首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association of small, ubiquitin-related modifier-specific isopeptidases (also known as sentrin-specific proteases, or SENPs) with nuclear pore complexes (NPCs) is conserved in eukaryotic organisms ranging from yeast to mammals. However, the functional significance of this association remains poorly understood, particularly in mammalian cells. In this study, we have characterized the molecular basis for interactions between SENP2 and NPCs in human cells. Using fluorescence recovery after photobleaching, we demonstrate that SENP2, although concentrated at the nuclear basket, is dynamically associated with NPCs. This association is mediated by multiple targeting elements within the N-terminus of SENP2 that function cooperatively to mediate NPC localization. One of these elements consists of a high-affinity nuclear localization signal that mediates indirect tethering to FG-repeat-containing nucleoporins through karyopherins. A second element mediates interactions with the Nup107-160 nucleoporin subcomplex. A third element consists of a nuclear export signal. Collectively, our findings reveal that SENP2 is tethered to NPCs through a complex interplay of interactions with nuclear import and export receptors and nucleoporins. Disruption of these interactions enhances SENP2 substrate accessibility, suggesting an important regulatory node in the SUMO pathway.  相似文献   

2.
Sumoylation of centromere, kinetochore, and other mitotic chromosome-associated proteins is essential for chromosome segregation. The mechanisms regulating spatial and temporal sumoylation of proteins in mitosis, however, are not well understood. Here we show that the small ubiquitin-related modifier (SUMO)–specific isopeptidases SENP1 and SENP2 are targeted to kinetochores in mitosis. SENP2 targeting occurs through a mechanism dependent on the Nup107-160 subcomplex of the nuclear pore complex and is modulated through interactions with karyopherin α. Overexpression of SENP2, but not other SUMO-specific isopeptidases, causes a defect in chromosome congression that depends on its precise kinetochore targeting. By altering SENP1 kinetochore associations, however, this effect on chromosome congression could be phenocopied. In contrast, RNA interference–mediated knockdown of SENP1 delays sister chromatid separation at metaphase, whereas SENP2 knockdown produces no detectable phenotypes. Our findings indicate that chromosome segregation depends on precise spatial and temporal control of sumoylation in mitosis and that SENP1 and SENP2 are important mediators of this control.  相似文献   

3.
Nup53 is required for nuclear envelope and nuclear pore complex assembly   总被引:1,自引:0,他引:1  
Transport across the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs). These structures are composed of various subcomplexes of proteins that are each present in multiple copies and together establish the eightfold symmetry of the NPC. One evolutionarily conserved subcomplex of the NPC contains the nucleoporins Nup53 and Nup155. Using truncation analysis, we have defined regions of Nup53 that bind to neighboring nucleoporins as well as those domains that target Nup53 to the NPC in vivo. Using this information, we investigated the role of Nup53 in NE and NPC assembly using Xenopus egg extracts. We show that both events require Nup53. Importantly, the analysis of Nup53 fragments revealed that the assembly activity of Nup53 depleted extracts could be reconstituted using a region of Nup53 that binds specifically to its interacting partner Nup155. On the basis of these results, we propose that the formation of a Nup53-Nup155 complex plays a critical role in the processes of NPC and NE assembly.  相似文献   

4.
SUMO-1 is a small ubiquitin-like protein that can be covalently conjugated to other proteins. A family of proteases catalyzes deconjugation of SUMO-1-containing species. Members of this family also process newly synthesized SUMO-1 into its conjugatable form. To understand these enzymes better, we have examined the localization and behavior of the human SUMO-1 protease SENP2. Here we have shown that SENP2 associates with the nuclear face of nuclear pores and that this association requires protein sequences near the N terminus of SENP2. We have also shown that SENP2 binds to Nup153, a nucleoporin that is localized to the nucleoplasmic face of the pore. Nup153 binding requires the same domain of SENP2 that mediates its targeting in vivo. Removal of the Nup153-interacting region of SENP2 results in a significant change in the spectrum of SUMO-1 conjugates within the cell. Our results suggest that association with the pore plays an important negative role in the regulation of SENP2, perhaps by restricting its activity to a subset of the conjugated proteins within the nucleus.  相似文献   

