledge was predictive of performance for TD children and children with a history of SLI. However, memory abilities were significantly predictive of sentence repetition task performance for children with a history of SLI only. Processes involved in sentence repetition are more taxing of PSTM for individuals with a history of SLI in middle childhood in a way that does not appear to be the case for TD children.  相似文献   

7.

Background

The extraordinarily high incidence of grammatical language impairments in developmental disorders suggests that this uniquely human cognitive function is “fragile”. Yet our understanding of the neurobiology of grammatical impairments is limited. Furthermore, there is no “gold-standard” to identify grammatical impairments and routine screening is not undertaken. An accurate screening test to identify grammatical abilities would serve the research, health and education communities, further our understanding of developmental disorders, and identify children who need remediation, many of whom are currently un-diagnosed. A potential realistic screening tool that could be widely administered is the Grammar and Phonology Screening (GAPS) test – a 10 minute test that can be administered by professionals and non-professionals alike. Here we provide a further step in evaluating the validity and accuracy (sensitivity and specificity) of the GAPS test in identifying children who have Specific Language Impairment (SLI).

Methods and Findings

We tested three groups of children; two groups aged 3;6–6:6, a typically developing (n = 30) group, and a group diagnosed with SLI: (n = 11) (Young (Y)-SLI), and a further group aged 6;9–8;11 with SLI (Older (O)-SLI) (n = 10) who were above the test age norms. We employed a battery of language assessments including the GAPS test to assess the children''s language abilities. For Y-SLI children, analyses revealed a sensitivity and specificity at the 5th and 10th percentile of 1.00 and 0.98, respectively, and for O-SLI children at the 10th and 15th percentile .83 and .90, respectively.

Conclusions

The findings reveal that the GAPS is highly accurate in identifying impaired vs. non-impaired children up to 6;8 years, and has moderate-to-high accuracy up to 9 years. The results indicate that GAPS is a realistic tool for the early identification of grammatical abilities and impairment in young children. A larger investigation is warranted in children with SLI and other developmental disorders.  相似文献   

8.
Specific language impairment (SLI) is a developmental language disorder that occurs for no known reason. The disorder affects 2-8% of children. Some scientific evidence suggests that genetic factors are implicated in the etiology of SLI. The disorder is genetically complex. Two novel loci, SLI1 on chromosome 16q24 (MIM 606711) and SLI2 on chromosome 19q13 (MIM 606712), have been found to be highly correlated with SLI. Four genes have been identified as susceptibility genes. SLI occurs at an unusually elevated incidence (35%) among the population of Robinson Crusoe Island (Chile), which also has a high consanguinity rate. This finding supports the influence of genetic mechanisms in the transmission of SLI based on a founder effect. To investigate further the genetic involvement in this population, we collected blood samples from 115 islanders from 13 families with a language-impaired proband and from 18 families with a normal-language proband. The analysis of micro satellite marker D16S515, located in locus SLI1, demonstrated that the 230-bp allele was correlated with SLI and that the 232-bp allele was correlated with normal language development. The domain containing the D16S515 marker, therefore, may play a role in language development.  相似文献   

9.
Association of specific language impairment (SLI) to the region of 7q31   总被引:16,自引:0,他引:16  
FOXP2 (forkhead box P2) was the first gene characterized in which a mutation affects human speech and language abilities. A common developmental language disorder, specific language impairment (SLI), affects 6%-7% of children with normal nonverbal intelligence and has evidence of a genetic basis in familial and twin studies. FOXP2 is located on chromosome 7q31, and studies of other disorders with speech and language impairment, including autism, have found linkage to this region. In the present study, samples from children with SLI and their family members were used to study linkage and association of SLI to markers within and around FOXP2, and samples from 96 probands with SLI were directly sequenced for the mutation in exon 14 of FOXP2. No mutations were found in exon 14 of FOXP2, but strong association was found to a marker within the CFTR gene and another marker on 7q31, D7S3052, both adjacent to FOXP2, suggesting that genetic factors for regulation of common language impairment reside in the vicinity of FOXP2.  相似文献   

