共查询到20条相似文献,搜索用时 0 毫秒
1.
《Animal : an international journal of animal bioscience》2022,16(10):100642
Aquaculture production comprises a diverse range of species, geographies, and farming systems. The application of genetics and breeding technologies towards improved production is highly variable, ranging from the use of wild-sourced seed through to advanced family breeding programmes augmented by genomic techniques. This technical variation exists across some of the most highly produced species globally, with several of the top ten global species by volume generally lacking well-managed breeding programmes. Given the well-documented incremental and cumulative benefits of genetic improvement on production, this is a major missed opportunity. This short review focusses on (i) the status of application of selective breeding in the world’s most produced aquaculture species, (ii) the range of genetic technologies available and the opportunities they present, and (iii) a future outlook towards realising the potential contribution of genetic technologies to aquaculture sustainability and global food security. 相似文献
2.
A review of indicators of climate change for use in Ireland 总被引:1,自引:0,他引:1
Impact indicators are systems/organisms, the vitality of which alters in response to changes in environmental condition. The indicators assessed in this review fall within the impact category of the driver-pressure-state-impact-response (DPSIR) framework. Instrumental records have shown unequivocal changes in climatic conditions over the past 30 years at a global level but impact indicators allow these changes to be monitored at a finer resolution. Our main aim was to review sets of indicators of climate change currently used in various countries and to make recommendations for their use in the Irish environment. We review a preliminary set of climate change impact indicators in five sectors: agriculture; plant and animal distribution patterns; phenology; palaeoecology and human health. Currently, the most effective impact indicators of climate change have proved to be phenological observations of tree developmental stages. The strongest factor limiting the use of indicators is the lack of long-term data sets from which a climatic signal can be extracted. 相似文献
3.
《Animal : an international journal of animal bioscience》2022,16(12):100671
Grasslands dominate land cover nationally and globally, and their composition, structure and habitat value are strongly influenced by the actions of domestic and wild grazing animals that feed on them. Different pastures are characterised by varying opportunities for selective feeding by livestock; agronomically improved, sown swards generally consist of a limited range of plant species whereas longer-term leys and semi-natural grasslands are characterised by a more diverse mixture of plants. In the case of botanically diverse permanent pastures/grazing lands, the dietary preferences of different grazers have a more pronounced effect on the botanical composition of the sward in the longer term. Selection of a dominant species within the sward can give less abundant components a chance to compete, increasing community evenness and species richness. Conversely, the selection of minor components reduces sward compositional heterogeneity and hence plant species richness and evenness. Body size, gut type (foregut vs hindgut fermentation), physiological status (growing, pregnant, lactating), metabolic status (extent of body reserves) and environmental conditions all influence the nutrient requirements of a given animal and related foraging priorities. The diet selected is also strongly influenced by the availability of preferred food items, and their vertical and horizontal distribution within the sward. In general, larger animals, such as cattle and horses, are less selective grazers than smaller animals, such as sheep and goats. They are quicker to switch to consuming less-preferred sward components as the availability of preferred resources declines due to their greater forage demands, and as a result can be very effective in controlling competitive plant species consistently avoided by more selective grazers. As a result, low-intensity mixed grazing of cattle and sheep has been shown to improve the diversity and abundance of a range of taxa within grazed ecosystems. Mixed/co-species grazing with different animals exploiting different grassland resources is also associated with increased pasture use efficiency in terms of the use of different sward components and related improvements in nutritional value. In situations where cattle are not available, for example if they are not considered commercially viable, alternative species such as goats, ponies or South American camelids may offer an opportunity to diversify income streams and maintain productive and biodiverse pastures/grazing lands. Stocking rate and timing of grazing also have a considerable role in determining the impact of grazing. Regardless of the species grazing or the pasture grazed, grazing systems are dynamic since selective grazing impacts the future availability of sward components and subsequently dietary choices. New technologies under development provide opportunities to monitor plant/animal interactions more closely and in real time, which will in future support active management to deliver targeted biodiversity gains from specific sites. 相似文献
4.