5.
Trafficking of macromolecules between nuclear and cytoplasmic compartments takes place through the nuclear pore complexes (NPCs) of the nuclear envelope. Nuclear trafficking involves a complex series of interactions between cargo, soluble transport factors (carriers) and nuclear pore proteins (nucleoporins) that are orchestrated by the Ras-family GTPase Ran. The primary role of Ran is probably to establish directionality and to sort molecules to be transported by controlling the interaction between carriers and cargoes, so that they bind in one compartment but dissociate in the other. Translocation of carriers and cargo-carrier complexes through NPCs requires interactions between the carriers and nucleoporins that contain distinctive tandem sequence repeats based on cores rich in glycine and phenylalanine residues that are separated by hydrophilic linkers. Much recent work has focused on these interactions and, in particular, their specificity, regulation and function. Evidence is accumulating that carriers move through the NPC by distinct but overlapping routes using specific subsets of nucleoporins.  相似文献   

6.
A major question in nuclear import concerns the identity of the nucleoporin(s) that interact with the nuclear localization sequences (NLS) receptor and its cargo as they traverse the nuclear pore. Ligand blotting and solution binding studies of isolated proteins have attempted to gain clues to the identities of these nucleoporins, but the studies have from necessity probed binding events far from an in vivo context. Here we have asked what binding events occur in the more physiological context of a Xenopus egg extract, which contains nuclear pore subcomplexes in an assembly competent state. We have then assessed our conclusions in the context of assembled nuclear pores themselves. We have used immunoprecipitation to identify physiologically relevant complexes of nucleoporins and importin subunits. In parallel, we have demonstrated that it is possible to obtain immunofluorescence localization of nucleoporins to subregions of the nuclear pore and its associated structures. By immunoprecipitation, we find the nucleoporin Nup153 and the pore-associated filament protein Tpr, previously shown to reside at distinct sites on the intranuclear side of assembled pores, are each in stable subcomplexes with importin α and β in Xenopus egg extracts. Importin subunits are not in stable complexes with nucleoporins Nup62, Nup93, Nup98, or Nup214/CAN, either in egg extracts or in extracts of assembled nuclear pores. In characterizing the Nup153 complex, we find that Nup153 can bind to a complete import complex containing importin α, β, and an NLS substrate, consistent with an involvement of this nucleoporin in a terminal step of nuclear import. Importin β binds directly to Nup153 and in vitro can do so at multiple sites in the Nup153 FXFG repeat region. Tpr, which has no FXFG repeats, binds to importin β and to importin α/β heterodimers, but only to those that do not carry an NLS substrate. That the complex of Tpr with importin β is fundamentally different from that of Nup153 is additionally demonstrated by the finding that recombinant β or β45–462 fragment freely exchanges with the endogenous importin β/Nup153 complex, but cannot displace endogenous importin β from a Tpr complex. However, the GTP analogue GMP-PNP is able to disassemble both Nup153– and Tpr–importin β complexes. Importantly, analysis of extracts of isolated nuclei indicates that Nup153– and Tpr–importin β complexes exist in assembled nuclear pores. Thus, Nup153 and Tpr are major physiological binding sites for importin β. Models for the roles of these interactions are discussed.  相似文献   

7.
8.
9.
The trafficking of macromolecules between cytoplasm and nucleus through nuclear pore complexes is mediated by specific carrier molecules such as members of the importin-beta family. Nuclear pore proteins (nucleoporins) frequently contain sequence repeats based on FG cores and carriers appear to move their cargo through the pores by hopping between successive FG cores. A major question is why some macromolecules are transported while others are not. This selectivity may be generated by the ability to bind FG repeats, a local concentration of carrier-cargo complexes near the entrance to the pore channel, and steric hindrance produced by high concentrations of nucleoporins in the channel.  相似文献   

10.
The nuclear envelope (NE) separates the cytoplasm and the cell nucleus of interphase eukaryotic cells and nuclear pore complexes (NPCs) mediate the macromolecular exchange between these two compartments. The NE and the NPCs of vertebrate cells disassemble during prophase and the nuclear pore proteins (nucleoporins) are distributed within the mitotic cytoplasm. For an increasing number of them active mitotic functions have been assigned over the past few years. Nucleoporins are participating in spindle assembly, kinetochore organisation, and the spindle assembly checkpoint, all processes that control chromosome segregation and are important for maintenance of genome integrity. But nucleoporins are also engaged in early and late mitotic events, such as centrosome positioning and cytokinesis. Here we will highlight recent progress in deciphering the roles for nucleoporins in the distinct steps of mitosis.  相似文献   