10.
Children affected by Specific Language Impairment (SLI) fail to acquire age appropriate language skills despite adequate intelligence and opportunity. SLI is highly heritable, but the understanding of underlying genetic mechanisms has proved challenging. In this study, we use molecular genetic techniques to investigate an admixed isolated founder population from the Robinson Crusoe Island (Chile), who are affected by a high incidence of SLI, increasing the power to discover contributory genetic factors. We utilize exome sequencing in selected individuals from this population to identify eight coding variants that are of putative significance. We then apply association analyses across the wider population to highlight a single rare coding variant (rs144169475, Minor Allele Frequency of 4.1% in admixed South American populations) in the NFXL1 gene that confers a nonsynonymous change (N150K) and is significantly associated with language impairment in the Robinson Crusoe population (p = 2.04 × 10–4, 8 variants tested). Subsequent sequencing of NFXL1 in 117 UK SLI cases identified four individuals with heterozygous variants predicted to be of functional consequence. We conclude that coding variants within NFXL1 confer an increased risk of SLI within a complex genetic model.  相似文献   

11.
Evidence that the motor and the linguistic systems share common syntactic representations would open new perspectives on language evolution. Here, crossing disciplinary boundaries, we explore potential parallels between the structure of simple actions and that of sentences. First, examining Typically Developing (TD) children displacing a bottle with or without knowledge of its weight prior to movement onset, we provide kinematic evidence that the sub-phases of this displacing action (reaching + moving the bottle) manifest a structure akin to linguistic embedded dependencies. Then, using the same motor task, we reveal that children suffering from specific language impairment (SLI), whose core deficit affects syntactic embedding and dependencies, manifest specific structural motor anomalies parallel to their linguistic deficits. In contrast to TD children, SLI children performed the displacing-action as if its sub-phases were juxtaposed rather than embedded. The specificity of SLI’s structural motor deficit was confirmed by testing an additional control group: Fragile-X Syndrome patients, whose language capacity, though delayed, comparatively spares embedded dependencies, displayed slower but structurally normal motor performances. By identifying the presence of structural representations and dependency computations in the motor system and by showing their selective deficit in SLI patients, these findings point to a potential motor origin for language syntax.  相似文献   

12.
Specific language impairment (SLI) is a common developmental disorder characterized by difficulties in language acquisition despite otherwise normal development and in the absence of any obvious explanatory factors. We performed a high-density screen of SLI1, a region of chromosome 16q that shows highly significant and consistent linkage to nonword repetition, a measure of phonological short-term memory that is commonly impaired in SLI. Using two independent language-impaired samples, one family-based (211 families) and another selected from a population cohort on the basis of extreme language measures (490 cases), we detected association to two genes in the SLI1 region: that encoding c-maf-inducing protein (CMIP, minP = 5.5 × 10−7 at rs6564903) and that encoding calcium-transporting ATPase, type2C, member2 (ATP2C2, minP = 2.0 × 10−5 at rs11860694). Regression modeling indicated that each of these loci exerts an independent effect upon nonword repetition ability. Despite the consistent findings in language-impaired samples, investigation in a large unselected cohort (n = 3612) did not detect association. We therefore propose that variants in CMIP and ATP2C2 act to modulate phonological short-term memory primarily in the context of language impairment. As such, this investigation supports the hypothesis that some causes of language impairment are distinct from factors that influence normal language variation. This work therefore implicates CMIP and ATP2C2 in the etiology of SLI and provides molecular evidence for the importance of phonological short-term memory in language acquisition.  相似文献   

13.

Background

Scientific and public fascination with human language have included intensive scrutiny of language disorders as a new window onto the biological foundations of language and its evolutionary origins. Specific language impairment (SLI), which affects over 7% of children, is one such disorder. SLI has received robust scientific attention, in part because of its recent linkage to a specific gene and loci on chromosomes and in part because of the prevailing question regarding the scope of its language impairment: Does the disorder impact the general ability to segment and process language or a specific ability to compute grammar? Here we provide novel electrophysiological data showing a domain-specific deficit within the grammar of language that has been hitherto undetectable through behavioural data alone.