J. Santiago-Moreno E. Blesbois 《Animal : an international journal of animal bioscience》2022,16(3):100475
Over the last century, several reproductive biotechnologies beyond the artificial incubation of eggs were developed to improve poultry breeding stocks and conserve their genetic diversity. These include artificial insemination (AI), semen storage, diploid primordial germ cell (PGC) methodologies, and gonad tissue storage and transplantation. Currently, AI is widely used for selection purposes in the poultry industry, in the breeding of turkeys and guinea fowl, and to solve fertility problems in duck interspecies crosses for the production of mule ducklings. The decline in some wild game species has also raised interest in reproductive technologies as a means of increasing the production of fertile eggs, and ultimately the number of birds that can be raised. AI requires viable sperm to be preserved in vitro for either short (fresh) or longer periods (chilling or freezing). Since spermatozoa are the most easily accessed sex cells, they are the cell type most commonly preserved by genetic resource banks. However, the cryopreservation of sperm only preserves half of the genome, and it cannot preserve the W chromosome. For avian species, the problem of preserving oocytes and zygotes may be solved via the cryopreservation and transplantation of PGCs and gonad tissue. The present review describes all these procedures and discusses how combining these different technologies allows poultry populations to be conserved and even rapidly reconstituted. 相似文献
5.
Signe Normand Jens-Christian Svenning Flemming Skov 《Journal for Nature Conservation》2007,15(1):41-53
The main goal of the Habitats Directive, a key document for European conservation, is to maintain a ‘favourable’ conservation status of selected species and habitats. In the face of near-future climatic change this goal may become difficult to achieve. Here, we evaluate the sensitivity to climate change of 84 plant species that characterise the Danish habitat types included in the Habitats Directive. A fuzzy bioclimatic envelope model, linking European and Northwest African species’ distribution data with climate, was used to predict climatically suitable areas for these species in year 2100 under two-climate change scenarios. Climate sensitivity was evaluated at both Danish and European scales to provide an explicit European perspective on the impacts predicted for Denmark. In all 69–99% of the species were predicted to become negatively affected by climate change at either scale. Application of international Red List criteria showed that 43–55% and 17–69% would become vulnerable in Denmark and Europe, respectively. Northwest African atlas data were used to improve the ecological accuracy of the future predictions. For comparison, using only European data added 0–7% to these numbers. No species were predicted to become extinct in Europe, but 4–7% could be lost from Denmark. Some species were predicted to become positively affected in Denmark, but negatively affected in Europe. In addition to nationally endangered species, this group would be an important focus for a Danish conservation strategy. A geographically differentiated Danish conservation strategy is suggested as the eastern part of Denmark was predicted to be more negatively affected than the western part. No differences in the sensitivity of the Habitats Directive habitats were found. We conclude that the conservation strategy of the Habitats Directive needs to integrate the expected shifts in species’ distributions due to climate change. 相似文献
6.
《Animal : an international journal of animal bioscience》2015,9(9):1431-1440
Measuring and mitigating methane (CH4) emissions from livestock is of increasing importance for the environment and for policy making. Potentially, the most sustainable way of reducing enteric CH4 emission from ruminants is through the estimation of genomic breeding values to facilitate genetic selection. There is potential for adopting genetic selection and in the future genomic selection, for reduced CH4 emissions from ruminants. From this review it has been observed that both CH4 emissions and production (g/day) are a heritable and repeatable trait. CH4 emissions are strongly related to feed intake both in the short term (minutes to several hours) and over the medium term (days). When measured over the medium term, CH4 yield (MY, g CH4/kg dry matter intake) is a heritable and repeatable trait albeit with less genetic variation than for CH4 emissions. CH4 emissions of individual animals are moderately repeatable across diets, and across feeding levels, when measured in respiration chambers. Repeatability is lower when short term measurements are used, possibly due to variation in time and amount of feed ingested prior to the measurement. However, while repeated measurements add value; it is preferable the measures be separated by at least 3 to 14 days. This temporal separation of measurements needs to be investigated further. Given the above issue can be resolved, short term (over minutes to hours) measurements of CH4 emissions show promise, especially on systems where animals are fed ad libitum and frequency of meals is high. However, we believe that for short-term measurements to be useful for genetic evaluation, a number (between 3 and 20) of measurements will be required over an extended period of time (weeks to months). There are opportunities for using short-term measurements in standardised feeding situations such as breath ‘sniffers’ attached to milking parlours or total mixed ration feeding bins, to measure CH4. Genomic selection has the potential to reduce both CH4 emissions and MY, but measurements on thousands of individuals will be required. This includes the need for combined resources across countries in an international effort, emphasising the need to acknowledge the impact of animal and production systems on measurement of the CH4 trait during design of experiments. 相似文献
7.
