首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parallel investigations of yeast and metazoan pre-mRNA splicing have documented enormous complexity in the nucleic acid and protein components of the cellular splicing apparatus, the spliceosome. The degree to which yeast and metazoan spliceosomal proteins differ in composition and structure is currently unknown. In this report we demonstrate that the human small nuclear ribonucleoprotein (snRNP) polypeptide D1 complements the cell lethality, splicing deficiency, and snRNA instability phenotypes associated with a yeast smd1 null allele. Mutational analysis of yeast SMD1, guided by a comparison of the predicted yeast and human proteins, reveals that a large, nonconserved portion of Smd1p is dispensable for biological activity. These observations firmly establish D1 as an essential component of the cellular splicing apparatus and suggest that yeast and metazoa are remarkably similar in the polypeptides guiding early snRNP assembly.  相似文献   

2.
3.
4.
5.
The mouse c-src gene contains a short neuron-specific exon, N1. To characterize the sequences that regulate N1 splicing, we used a heterologous gene, derived from the human beta-globin gene, containing a short internal exon that is usually skipped by the splicing machinery. Various fragments from the src gene were inserted into the globin substrate to measure their effects on the splicing of the test exon. These clones were transiently expressed in neuronal and nonneuronal cell lines, and the level of exon inclusion was measured by primer extension. Several sequences from the N1 exon region induced the splicing of the heterologous exon. The most powerful effect was seen with a sequence from the intron downstream of the N1 exon. This sequence acted as a strong splicing enhancer, activating splicing of the test exon when placed in the intron downstream. The enhancer was strongest in neuronal LA-N-5 cells but also activated splicing in nonneuronal HEK293 cells. Deletion and linker scanning mutagenesis indicate that the enhancer is made up of multiple smaller elements that must act in combination. One of these elements was identified as the sequence UGCAUG. Three copies of this element can strongly activate splicing of the test exon in LA-N-5 neuroblastoma cells. These component elements of the src splicing enhancer are also apparently involved in the splicing of other short cassette exons.  相似文献   

6.
7.
D Frendewey  W Keller 《Cell》1985,42(1):355-367
We have investigated the early events of pre-mRNA splicing in vitro by sucrose gradient sedimentation analysis. Time course experiments revealed the assembly, in two steps, of a large (50S) pre-mRNA splicing complex, preceded by formation of two other complexes that sediment at approximately 22S and 35S. Pre-mRNA and the intermediates and products of the in vitro splicing reaction cosediment with the 50S complex, while only pre-mRNA is associated with the 22S and 35S complexes. No splicing is observed in the absence of a 50S complex. Formation of the 50S complex requires ATP, whereas formation of the 22S and 35S complexes does not. U-snRNPs are necessary for assembly of the 35S and the 50S complexes but not for assembly of the 22S complex. Analysis with mutant substrate RNAs demonstrated that a polypyrimidine stretch near the 3' splice site and an intact 5' splice site are absolutely required for splicing complex formation.  相似文献   

8.
Splicing of pre-mRNA is a critical step in mRNA maturation and disturbances cause several genetic disorders. We apply the synthetic tetracycline (tc)-binding riboswitch to establish a gene expression system for conditional tc-dependent control of pre-mRNA splicing in yeast. Efficient regulation is obtained when the aptamer is inserted close to the 5′splice site (SS) with the consensus sequence of the SS located within the aptamer stem. Structural probing indicates limited spontaneous cleavage within this stem in the absence of the ligand. Addition of tc leads to tightening of the stem and the whole aptamer structure which probably prevents recognition of the 5′SS. Combination of more then one aptamer-regulated intron increases the extent of regulation leading to highly efficient conditional gene expression systems. Our findings highlight the potential of direct RNA–ligand interaction for regulation of gene expression.  相似文献   

9.
10.
The absolutely conserved TACTAAC box within introns of RNA polymerase II-transcribed genes of the yeast Saccharomyces cerevisiae serves an indispensable role in lariat formation. We show in this report that rather short palindromic sequences inserted into the yeast actin gene intron immediately 3' to the TACTAAC box block the second but not the first splicing step. In contrast, a palindromic sequence inserted some 23 bp 3' of the TACTAAC box did not affect correct and efficient splicing. The data suggest that hairpin structures that might form adjacent to the branchsite sequence interfere with some necessary alteration of the spliceosome required for 3' intron cleavage and exon ligation.  相似文献   

11.
Intron sequences involved in lariat formation during pre-mRNA splicing   总被引:114,自引:0,他引:114  
R Reed  T Maniatis 《Cell》1985,41(1):95-105
We have shown that lariat formation during in vitro splicing of several RNA precursors, from Drosophila to man, occurs at a unique and identifiable but weakly conserved site, 18 to 37 nucleotides proximal to the 3' splice site. Lariat formation within an artificial intron lacking a normal branch-point sequence occurs at a cryptic site a conserved distance (approximately 23 nucleotides) from the 3' splice site. Analysis of beta-thalassemia splicing mutations revealed that lariat formation in the first intron of the human beta-globin gene occurs at the same site in normal and mutant precursors, even though alternate 5' and 3' splice sites are utilized in the mutants. Remarkably, cleavage at the 5' splice site and lariat formation do not occur when the precursor contains a beta-thalassemia deletion removing the polypyrimidine stretch and AG dinucleotide at the 3' splice site. In contrast, a single base substitution in the AG dinucleotide blocks cleavage at the 3' splice site but not at the 5' site.  相似文献   