11.
《The Journal of cell biology》1995,129(6):1459-1472
Formation of the nuclear pore is an intricate process involving membrane fusion and the ordered assembly of up to 1,000 pore proteins. As such, the study of pore assembly is not a simple one. Interestingly, annulate lamellae, a cytoplasmic organelle consisting of stacks of flattened membrane cisternae perforated by numerous pore complexes, have been found to form spontaneously in a reconstitution system derived from Xenopus egg extracts, as determined by electron microscopy (Dabauvalle et al., 1991). In this work, a biochemical assay for annulate lamellae (AL) formation was developed and used to study the mechanism of AL assembly in general and the assembly of individual nucleoporins into pore complexes in particular. Upon incubation of Xenopus egg cytosol and membrane vesicles, the nucleoporins nup58, nup60, nup97, nup153, and nup200 initially present in a disassembled form in the cytosol became associated with membranes and were pelletable. The association was time and temperature dependent and could be measured by immunoblotting. Thin-section electron microscopy as well as negative staining confirmed that annulate lamellae were forming coincident with the incorporation of pore proteins into membranes. Homogenization and subsequent flotation of the membrane fraction allowed us to separate a population of dense membranes, containing the integral membrane pore protein gp210 and all other nucleoporins tested, from the bulk of cellular membranes. Electron microscopy indicated that annulate lamellae were enriched in this dense, pore protein-containing fraction. GTP gamma S prevented incorporation of the soluble pore proteins into membranes. To address whether AL form in the absence of N-acetylglucosaminylated pore proteins, AL assembly was carried out in WGA-sepharose-depleted cytosol. Under these conditions, annulate lamellae formed but were altered in appearance. When the membrane fraction containing this altered AL was homogenized and subjected to flotation, the pore protein- containing membranes still sedimented in a distinct peak but were less dense than control annulate lamellae.  相似文献   

12.
The Saccharomyces cerevisiae nuclear pore complex is a supramolecular assembly of 30 nucleoporins that cooperatively facilitate nucleocytoplasmic transport. Thirteen nucleoporins that contain FG peptide repeats (FG Nups) are proposed to function as stepping stones in karyopherin-mediated transport pathways. Here, protein interactions that occur at individual FG Nups were sampled using immobilized nucleoporins and yeast extracts. We find that many proteins bind to FG Nups in highly reproducible patterns. Among 135 proteins identified by mass spectrometry, most were karyopherins and nucleoporins. The PSFG nucleoporin Nup42p and the GLFG nucleoporins Nup49p, Nup57p, Nup100p, and Nup116p exhibited generic interactions with karyopherins; each bound 6--10 different karyopherin betas, including importins as well as exportins. Unexpectedly, the same Nups also captured the hexameric Nup84p complex and Nup2p. In contrast, the FXFG nucleoporins Nup1p, Nup2p, and Nup60p were more selective and captured mostly the Kap95p.Kap60p heterodimer. When the concentration of Gsp1p-GTP was elevated in the extracts to mimic the nucleoplasmic environment, the patterns of interacting proteins changed; exportins exhibited enhanced binding to FG Nups, and importins exhibited reduced binding. The results demonstrate a global role for Gsp1p-GTP on karyopherin-nucleoporin interactions and provide a rudimentary map of the routes that karyopherins take as they cross the nuclear pore complex.  相似文献   