Cicadas are large hemipteran insects characterized by unique life‐history traits, such as extraordinarily long life cycles, a subterranean/terrestrial habitat transition, xylem sap‐feeding and melodious sound production. These fascinating features of cicadas have attracted much attention in the research fields of physiology and ecology, resulting in an accumulation of knowledge about the underlying mechanisms and their adaptive significance. Although community‐level responses to recent climate change have already been documented for cicada fauna, an understanding of their causal relationships is still at the initial stages. In this review, we summarize current knowledge about environmental adaptations of cicadas to facilitate a deeper understanding of the ecophysiological consequences of climate change. We first outline the diverse responses of cicadas to environmental factors, mainly temperature, and their strategies to cope with naturally fluctuating environments. Then, we discuss the consequence of upcoming climate change by consolidating the current findings. This review highlights the fact that fitness‐relevant activities are fine‐tuned to a species‐specific temperature optimum to achieve habitat segregation among coexisting species, implying that cicada diversity is highly susceptible to climate warming. As a result of their conspicuous large bodies and species‐specific calling songs, cicadas are promising candidates for use as bioindicator species to monitor ecological impacts of climate change. We encourage future works that continuously quantify population‐ and community‐level responses to upcoming climate change, as well as unveil mechanistic links between physiological traits and ecological consequences. 相似文献
8.
Peatlands hold a large portion of the Earth’s terrestrial organic carbon and serve as important pools in the global carbon cycle. Due to their strong feedbacks, peatlands are one of the most important ecosystems with respect to climate warming. This paper reviews the effects of climate warming on peatland ecosystems. Climate warming will shift the point in time when vascular peatland plants flower and reach maximum biomass to an earlier date. Flower production for some plants will increase, but how the phenology of peatland bryophytes will react is still unknown. Climate warming may increase productivity of peatlands, especially ombrotrophic Sphagnum bogs, but in the long run the negative effects from decreased water availability may prevail. Climate warming will change the basic characteristics of peatlands: their wetness and the related cold environment and nutrient shortage. By increased mineralization and nitrogen and phosphorus availability, climate warming will facilitate the growth of vascular plants. This will suppress endangered plant species (which usually grow in low-productive, phosphorus-limited habitats) and lead to a change in vegetation composition and a decrease in peatland biodiversity. Climate warming will change the competitive balance between bryophytes and between Sphagnum and vascular plants. Climate warming in the Late Pleistocene facilitated the initiation of peatland formation, but most current experiments show an obvious tendency for climate warming to drive many peatlands to regressive succession with a shift in dominance from Sphagnum to vascular plants. This change in vegetation will increase the flux of CH4 and possibly also CO2. The effect of accelerated peat decay as a result of climate warming will vary between types of peatlands. Since climate warming will generally enhance peat respiration more than net primary production, more and more peatlands will become carbon sources rather than carbon sinks, which will aggravate climate warming by positive feedback. Finally, this paper addresses some problems with current manipulative experimental studies on peatland response to climate warming and makes suggestions for further studies. 相似文献
9.
