首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zeng Y  Kong F 《Carbohydrate research》2003,338(20):2047-2056
Two heptasaccharides alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-Glcp-1-OMP and beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp1-OMP, and two octasaccharides alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-1-OMP and beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-Glcp1-OMP were synthesized in a stereospecific way by remote control.  相似文献   

2.
Eleven oligosaccharides were purified form the urine of sheep with swainsonine toxicosis induced by the feeding of Astragalus lentiginosus. Oligosaccharides were extracted by charcoal adsorption, chromatographed on Bio-Gel P-2, and partially fractionated by preparative-layer chromatography. Separation into individual compounds was completed by semi-preparative high pressure liquid chromatography. Structures were determined by a combination of high pressure liquid chromatography and exo- and endo- glycosidase action, methanolysis followed by gas-liquid chromatography, methylation analysis, and high resolution nuclear magnetic resonance spectroscopy. Two homologous series of oligosaccharides were identified: (a) alpha-D-Manp-(1----6)-beta-D-Manp-(1----4)-D-GlcpNAc, alpha-D-Manp(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp+ ++-(1----4)-D-GlcpNAc, alpha-D-Manp-(1----2)-alpha-D-Manp(1----3)-[alpha-D-Manp+ ++-(1----6)]-beta-D-Manp-(1----4)-D-GlcpNAc, and alpha-D-Manp-(1----2)-alpha-D-Manp-(1----2)-alpha-D-Manp+ ++-(1----3)-[alpha- D-Manp-(1----6)]-beta-D-Manp-(1----4)-D-GlcpNAc (minor series); (b) alpha-D-Manp-(1----6)-beta-D-Manp-(1----4)-beta-D-GlcpNAc- (1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, alpha-D-Manp(1----3)-alpha-D-Manp-(1----6)-beta-D-Manp -(1----4)-beta-D-GlcpNAc- (1----4)-D-GlcpNAc, alpha-D-Manp-(1----6)-alpha-D-Manp-(1----6)-beta-D-Manp++ +-(1----4)-beta-D-GlcpNAc - (1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-alpha-D-Manp-(1----6)-[alpha-D-Manp -(1----3)]-beta-D- Manp-(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-alpha-D-Man p-(1----6)-beta-D- Manp-(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-alpha-D-Man p-(1----6)- [alpha-D-Manp-(1----3)]-beta-D-Manp-(1----4)-beta-D-GlcpNAc- (1----4)-D- GlcpNAc (major series).  相似文献   

3.
Oligosaccharides formed by a transgalactosylation reaction during lactose hydrolysis with Bifidobacterium bifidum were separated into eight fractions by gel-permeation chromatography and their structures studies determined by trimethylsilylation analysis, methylation analysis, f.a.b.-m.s., g.l.c.-m.s. and enzymic hydrolysis as beta-D-Galp-(1----3)-D-Glc, beta-D-Galp-(1----6)-D-Glc, beta-D-Galp-(1----6)-D-Gal, beta-D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, beta-D-Galp-(1----6)[beta-D-Galp-(1----4)]-D-Glc, beta-D-Galp-(1----2)[beta-D-Galp-(1----6)]-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Ga lp- (1----4)-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-DGalp-(1----3)-beta -D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, and beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Ga lp-(1----3)-beta-D-G-alp-(1----3) beta-D-Galp-(1----4)-D-Glc.  相似文献   

4.
Four neutal fraction glycosphingolipids, designated components 4-7, were purified from the pupae of Calliphora vicina and isolated by the use of high performance liquid chromatography. Their chemical structures were determined to be: GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer; GalNAc(alpha 1-4)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer and Gal(alpha 1-3)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer; Gal(beta 1-3)GalNAc(alpha 1-4)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer; and GlcNAC(beta 1-3)Gal(beta 1-3)GalNAc(alpha 1-4)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer. By the use of specific exoglycosidases, it was possible to assign anomeric configurations to all the sugar residues present. Analysis of the ceramide moiety by electron-impact mass spectrometry revealed the dominant fatty acid and sphingoid to be arachidic acid (C20:0) and tetradecasphing-4-enine, respectively.  相似文献   