13.
We have established that two homologous nucleoporins, Nup170p and Nup157p, play an essential role in the formation of nuclear pore complexes (NPCs) in Saccharomyces cerevisiae. By regulating their synthesis, we showed that the loss of these nucleoporins triggers a decrease in NPCs caused by a halt in new NPC assembly. Preexisting NPCs are ultimately lost by dilution as cells grow, causing the inhibition of nuclear transport and the loss of viability. Significantly, the loss of Nup170p/Nup157p had distinct effects on the assembly of different architectural components of the NPC. Nucleoporins (nups) positioned on the cytoplasmic face of the NPC rapidly accumulated in cytoplasmic foci. These nup complexes could be recruited into new NPCs after reinitiation of Nup170p synthesis, and may represent a physiological intermediate. Loss of Nup170p/Nup157p also caused core and nucleoplasmically positioned nups to accumulate in NPC-like structures adjacent to the inner nuclear membrane, which suggests that these nucleoporins are required for formation of the pore membrane and the incorporation of cytoplasmic nups into forming NPCs.  相似文献   

14.
Nuclear export is an important process that not only regulates the functions of cellular factors but also facilitates the assembly of viral nucleoprotein complexes. Chromosome region maintenance 1 (CRM1) that mediates the transport of proteins bearing the classical leucine-rich nuclear export signal (NES) is the best-characterized nuclear export receptor. Recently, several CRM1-independent nuclear export pathways were also identified. The nuclear export of the large form of hepatitis delta antigen (HDAg-L), a nucleocapsid protein of hepatitis delta virus (HDV), which contains a CRM1-independent proline-rich NES, is mediated by the host NES-interacting protein (NESI). The mechanism of the NESI protein in mediating nuclear export is still unknown. In this study, NESI was characterized as a highly glycosylated membrane protein. It interacted and colocalized well in the nuclear envelope with lamin A/C and nucleoporins. Importantly, HDAg-L could be coimmunoprecipitated with lamin A/C and nucleoporins. In addition, binding of the cargo HDAg-L to the C terminus of NESI was detected for the wild-type protein but not for the nuclear export-defective HDAg-L carrying a P205A mutation [HDAg-L(P205A)]. Knockdown of lamin A/C effectively reduced the nuclear export of HDAg-L and the assembly of HDV. These data indicate that by forming complexes with lamin A/C and nucleoporins, NESI facilitates the CRM1-independent nuclear export of HDAg-L.  相似文献   

15.
Nuclear pore complexes (NPCs) control the movement of molecules across the nuclear envelope (NE). We investigated the molecular interactions that exist at the interface between the NPC scaffold and the pore membrane. We show that key players mediating these interactions in mammalian cells are the nucleoporins Nup155 and Nup160. Nup155 depletion massively alters NE structure, causing a dramatic decrease in NPC numbers and the improper targeting of membrane proteins to the inner nuclear membrane. The role of Nup155 in assembly is likely closely linked to events at the membrane as we show that Nup155 interacts with pore membrane proteins Pom121 and NDC1. Furthermore, we demonstrate that the N terminus of Pom121 directly binds the β-propeller regions of Nup155 and Nup160. We propose a model in which the interactions of Pom121 with Nup155 and Nup160 are predicted to assist in the formation of the nuclear pore and the anchoring of the NPC to the pore membrane.  相似文献   

16.
The nuclear pore complex (NPC) is an evolutionarily conserved structure that mediates exchange of macromolecules across the nuclear envelope (NE). It is comprised of approximately 30 proteins termed nucleoporins that are each present in multiple copies. We have investigated the function of the human nucleoporin Nup53, the ortholog of Saccharomyces cerevisiae Nup53p. Both cell fractionation and in vitro binding data suggest that Nup53 is tightly associated with the NE membrane and the lamina where it interacts with lamin B. We have also shown that Nup53 is capable of physically interacting with a group of nucleoporins including Nup93, Nup155, and Nup205. Consistent with this observation, depletion of Nup53 using small interfering RNAs causes a decrease in the cellular levels of these nucleoporins as well as the spindle checkpoint protein Mad1, likely due to destabilization of Nup53-containing complexes. The cellular depletion of this group of nucleoporins, induced by depleting either Nup53 or Nup93, severely alters nuclear morphology producing phenotypes similar to that previously observed in cells depleted of lamin A and Mad1. On basis of these data, we propose a model in which Nup53 is positioned near the pore membrane and the lamina where it anchors an NPC subcomplex containing Nup93, Nup155, and Nup205.  相似文献   