《Animal : an international journal of animal bioscience》2015,9(1):1-17
Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid – i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002 – Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East–West and North–South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future. 相似文献
10.
Zhaojun Bu Joosten Hans Hongkai Li Gaolin Zhao Xingxing Zheng Jinze M Jing Zeng 《生态学报》2011,31(3):157-162
Peatlands hold a large portion of the Earth’s terrestrial organic carbon and serve as important pools in the global carbon cycle. Due to their strong feedbacks, peatlands are one of the most important ecosystems with respect to climate warming. This paper reviews the effects of climate warming on peatland ecosystems. Climate warming will shift the point in time when vascular peatland plants flower and reach maximum biomass to an earlier date. Flower production for some plants will increase, but how the phenology of peatland bryophytes will react is still unknown. Climate warming may increase productivity of peatlands, especially ombrotrophic Sphagnum bogs, but in the long run the negative effects from decreased water availability may prevail. Climate warming will change the basic characteristics of peatlands: their wetness and the related cold environment and nutrient shortage. By increased mineralization and nitrogen and phosphorus availability, climate warming will facilitate the growth of vascular plants. This will suppress endangered plant species (which usually grow in low-productive, phosphorus-limited habitats) and lead to a change in vegetation composition and a decrease in peatland biodiversity. Climate warming will change the competitive balance between bryophytes and between Sphagnum and vascular plants. Climate warming in the Late Pleistocene facilitated the initiation of peatland formation, but most current experiments show an obvious tendency for climate warming to drive many peatlands to regressive succession with a shift in dominance from Sphagnum to vascular plants. This change in vegetation will increase the flux of CH4 and possibly also CO2. The effect of accelerated peat decay as a result of climate warming will vary between types of peatlands. Since climate warming will generally enhance peat respiration more than net primary production, more and more peatlands will become carbon sources rather than carbon sinks, which will aggravate climate warming by positive feedback. Finally, this paper addresses some problems with current manipulative experimental studies on peatland response to climate warming and makes suggestions for further studies. 相似文献
11.
Mangrove ecosystems are threatened by climate change. We review the state of knowledge of mangrove vulnerability and responses to predicted climate change and consider adaptation options. Based on available evidence, of all the climate change outcomes, relative sea-level rise may be the greatest threat to mangroves. Most mangrove sediment surface elevations are not keeping pace with sea-level rise, although longer term studies from a larger number of regions are needed. Rising sea-level will have the greatest impact on mangroves experiencing net lowering in sediment elevation, where there is limited area for landward migration. The Pacific Islands mangroves have been demonstrated to be at high risk of substantial reductions. There is less certainty over other climate change outcomes and mangrove responses. More research is needed on assessment methods and standard indicators of change in response to effects from climate change, while regional monitoring networks are needed to observe these responses to enable educated adaptation. Adaptation measures can offset anticipated mangrove losses and improve resistance and resilience to climate change. Coastal planning can adapt to facilitate mangrove migration with sea-level rise. Management of activities within the catchment that affect long-term trends in the mangrove sediment elevation, better management of other stressors on mangroves, rehabilitation of degraded mangrove areas, and increases in systems of strategically designed protected area networks that include mangroves and functionally linked ecosystems through representation, replication and refugia, are additional adaptation options. 相似文献
12.