5.
This minireview article highlights the energetics and the dynamics of the 1(1)B(u)(-) and 3(1)A(g)(-) states of carotenoids discovered very recently. Those "hidden" covalent states have been revealed by measurements of resonance-Raman excitation profiles of crystalline carotenoids. The dependence of the energies of the low-lying singlet states, including the 1(1)B(u)(+), 3(1)A(g)(-), 1(1)B(u)(-), and 2(1)A(g)(-) states, on the number of conjugated double bonds (n) is in agreement with the extrapolation of those state energies calculated by Tavan and Schulten for shorter polyenes (P. Tavan and K. Schulten, Journal of Chemical Physics, 1986, vol. 85, pp. 6602-6609). It has also been shown that the internal-conversion processes among those singlet states take place in accord with the state ordering, i.e., 1(1)B(u)(+) --> 1(1)B(u)(-) --> 2(1)A(g)(-) --> 1(1)A(g)(-) (the ground state) for carotenoids having n = 9 and 10, whereas 1(1)B(u)(+) --> 3(1)A(g)(-) --> 1(1)B(u) (-) --> 2(1)A(g)(-) --> 1(1)A(g)(-) for carotenoids having n = 11-13. Radiative transitions of 1(1)B(u)(+) --> 2(1)A(g)(-) and 1(1)B(u)(-) --> 2(1)A(g)(-) as well as a branching into the triplet manifold of 1(1)B(u)(-) --> 1(3)A(g) --> 1(3)B(u) have also been found. Those low-lying singlet states of all-trans carotenoids can facilitate multiple channels of singlet-energy transfer to bacteriochlorophyll in the LH2 antenna complexes of purple photosynthetic bacteria. Thus, the newly found 1(1)B(u)(-) and 3(1)A(g)(-) states of carotenoids need to be incorporated into the picture of carotenoid-to-bacteriochlorophyll singlet-energy transfer.  相似文献   

6.
Structural characterizations of marsupial milk oligosaccharides have been performed in only three species: the tammar wallaby, the red kangaroo and the koala. To clarify the homology and heterogeneity of milk oligosaccharides among marsupials, 21 oligosaccharides of the milk carbohydrate fraction of the common brushtail possum were characterized in this study. Neutral and acidic oligosaccharides were separated from the carbohydrate fraction of mid-lactation milk and characterized by 1H-nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The structures of the 7 neutral oligosaccharides were Gal(β1-3)Gal(β1-4)Glc (3’-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3”, 3’-digalactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I), Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl lacto-N-novopentaose I), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)Gal(β1-4)Glc (galactosyl lacto-N-novopentaose II). The structures of the 14 acidic oligosaccharides detected were Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Glc (sialyl 3’-galactosyllactose), Gal(β1-3)(O-3-sulfate)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate a) Gal(β1-3)[Gal(β1-4)(O-3-sulfate)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate b), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)(?3-O-sulfate)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)[Gal(β1-4)(?3-O-sulfate)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose b), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)(?3-O-sulphate)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)(?3-O-sulphate)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)Gal(β1-3)[Gal(β1-4)(?3-O-sulphate)GlcNAc(β1-6)]Gal(β1-4)Glc and Gal(β1-3)Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl sialyl lacto-N-novopentaose b). No fucosyl oligosaccharides were detected. Galactosyl lacto-N-novopentaose II, lacto-N-novopentaose I sulfate a, lacto-N-novopentaose I sulfate b and galactosyl sialyl lacto-N-novopentaose b are novel oligosaccharides. The results are compared with those of previous studies on marsupial milk oligosaccharides.  相似文献   