12.
To examine the stability of yeast (Saccharomyces cerevisiae) pre-mRNA structures, we inserted a series of small sequence elements that generated potential RNA hairpins at the 5' splice site and branch point regions. We analyzed spliceosome assembly and splicing in vitro as well as splicing and nuclear pre-mRNA retention in vivo. Surprisingly, the inhibition of in vivo splicing approximately paralleled that of in vitro splicing. Even a 6-nucleotide hairpin could be shown to inhibit splicing, and a 15-nucleotide hairpin gave rise to almost complete inhibition. The in vitro results indicate that hairpins that sequester the 5' splice site have a major effect on the early steps of spliceosome assembly, including U1 small nuclear ribonucleoprotein binding. The in vivo experiments lead to comparable conclusions as the sequestering hairpins apparently result in the transport of pre-mRNA to the cytoplasm. The observations are compared with previous data from both yeast and mammalian systems and suggest an important effect of pre-mRNA structure on in vivo splicing.  相似文献   

13.
14.
15.
Spinal muscular atrophy is caused by the homozygous loss of survival motor neuron 1 (SMN1). SMN2, a nearly identical copy gene, differs from SMN1 only by a single nonpolymorphic C to T transition in exon 7, which leads to alteration of exon 7 splicing; SMN2 leads to exon 7 skipping and expression of a nonfunctional gene product and fails to compensate for the loss of SMN1. The exclusion of SMN exon 7 is critical for the onset of this disease. Regulation of SMN exon 7 splicing was determined by analyzing the roles of the cis-acting element in intron 7 (element 2), which we previously identified as a splicing enhancer element of SMN exon 7 containing the C to T transition. The minimum sequence essential for activation of the splicing was determined to be 24 nucleotides, and RNA structural analyses showed a stem-loop structure. Deletion of this element or disruption of the stem-loop structure resulted in a decrease in exon 7 inclusion. A gel shift assay using element 2 revealed formation of RNA-protein complexes, suggesting that the binding of the trans-acting proteins to element 2 plays a crucial role in the splicing of SMN exon 7 containing the C to T transition.  相似文献   

16.
17.
Graveley BR 《Cell》2005,123(1):65-73
Drosophila Dscam encodes 38,016 distinct axon guidance receptors through the mutually exclusive alternative splicing of 95 variable exons. Importantly, known mechanisms that ensure the mutually exclusive splicing of pairs of exons cannot explain this phenomenon in Dscam. I have identified two classes of conserved elements in the Dscam exon 6 cluster, which contains 48 alternative exons--the docking site, located in the intron downstream of constitutive exon 5, and the selector sequences, which are located upstream of each exon 6 variant. Strikingly, each selector sequence is complementary to a portion of the docking site, and this pairing juxtaposes one, and only one, alternative exon to the upstream constitutive exon. The mutually exclusive nature of the docking site:selector sequence interactions suggests that the formation of these competing RNA structures is a central component of the mechanism guaranteeing that only one exon 6 variant is included in each Dscam mRNA.  相似文献   

18.
Assembly of pre-mRNA splicing complex is cap dependent.   总被引:11,自引:5,他引:6       下载免费PDF全文
To study the influence of the ubiquitous cap structure of nuclear pre-mRNAs on the assembly of a functional splicing complex, the in vitro splicing of a truncated human metallothionein pre-mRNA was examined in the presence of the cap analogue m7GTP. Significant inhibition of splicing was observed at a concentration as low as 5 microM m7GTP. Analysis of the splicing reaction on glycerol density gradients showed two complexes sedimenting at 45S and 22S. When the reaction was carried out in presence of m7GTP a marked decrease of the material sedimenting at 45S, representing the active splicing complex, was observed. When capped pre-mRNA was replaced by uncapped pre-mRNA, complex formation was significantly reduced. These data indicate that the cap structure plays an important yet unknown role in the assembly of spliceosomes.  相似文献   

19.
Ribonucleoprotein complex formation during pre-mRNA splicing in vitro.   总被引:36,自引:9,他引:27       下载免费PDF全文
The ribonucleoprotein (RNP) structures of the pre-mRNA and RNA processing products generated during in vitro splicing of an SP6/beta-globin pre-mRNA were characterized by sucrose gradient sedimentation analysis. Early, during the initial lag phase of the splicing reaction, the pre-mRNA sedimented heterogeneously but was detected in both 40S and 60S RNP complexes. An RNA substrate lacking a 3' splice site consensus sequence was not assembled into the 60S RNP complex. The two splicing intermediates, the first exon RNA species and an RNA species containing the intron and the second exon in a lariat configuration (IVS1-exon 2 RNA species), were found exclusively in a 60S RNP complex. These two splicing intermediates cosedimented under a variety of conditions, indicating that they are contained in the same RNP complex. The products of the splicing reaction, accurately spliced RNA and the excised IVS1 lariat RNA species, are released from the 60S RNP complex and detected in smaller RNP complexes. Sequence-specific RNA-factor interactions within these RNP complexes were evidenced by the preferential protection of the pre-mRNA branch point from RNase A digestion and protection of the 2'-5' phosphodiester bond of the lariat RNA species from enzymatic debranching. The various RNP complexes were further characterized and could be distinguished by immunoprecipitation with anti-Sm and anti-(U1)RNP antibodies.  相似文献   

20.
The occurrence of introns in nuclear precursor RNAs (pre-mRNAs) is widespread in eukaryotes, and the splicing process that removes them is basically the same in yeasts as it is in higher eukaryotes. Splicing takes place in a very large, multi-component complex, the spliceosome, and biochemical studies have been complicated by the large number of splicing factors involved. This review describes how genetic approaches used to study RNA splicing inSaccharomyces cerevisiae have complemented the biochemical studies and led to rapid advances in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号