Heat stress in Bos taurus cattle is a problem that affects many regions of the world. Numerous studies have focused on heat stress in feedlots or environmental chambers; but few have looked at undisturbed cattle on pasture. The present study followed two Bos taurus cattle breeds throughout a mid-Missouri summer to determine thermoregulatory responses to fluctuating summer air temperature (Ta), as well as differences in adaptation to heat. Heat-sensitive Angus steers (ANG; n=22; 480±7.15 kg BW), and heat-tolerant Romosinuano steers (RO; n=11; 352±6 kg BW) were monitored on 12 day from June through August of 2009 in an endophyte free tall fescue pasture. Data were grouped into two, six-day periods representing peak (Period 1) and late (Period 2) summer for determination of adaptation. Respiration rate (RR) was measured via flank counting and telemetric temperature transmitters in the rumen of each animal monitored core temperature (Trum). Romosinuano sustained a lower (P<0.05) RR and Trum compared to ANG during both periods. Linear relationships for RR and Trum, compared against Ta for both Periods were determined. Slopes of RR to Ta from Period 1 to Period 2 decreased (P<0.05) from 2.63 to 1.08 bpm/°C and 2.25 to 0.49 bpm/°C for ANG and RO, respectively. Slopes of Trum to Ta also decreased (P<0.05) from Periods 1 to 2 from 0.12 to 0.02 °C Trum/°C Ta for ANG; however, RO showed no differences between periods. Although Romosinuano have a lower respiration rate and ruminal temperature than Angus, they share a similar pattern of respiration rate adaptation from early to late summer periods. 相似文献
13.
Philip L. Munday Robert R. Warner Keyne Monro John M. Pandolfi Dustin J. Marshall 《Ecology letters》2013,16(12):1488-1500
An increasing number of short‐term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present‐day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change. 相似文献
14.
土壤线虫对气候变化的响应研究进展 总被引:2,自引:0,他引:2
全球变化对陆地生态系统功能具有重要而深远的影响。陆地生态系统地下部分具有重要的生态功能,其组成及结构对气候变化的响应将进一步减缓或加剧全球化进程。土壤线虫在各类生态系统中分布十分广泛,是地下食物网的重要组分,在维持土壤生物多样性及营养物质循环过程中发挥重要作用,其组成及结构对不同气候变化驱动因子的响应机制与模式不尽相同。增温及降水格局变化主要是通过改变线虫生境而直接影响其种群密度与结构,两者通常表现为正效应且作用效果随处理时间的延长而增强。CO2与大气氮沉降主要是通过影响地上植被,凋落物质量,土壤理化性质等间接过程影响土壤线虫。同时,不同的全球变化因子之间存在着复杂的交互作用,深入理解这些因子之间交互作用对线虫群落的影响模式与机制对于探讨未来气候变化情景下生态统生物多样性及养分循环过程具有重要的理论指导意义。 相似文献
15.
Aims Climate change largely impacts ecosystem carbon and water cycles by changing plant gas exchange, which may further cause positive or negative feedback to global climate change. However, long-term global change manipulative experiments are seldom conducted to reveal plant ecophysiological responses to climatic warming and altered precipitation regimes.Methods An 8-year field experiment with both warming and increased precipitation was conducted in a temperate grassland in northern China. We measured leaf gas exchange rates (including plant photosynthesis, transpiration and instantaneous water use efficiency [WUE]) of two dominant plant species (Stipa sareptana var. krylovii and Agropyron cristatum) from 2005 to 2012 (except 2006 and 2010) and those of other six species from 2011 to 2012.Important findings Increased precipitation significantly stimulated plant photosynthetic rates (A) by 29.5% and 19.9% and transpiration rates (E) by 42.2% and 51.2% for both dominant species S. sareptana var. krylovii and A. cristatum, respectively, across the 8 years. Similarly, A and E of the six plant functional types were all stimulated by increased precipitation in 2011 and 2012. As the balance of A and E, the instantaneous WUEs of different plant species had species-specific responses to increased precipitation. In contrast, neither warming nor its interaction with increased precipitation significantly affected plant leaf gas exchange rates. Furthermore, A and E of the two dominant species and their response magnitudes to water treatments positively correlated with rainfall amount in July across years. We did not find any significant difference between the short-term versus long-term responses of plant photosynthesis, suggesting the flexibility of leaf gas exchange under climate change. The results suggest that changing precipitation rather than global warming plays a prominent role in determining production of this grassland in the context of climate change. 相似文献
16.