Methods and Findings

We presented participants with Grammatical(G)-SLI, age-matched controls, and younger child and adult controls, with questions containing syntactic violations and sentences containing semantic violations. Electrophysiological brain responses revealed a selective impairment to only neural circuitry that is specific to grammatical processing in G-SLI. Furthermore, the participants with G-SLI appeared to be partially compensating for their syntactic deficit by using neural circuitry associated with semantic processing and all non-grammar-specific and low-level auditory neural responses were normal.

Conclusions

The findings indicate that grammatical neural circuitry underlying language is a developmentally unique system in the functional architecture of the brain, and this complex higher cognitive system can be selectively impaired. The findings advance fundamental understanding about how cognitive systems develop and all human language is represented and processed in the brain.  相似文献   

14.
A significant proportion of children (up to 7% in the UK) present with pronounced language difficulties that cannot be explained by obvious causes like other neurological and medical conditions. A substantial genetic component is predicted to underlie such language problems. Copy number variants (CNVs) have been implicated in neurodevelopmental and psychiatric conditions, such as autism and schizophrenia, but it is not fully established to what extent they might contribute to language disorders. We conducted a CNV screen in a longitudinal cohort of young children with language-related difficulties (n = 85), focusing on single events at candidate loci. We detected a de novo deletion on chromosome 15q13.1–13.3. The adjacent 15q11-13.1 locus is disrupted in Prader-Willi and Angelman syndromes, while disruptions across the breakpoints (BP1-BP6) have previously been implicated in different neurodevelopmental phenotypes including autism, intellectual disability (ID), seizures and developmental delay (DD). This is the first report of a deletion at BP3-BP5 being linked to a deficit confined to language impairment, in the absence of ID, expanding the range of phenotypes that implicate the chromosome 15q13 locus.  相似文献   

15.
Children with language impairments have limitations of phonological short-term memory (STM) and have distinctive problems with certain aspects of grammar. Both deficits have been proposed as phenotypic markers of heritable language impairment. We studied 173 twin pairs, selected to be over-representative of children with risk of developmental language impairment, using a battery of standardized language and intelligence tests, a test of nonword repetition to index phonological STM and two elicitation tasks to assess use of verb tense marking. As predicted, the phonological STM and the verb tense measures both discriminated children with risk of language impairment from low risk children, and DeFries-Fulker analysis showed that impairments on both tasks were significantly heritable. However, there was minimal phenotypic and etiological overlap between the two deficits, suggesting that different genes are implicated in causing these two kinds of language difficulty. From an evolutionary perspective, these data are consistent with the view that language is a complex function that depends on multiple underlying skills with distinct genetic origins.  相似文献   

16.
Specific language impairment (SLI) is the term used to refer to unexplained difficulties in language acquisition in children. Over the past decade, there has been rapid growth of evidence indicating that genes play an important part in the aetiology of SLI. However, further progress in elucidating the role of genes in causing SLI is limited by our lack of understanding of the phenotype. Studies to date have been hampered by the fact that we do not know whether SLI should be treated as a discrete disorder or a continuous variable, let alone which measures should be used to identify cases, or how many subtypes there are. Recent research suggests that theoretically motivated measures of underlying processes may be better than conventional clinical diagnoses for identifying aetiologically distinct types of language impairment. There has been a tendency for researchers to embrace parsimony and look for a single cause of SLI-or in any event, to identify different subtypes, each with a different single cause. Research is reviewed that suggests that may not be a fruitful approach to SLI, and that an approach in terms of multiple risk and protective factors, which is widely adopted in medicine, is more realistic.  相似文献   