7.
The potential of anaflatoxin B(1) (AnAFB(1)) conjugated to keyhole limpet hemocyanin (KLH) as a vaccine (AnAFB(1)-KLH) in controlling the carry over of the aflatoxin B(1) (AFB(1)) metabolite aflatoxin M(1) (AFM(1)) in cow milk is reported. AFB(1) is the most carcinogenic compound in food and foodstuffs amongst aflatoxins (AFs). AnAFB(1) is AFB(1) chemically modified as AFB(1)-1(O-carboxymethyl) oxime. In comparison to AFB(1), AnAFB(1) has proven to be non-toxic in vitro to human hepatocarcinoma cells and non mutagenic to Salmonella typhimurium strains. AnAFB(1)-KLH was used for immunization of cows proving to induce a long lasting titer of anti-AFB(1) IgG antibodies (Abs) which were cross reactive with AFB(1), AFG(1), and AFG(2). The elicited anti-AFB(1) Abs were able to hinder the secretion of AFM(1) into the milk of cows continuously fed with AFB(1). Vaccination of lactating animals with conjugated AnAFB(1) may represent a solution to the public hazard constituted by milk and cheese contaminated with AFs.  相似文献   

8.
Two trisaccharides, three tetrasaccharides, two pentasaccharides, one hexasaccharide, one heptasaccharide, one octasaccharide and one decasaccharide were isolated from polar bear milk samples by chloroform/methanol extraction, gel filtration, ion exchange chromatography and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: the saccharides from one animal: Gal(α1-3)Gal(β1-4)Glc (α3′-galactosyllactose), Fuc(α1-2)Gal(β1-4)Glc (2′-fucosyllactose), Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (B-tetrasaccharide), GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (A-tetrasaccharide), Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)[Gal(α1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc; the saccharides from another animal: α3′-galactosyllactose, Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]Glc, A-tetrasaccharide, GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3)]Glc (A-pentasaccharide), Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)[Fuc(α1-3)]Glc (difucosylheptasaccharide) and Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3){Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (difucosyldecasaccharide). Lactose was present only in small amounts. Some of the milk oligosaccharides of the polar bear had α-Gal epitopes similar to some oligosaccharides in milk from the Ezo brown bear and the Japanese black bear. Some milk oligosaccharides had human blood group A antigens as well as B antigens; these were different from the oligosaccharides in Ezo brown and Japanese black bears.  相似文献   

9.
The primary structural analysis of O- and N-linked carbohydrate chains of the C-1-esterase inhibitor purified from normal serum was carried out by 400-MHz 1H-NMR spectroscopy. C-1-esterase inhibitor protein of a molecular weight of 116,000 daltons contains 24 O-glycans: NeuAc (alpha 2-3) Gal (beta 1-3) GalNAc, 4 N-glycans: NeuAc (alpha 2-6) Gal (beta 1-4) (GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-6) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc and 2 N-glycans: NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc. 30% of the N-glycans are fucosylated.  相似文献   

10.
The capsular polysaccharide of Streptococcus pneumoniae serotype 6B [----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-( 1----4)- D-RibOH-(5-P----]n was depolymerised under alkaline (NaOH) and acidic (HF) conditions. The former treatment yielded, as the major component, alpha-2-P-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-5- P-RibOH. The latter treatment at -16 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH-(5-P----2)- alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH and at 4 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH. These oligosaccharides were characterised by sugar analysis, f.a.b.-m.s., and 1H- and 13C-n.m.r. spectroscopy.  相似文献   

11.
In the milk of marsupials, oligosaccharides usually predominate over lactose during early to mid lactation. Studies have shown that tammar wallaby milk contains a major series of neutral galactosyllactose oligosaccharides ranging in size from tri- to at least octasaccharides, as well as β(1-6) linked N-acetylglucosamine-containing oligosaccharides as a minor series. In this study, acidic oligosaccharides were purified from red kangaroo milk and characterized by (1)H-nuclear magnetic resonance spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, to be as follows: Neu5Ac(α2-3)Gal(β1-4)Glc (3'-SL), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Glc (sialyl 3'-galactosyllactose), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose b), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)(-3-O-sulfate)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)(-3-O-sulfate)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)(-3-O-sulfate)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)(-3-O-sulfate)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)(-3-O-sulfate)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc. These acidic oligosaccharides were shown to be sialylated or sulfated in the non-reducing ends to the major linear and the minor branched series of neutral oligosaccharides of tammar wallaby milk.  相似文献   