The primary nonbiological result of recent rapid climate change is warming winter temperatures, particularly at northern latitudes, leading to longer growing seasons and new seasonal exigencies and opportunities. Biological responses reflect selection due to the earlier arrival of spring, the later arrival of fall, or the increasing length of the growing season. Animals from rotifers to rodents use the high reliability of day length to time the seasonal transitions in their life histories that are crucial to fitness in temperate and polar environments: when to begin developing in the spring, when to reproduce, when to enter dormancy or when to migrate, thereby exploiting favourable temperatures and avoiding unfavourable temperatures. In documented cases of evolutionary (genetic) response to recent, rapid climate change, the role of day length (photoperiodism) ranges from causal to inhibitory; in no case has there been demonstrated a genetic shift in thermal optima or thermal tolerance. More effort should be made to explore the role of photoperiodism in genetic responses to climate change and to rule out the role of photoperiod in the timing of seasonal life histories before thermal adaptation is assumed to be the major evolutionary response to climate change. 相似文献
17.
Alpine snowbeds are characterized by a long-lasting snow cover and low soil temperature during the growing season. Both these
key abiotic factors controlling plant life in snowbeds are sensitive to anthropogenic climate change and will alter the environmental
conditions in snowbeds to a considerable extent until the end of this century. In order to name winners and losers of climate
change among the plant species inhabiting snowbeds, we analyzed the small-scale species distribution along the snowmelt and
soil temperature gradients within alpine snowbeds in the Swiss Alps. The results show that the date of snowmelt and soil temperature
were relevant abiotic factors for small-scale vegetation patterns within alpine snowbed communities. Species richness in snowbeds
was reduced to about 50% along the environmental gradients towards later snowmelt date or lower daily maximum temperature.
Furthermore, the occurrence pattern of the species along the snowmelt gradient allowed the establishment of five species categories
with different predictions of their distribution in a warmer world. The dominants increased their relative cover with later
snowmelt date and will, therefore, lose abundance due to climate change, but resist complete disappearance from the snowbeds.
The indifferents and the transients increased in species number and relative cover with higher temperature and will profit
from climate warming. The snowbed specialists will be the most suffering species due to the loss of their habitats as a consequence
of earlier snowmelt dates in the future and will be replaced by the avoiders of late-snowmelt sites. These forthcoming profiteers
will take advantage from an increasing number of suitable habitats due to an earlier start of the growing season and increased
temperature. Therefore, the characteristic snowbed vegetation will change to a vegetation unit dominated by alpine grassland
species. The study highlights the vulnerability of the established snowbed vegetation to climate change and requires further
studies particularly about the role of biotic interactions in the predicted invasion and replacement process. 相似文献
18.
WILLIAM J. ETGES MAX LEVITAN 《Biological journal of the Linnean Society. Linnean Society of London》2008,95(4):702-718
The evolutionary response to regional and global climate change may vary in widespread polymorphic species, so predicting future genetic responses will require careful tracking of genetic variability in local populations. We surveyed chromosomal inversion polymorphisms in 25 populations of Drosophila robusta, many of which have been sampled repeatedly starting in the 1940s, 50s, and 60s up until 2007, across its range in the USA. Frequencies of some northerly, or cold‐adapted, gene arrangements have declined in the face of increasing temperatures, whereas frequencies of several southern, or warm‐adapted, gene arrangements were positively correlated with increasing temperature changes. Over a finer geographic scale, populations from the west‐central part of the species range from the Ozark Plateau, Ouachita mountains, and eastern Oklahoma showed genetic differentiation between south‐central Ozark and western Ozark/Ouachita regions that has persisted in the face of recent shifts in gene arrangement frequencies. Overall, populations of D. robusta exhibited dynamic genetic changes over time, with some populations shifting chromosome frequencies in just 10–15 years. Some temporal genetic shifts were widespread and significantly correlated with temperature increases, but regions of the genome marked by different gene arrangements have responded in different sections of the species range. In some parts of the species range, chromosome frequencies shifted but were not associated with changing temperatures, showed little or no temporal change, or temporal shifts stopped for temperature sensitive gene arrangements near fixation. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 702–718. 相似文献
19.