17.
Disorders of human communication abilities can be classified into speech and language disorders. Speech disorders (e.g., dyspraxia) affect the sound generation and sequencing, while language disorders (e.g., dyslexia and specific language impairment, or SLI) are deficits in the encoding and decoding of language according to its rules (reading, spelling, grammar). The diagnosis of such disorders is often complicated, especially when a patient presents more than one disorder at the same time. The present review focuses on these challenges. We have combined data available from the literature with an in silico approach in an attempt to identify putative miRNAs that may have a key role in dyspraxia, dyslexia and SLI. We suggest the use of new miRNAs, which could have an important impact on the three diseases. Further, we relate those miRNAs to the axon guidance pathway and discuss possible interactions and the role of likely deregulated proteins. In addition, we describe potential differences in expressional deregulation and its role in the improvement of diagnosis. We encourage experimental investigations to test the data obtained in silico.  相似文献   

18.
Theoretical accounts of grammatical limitations in specific language impairment (SLI) have been polarized between those that postulate problems with domain-specific grammatical knowledge, and those that regard grammatical deficits as downstream consequences of perceptual or memory limitations. Here we consider an alternative view that grammatical deficits arise when the learning system is biased towards memorization of exemplars, and is poor at extracting statistical dependencies from the input. We examine evidence that SLI involves deficits in extracting nonadjacent dependencies from input, leading to reliance on rote learning, and consider how far this may be part of a limitation of procedural learning, or a secondary consequence of memory limitations.  相似文献   

19.
Verbal trait disorders encompass a wide range of conditions and are marked by deficits in five domains that impair a person’s ability to communicate: speech, language, reading, spelling, and writing. Nonword repetition is a robust endophenotype for verbal trait disorders that is sensitive to cognitive processes critical to verbal development, including auditory processing, phonological working memory, and motor planning and programming. In the present study, we present a six-generation extended pedigree with a history of verbal trait disorders. Using genome-wide multipoint variance component linkage analysis of nonword repetition, we identified a region spanning chromosome 13q14–q21 with LOD = 4.45 between 52 and 55 cM, spanning approximately 5.5 Mb on chromosome 13. This region overlaps with SLI3, a locus implicated in reading disability in families with a history of specific language impairment. Our study of a large multigenerational family with verbal trait disorders further implicates the SLI3 region in verbal trait disorders. Future studies will further refine the specific causal genetic factors in this locus on chromosome 13q that contribute to language traits.  相似文献   

20.
Approximately 4% of English-speaking children are affected by specific language impairment (SLI), a disorder in the development of language skills despite adequate opportunity and normal intelligence. Several studies have indicated the importance of genetic factors in SLI; a positive family history confers an increased risk of development, and concordance in monozygotic twins consistently exceeds that in dizygotic twins. However, like many behavioral traits, SLI is assumed to be genetically complex, with several loci contributing to the overall risk. We have compiled 98 families drawn from epidemiological and clinical populations, all with probands whose standard language scores fall 1.5 SD below the mean for their age. Systematic genomewide quantitative-trait–locus analysis of three language-related measures (i.e., the Clinical Evaluation of Language Fundamentals–Revised [CELF-R] receptive and expressive scales and the nonword repetition [NWR] test) yielded two regions, one on chromosome 16 and one on 19, that both had maximum LOD scores of 3.55. Simulations suggest that, of these two multipoint results, the NWR linkage to chromosome 16q is the most significant, with empirical P values reaching 10−5, under both Haseman-Elston (HE) analysis (LOD score 3.55; P=.00003) and variance-components (VC) analysis (LOD score 2.57; P=.00008). Single-point analyses provided further support for involvement of this locus, with three markers, under the peak of linkage, yielding LOD scores >1.9. The 19q locus was linked to the CELF-R expressive-language score and exceeds the threshold for suggestive linkage under all types of analysis performed—multipoint HE analysis (LOD score 3.55; empirical P=.00004) and VC (LOD score 2.84; empirical P=.00027) and single-point HE analysis (LOD score 2.49) and VC (LOD score 2.22). Furthermore, both the clinical and epidemiological samples showed independent evidence of linkage on both chromosome 16q and chromosome 19q, indicating that these may represent universally important loci in SLI and, thus, general risk factors for language impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号