17.
We have previously shown that tumor necrosis factor (TNF)-induced desumoylation and subsequent cytoplasmic translocation of HIPK1 are critical for ASK1-JNK activation. However, the mechanism by which TNF induces desumoylation of HIPK1 is unclear. Here, we show that SENP1, a SUMO-specific protease, specifically deconjugates SUMO from HIPK1 in vitro and in vivo. In resting endothelial cells (ECs), SENP1 is localized in the cytoplasm where it is complexed with an antioxidant protein thioredoxin. TNF induces the release of SENP1 from thioredoxin as well as nuclear translocation of SENP1. TNF-induced SENP1 nuclear translocation is specifically blocked by antioxidants such as N-acetyl-cysteine, suggesting that TNF-induced translocation of SENP1 is ROS dependent. TNF-induced nuclear import of SENP1 kinetically correlates with HIPK1 desumoylation and cytoplasmic translocation. Furthermore, the wild-type form of SENP1 enhances, whereas the catalytic-inactive mutant form or siRNA of SENP1 blocks, TNF-induced desumoylation and cytoplasmic translocation of HIPK1 as well as TNF-induced ASK1-JNK activation. More importantly, these critical functions of SENP1 in TNF signaling were further confirmed in mouse embryonic fibroblast cells derived from SENP1-knockout mice. We conclude that SENP1 mediates TNF-induced desumoylation and translocation of HIPK1, leading to an enhanced ASK1-dependent apoptosis.  相似文献   

18.
Nuclear pore complex (NPC) is the only corridor for macromolecules exchange between nucleus and cytoplasm. NPC and its components, nucleoporins, play important role in the diverse physiological processes including macromolecule exchange, chromosome segregation, apoptosis and gene expression. Recent reports also suggest involvement of nucleoporins in carcinogenesis. Applying proteomics, we analyzed expression pattern of the NPC components in a newly established esophageal cancer cell line from Persia (Iran), the high-risk region for esophageal cancer. Our results indicate overexpression of Hsc70 and downregulation of subunit alpha type-3 of proteasome, calpain small subunit 1, and eIF5A-1. Among these proteins, Hsc70 and eIF5A-1 are in direct interaction with NPC and involved in the nucleocytoplasmic exchange. Hsc70 plays a critical role as a chaperone in the formation of a cargo–receptor complex in nucleocytoplasmic transport. On the other hand, it is an NPC-associated protein that binds to nucleoporins and contributes in recycling of the nucleocytoplasmic transport receptors in mammals and affects transport of proteins between nucleus and cytoplasm. The other nuclear pore interacting protein: eIF5A-1 binds to the several nucleoporins and participates in nucleocytoplasmic transport. Altered expression of Hsc70 and eIF5A-1 may cause defects in nucleocytoplasmic transport and play a role in esophageal carcinogenesis.  相似文献   

19.
Proteins targeted to specific intracellular organelles such as mitochondria or the endoplasmic reticulum are able to cross membranes. Yet, to enter or exit the nucleus, proteins and RNA must pass through nonmembranous "gates" of the nuclear envelope, the nuclear pore complexes. Recently, the primary amino acid sequence of a few nuclear pore proteins (the nucleoporins) became available. Nucleoporins from mammals, amphibians and yeast are structurally homologous indicating that nuclear pore structures are evolutionarily conserved in the eukaryotic cell. The role of nucleoporins in nucleocytoplasmic transport is still unclear: are nucleoporins involved in decoding nuclear targeting signals or are they mere transporters? Although definite answers are not yet available, data are rapidly accumulating from several laboratories using a variety of approaches.  相似文献   

20.
The nuclear pore complex (NPC) is a large channel that spans the two lipid bilayers of the nuclear envelope and mediates transport events between the cytoplasm and the nucleus. Only a few NPC components are transmembrane proteins, and the role of these proteins in NPC function and assembly remains poorly understood. We investigate the function of the three integral membrane nucleoporins, which are Ndc1p, Pom152p, and Pom34p, in NPC assembly and transport in Saccharomyces cerevisiae. We find that Ndc1p is important for the correct localization of nuclear transport cargoes and of components of the NPC. However, the role of Ndc1p in NPC assembly is partially redundant with Pom152p, as cells lacking both of these proteins show enhanced NPC disruption. Electron microscopy studies reveal that the absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to an increased diffusion between the cytoplasm and the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号