SHULI NIU XUERONG XING ZHE ZHANG JIANYANG XIA XUHUI ZHOU BING SONG LINGHAO LI SHIQIANG WAN 《Global Change Biology》2011,17(2):1073-1082
Water‐use efficiency (WUE) has been recognized as an important characteristic of ecosystem productivity, which links carbon (C) and water cycling. However, little is known about how WUE responds to climate change at different scales. Here, we investigated WUE at leaf, canopy, and ecosystem levels under increased precipitation and warming from 2005 to 2008 in a temperate steppe in Northern China. We measured gross ecosystem productivity (GEP), net ecosystem CO2 exchange (NEE), evapotranspiration (ET), evaporation (E), canopy transpiration (Tc), as well as leaf photosynthesis (Pmax) and transpiration (Tl) of a dominant species to calculate canopy WUE (WUEc=GEP/T), ecosystem WUE (WUEgep=GEP/ET or WUEnee=NEE/ET) and leaf WUE (WUEl=Pmax/Tl). The results showed that increased precipitation stimulated WUEc, WUEgep and WUEnee by 17.1%, 10.2% and 12.6%, respectively, but decreased WUEl by 27.4%. Climate warming reduced canopy and ecosystem WUE over the 4 years but did not affect leaf level WUE. Across the 4 years and the measured plots, canopy and ecosystem WUE linearly increased, but leaf level WUE of the dominant species linearly decreased with increasing precipitation. The differential responses of canopy/ecosystem WUE and leaf WUE to climate change suggest that caution should be taken when upscaling WUE from leaf to larger scales. Our findings will also facilitate mechanistic understanding of the C–water relationships across different organism levels and in projecting the effects of climate warming and shifting precipitation regimes on productivity in arid and semiarid ecosystems. 相似文献
20.
U.A. Wijesiriwardana J.R. Craig J.J. Cottrell F.R. Dunshea J.R. Pluske 《Animal : an international journal of animal bioscience》2022,16(8):100596
Progeny born to primiparous sows farrowing their first litter, often called gilt progeny (GP), are typically characterised by their poorer overall production performance than progeny from multiparous sows (sow progeny; SP). Gilt progeny consistently grow slower, are born and weaned lighter, and have higher postweaning illness and mortality rates than SP. Collectively, their poorer performance culminates in a long time to reach market weight and, ultimately, reduced revenue. Due to the high replacement rates of sows, the primiparous sow and her progeny represent a large proportion of the herd resulting in a significant loss for the pig industry. While the reasons for poorer performance are complex and multifaceted, they may largely be attributed to the immature age at which gilts are often mated and the significant impact of this on their metabolism during gestation and lactation. As a result, this can have negative consequences on the piglet itself. To improve GP performance, it is crucial to understand the biological basis for differences between GP and SP. The purpose of this review is to summarise published literature investigating differences in growth performance and health status between GP and SP. It also examines the primiparous sow during gestation and lactation and how the young sow must support her own growth while supporting the metabolic demands of her pregnancy and the growth and development of her litter. Finally, the underlying physiology of GP is discussed in terms of growth and development in utero, the neonatal period, and the early development of the gastrointestinal tract. The present review concludes that there are a number of interplaying factors relating to the anatomy and physiology of the primiparous sow and of GP themselves. The studies presented herein strongly suggest that poor support of piglet growth in utero and reduced colostrum and milk production and consumption are largely responsible for the underperformance of GP. It is therefore recommended that future management strategies focus on supporting the primiparous sow during gestation and lactation, increasing the preweaning growth of GP to improve their ability to cope with the stressors of weaning, selection of reproductive traits such as uterine capacity to improve birth weights and ultimately GP performance, and finally, increase the longevity of sows to reduce the proportion of GP entering the herd. 相似文献