12.
Localization of the 31-amino-acid endothelin-1 in hamster tissue   总被引:2,自引:0,他引:2  
Endothelin (ET)-1(1-31) is a novel vasoconstrictor peptide produced by human mast cell chymase, which selectively cleaves big ET-1 at the Try(31)-Gly(32) bond. We investigated the localization of ET-1(1-31) in various hamster tissues by immunohistochemistry and compared it to the distribution of ET-1(1-21). We found that the localization and amount of ET-1(1-31) were different from those of ET-1(1-21) in each tissue. ET-1(1-31)-like immunoreactivities (IR) in the heart, lung, and adrenal gland were observed in the same areas as ET-1(1-21) but were significantly weaker, suggesting that ET-1(1-31) might play a role only in mast cell/chymase-related pathological conditions in these tissues. In the liver, ET-1(1-31)-like IR was strongly detected in Kupffer cells where ET-1(1-21)-like IR was seen more weakly. In the kidney, ET-1(1-31)-like IR was slightly higher than ET-1(1-21). These results suggest that ET-1(1-31) might have physiological roles distinct from those of ET-1(1-21) in some hamster tissues.  相似文献   

13.
The structures of two octasaccharides, one nonasaccharide, and one undecasaccharide, isolated from human milk, have been investigated by 1H- and 13C-nuclear magnetic resonance spectroscopy. The structures of these oligosaccharides are: beta-D-Galp-(1----4)-[alpha-L-Fucp- (1----3)]-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-[alpha-L-Fucp+ ++- (1----3)]-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-D-Glc; beta-D-GALp-(1----3)-[alpha-L-Fucp-(1----4)]-beta-D-GlcpNAc-(1---- 3)-beta-D - Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1----3)-beta -D-Galp- (1----4)-D-Glc; beta-D-Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1---- 6)-(alpha - L-Fucp-(1----2)-beta-D-Gal-(1----3)-[alpha-L-Fucp-(1----4)]- beta-D-GlcpNAc- (1----3))-beta-D-Galp-(1----4)-D-Glc; and alpha-L-Fucp-(1----2)-beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3) -beta-D- Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1----6)-[alp ha-L- Fucp-(1----2)-beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)]-beta-D -Galp- (1----4)-D-Glc. The two octasaccharides have been previously isolated from human milk as a mixture, and in a pure form from new-born feces, but the n.m.r. data were not provided. These two octasaccharides display the di-Lewis X and the composite Lewis A-Lewis X antigenic determinant, previously described as neo-antigens of adenocarcinoma cell lines.  相似文献   

14.
New pregnane glycosides from the roots of Cynanchum otophyllum   总被引:1,自引:0,他引:1  
Ma XX  Jiang FT  Yang QX  Liu XH  Zhang YJ  Yang CR 《Steroids》2007,72(11-12):778-786
Six new pregnane glycosides with an acyl at C-12 and a straight sugar chain at C-3, namely otophyllosides H-M (1-6), were isolated from the roots of Cynanchum otophyllum (Asclepiadaceae) collected from Eryuan County in Yunnan province of China. Their structures were characterized to be qingyangshengenin 3-O-beta-d-glucopyranosyl-(1-->4)-beta-d-glucopyranosyl-(1-->4)-beta-d-cymaropyranosyl-(1-->4)-beta-d-oleandropyranosyl-(1-->4)-beta-d-digitoxopyranoside (1), qingyangshengenin 3-O-beta-d-glucopyranosyl-(1-->4)-beta-d-oleandropyranosyl-(1-->4)-beta-d-cymaropyranosyl-(1-->4)-beta-d-digitoxopyranoside (2), qingyangshengenin 3-O-beta-d-glucopyranosyl-(1-->4)-beta-d-cymaropyranosyl-(1-->4)-beta-d-oleandropyranosyl-(1-->4)-beta-d-cymaropyranosyl-(1-->4)-beta-d-digitoxopyranoside (3), qingyangshengenin 3-O-beta-d-glucopyranosyl-(1-->4)-beta-d-thevetopyranosyl-(1-->4)-beta-d-cymaropyranosyl-(1-->4)-beta-d-digitoxopyranoside (4), caudatin 3-O-beta-d-glucopyranosyl-(1-->4)-beta-d-glucopyranosyl-(1-->4)-beta-d-cymaropyranosyl-(1-->4)-beta-d-oleandropyranosyl-(1-->4)-beta-d-cymaropyranoside (5), caudatin 3-O-beta-d-glucopyranosyl-(1-->4)-beta-d-cymaropyranosyl-(1-->4)-beta-d-oleandropyranosyl-(1-->4)-beta-d-cymaropyranosyl-(1-->4)-beta-d-cymaropyranoside (6), respectively, on the basis of detailed spectroscopic analysis and chemical method.  相似文献   

15.
The urine of a patient with Sandhoff's disease (GM2 gangliosidosis-variant O) contains 10--12 N-acetylglucosamine-rich oligosaccharides in high amounts. The structures of seven of these have been determined: beta-GlcNAc(1--2)-alpha-Man-(1--3)-beta-man-(1--4)-GlcNAc; beta-GlcNAc-(1--4)-alpha-Man-(1--3)-beta-Man-(1--4)-GlcNAc; beta-GlcNAc-(1--2)-alpha-Man-(1--6)-beta-Man-(1--4)-GlcNAc; beta-GlcNAc-(1--4)-alpha-Man-(1--6)-beta-Man-(1--4)-GlcNAc; beta-GlcNAc-(1--2)-alpha-Man-(1--3)-[beta-GlcNAc-(1--2)-alpha-Man-(1--6)]beta-Man-(1--4)-GlcNAc; beta-GlcNAc-(1--2)-alpha-Man-(1--3)[beta-GlcNAc-(1--2)-alpha-Man-(1--6)][beta-GlcNAc-(1--4)]beta-Man-(1--4)-GlcNAc; beta-GlcNAc-(1--2)-alpha-Man(1)-(1--3)[beta-GlcNAc-(1--2)-alpha-Man(2)-(1--6)]beta-Man-(1--4)-GlcNAc, with additional beta-GlcNAc, with additional beta-GlcNAc-(1--4) on mannose (1) or (2). An unusual oligosaccharide, with a tri-branched beta-mannose, has been characterized as the major component excreted in urine.  相似文献   

16.
Zhang J  Ma Z  Kong F 《Carbohydrate research》2003,338(20):2039-2046
Alpha-D-Manp-(1-->3)-[alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->6)]-alpha-D-Manp-(1-->3)-[alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->6)]-D-Manp and alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-[alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->6)]-alpha-D-Manp-(1-->3)-[alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->6)]-D-Manp, were synthesized as their methyl glycosides in a regio- and stereoselective way.  相似文献   

17.
The structures of one tri-(1), two tetra-(2 and 3), and one hexa-saccharide (4) produced by treatment of barley flour, after removal of the starch components, with a fungal beta-D-glucanase (Finizyme) have been assigned on the basis of 1H- and 13C-n.m.r. data as follows: beta-D-Glcp-(1----3)-beta-D-Glcp-(1----4)-D-Glcp (1), beta-D-Glcp-(1----4)-beta-D-Glcp-(1----3)-beta-D-Glcp-(1----4)-D-Glcp (2), beta-D-Glcp-(1----3)-beta-D-Glcp-(1----4)-beta-D-Glcp-(1----4)-D-Glcp (3), and beta-D-Xylp-(1----4)-[alpha-L-Araf-(1----3)]-[alpha-L-Ara f-(1----2)-beta-D-Xylp-(1----4)-beta-D-Xylp- (1----4)-D-Xylp (4).  相似文献   

18.
Two trisaccharides, three tetrasaccharides, two pentasaccharides, one hexasaccharide, one heptasaccharide, one octasaccharide and one decasaccharide were isolated from polar bear milk samples by chloroform/methanol extraction, gel filtration, ion exchange chromatography and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: the saccharides from one animal: Gal(alpha1-3)Gal(beta1-4)Glc (alpha3'-galactosyllactose), Fuc(alpha1-2)Gal(beta1-4)Glc (2'-fucosyllactose), Gal(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc (B-tetrasaccharide), GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc (A-tetrasaccharide), Gal(alpha1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Gl c, Gal(alpha1-3)Gal(beta1-4)GlcNAc(beta1-3)[Gal(alpha1-3)Gal(beta1-4)Glc NAc(beta1-6)]Gal(beta1-4)Glc; the saccharides from another animal: alpha3'-galactosyllactose, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, A-tetrasaccharide, GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)[Fuc(alpha1-3)]Glc (A-pentasaccharide), Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Gl c, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[F uc(alpha1-3)]Glc (difucosylheptasaccharide) and Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)?Gal(alpha1-3) Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)?Gal(beta1-4)Glc (difucosyldecasaccharide). Lactose was present only in small amounts. Some of the milk oligosaccharides of the polar bear had alpha-Gal epitopes similar to some oligosaccharides in milk from the Ezo brown bear and the Japanese black bear. Some milk oligosaccharides had human blood group A antigens as well as B antigens; these were different from the oligosaccharides in Ezo brown and Japanese black bears.  相似文献   

19.
A yeast two-hybrid approach was used to discern possible new effectors for the betagamma subunit of heterotrimeric G proteins. Three of the clones isolated are structurally similar to Gbeta, each exhibiting the WD40 repeat motif. Two of these proteins, the receptor for activated C kinase 1 (RACK1) and the dynein intermediate chain, co-immunoprecipitate with Gbetagamma using an anti-Gbeta antibody. The third protein, AAH20044, has no known function; however, sequence analysis indicates that it is a WD40 repeat protein. Further investigation with RACK1 shows that it not only interacts with Gbeta(1)gamma(1) but also unexpectedly with the transducin heterotrimer Galpha(t)beta(1)gamma(1). Galpha(t) alone does not interact, but it must contribute to the interaction because the apparent EC(50) value of RACK1 for Galpha(t)beta(1)gamma(1) is 3-fold greater than that for Gbeta(1)gamma(1) (0.1 versus 0.3 microm). RACK1 is a scaffold that interacts with several proteins, among which are activated betaIIPKC and dynamin-1 (1). betaIIPKC and dynamin-1 compete with Gbeta(1)gamma(1) and Galpha(t)beta(1)gamma(1) for interaction with RACK1. These findings have several implications: 1) that WD40 repeat proteins may interact with each other; 2) that Gbetagamma interacts differently with RACK1 than with its other known effectors; and/or 3) that the G protein-RACK1 complex may constitute a signaling scaffold important for intracellular responses.  相似文献   

20.
In Saccharomyces cerevisiae, at least three proteins (IF(1), STF(1), and STF(2)) appear to be involved in the regulation of ATP synthase. Both IF(1) and STF(1) inhibit F(1), whereas the proposed function for STF(2) is to facilitate the binding of IF(1) and STF(1) to F(1). The oligomerization properties of yeast IF(1) and STF(1) have been investigated by sedimentation equilibrium analytical ultracentrifugation and by covalent cross-linking. Both techniques confirm that IF(1) and STF(1) oligomerize in opposite directions in relation to pH, suggesting that both proteins might regulate yeast F(1)F(0)-ATPase under different conditions. Their effects on bovine F-ATPases are also described. Whereas bovine IF(1) inhibits yeast F(1)-ATPase even better than yeast IF(1) or STF(1), the capability of yeast IF(1) to inhibit the bovine enzyme is very low and decreases with time. Such an effect is also observed in the study of the homologous inhibition of yeast F(1)-ATPase. Yeast inhibitors are not as effective as their bovine counterpart, and the complex seems to dissociate gradually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号