首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
4.
5.
AML1-ETO is one of the most common chromosomal translocation products associated with acute myelogenous leukemia (AML). Patients carrying the AML1-ETO fusion gene exhibit an accumulation of granulocyte precursors in the bone marrow and the blood. Here, we describe a transgenic zebrafish line that enables inducible expression of the human AML1-ETO oncogene. Induced AML1-ETO expression in embryonic zebrafish causes a phenotype that recapitulates some aspects of human AML. Using this highly tractable model, we show that AML1-ETO redirects myeloerythroid progenitor cells that are developmentally programmed to adopt the erythroid cell fate into the granulocytic cell fate. This fate change is characterized by a loss of gata1 expression and an increase in pu.1 expression in myeloerythroid progenitor cells. Moreover, we identify scl as an early and essential mediator of the effect of AML1-ETO on hematopoietic cell fate. AML1-ETO quickly shuts off scl expression, and restoration of scl expression rescues the effects of AML1-ETO on myeloerythroid progenitor cell fate. These results demonstrate that scl is an important mediator of the ability of AML1-ETO to reprogram hematopoietic cell fate decisions, suggesting that scl may be an important contributor to AML1-ETO-associated leukemia. In addition, treatment of AML1-ETO transgenic zebrafish embryos with a histone deacetylase inhibitor, Trichostatin A, restores scl and gata1 expression, and ameliorates the accumulation of granulocytic cells caused by AML1-ETO. Thus, this zebrafish model facilitates in vivo dissection of AML1-ETO-mediated signaling, and will enable large-scale chemical screens to identify suppressors of the in vivo effects of AML1-ETO.  相似文献   

6.
7.
Diterpenoids isolated from Labiatae family herbs have strong antitumor activities with low toxicity. In this study, Eriocalyxin B (EriB), a diterpenoid extracted from Isodon eriocalyx, was tested on human leukemia/lymphoma cells and murine leukemia models. Acute myeloid leukemia cell line Kasumi-1 was most sensitive to EriB. Significant apoptosis was observed, concomitant with Bcl-2/Bcl-XL downregulation, mitochondrial instability and caspase-3 activation. AML1-ETO oncoprotein was degraded in parallel to caspase-3 activation. EriB-mediated apoptosis was associated with NF-kappaB inactivation by preventing NF-kappaB nuclear translocation and inducing IkappaBalpha cleavage, and disturbance of MAPK pathway by downregulating ERK1/2 phosphorylation and activating AP-1. Without affecting normal hematopoietic progenitor cells proliferation, EriB was effective on primary t(8;21) leukemia blasts and caused AML1-ETO degradation. In murine t(8;21) leukemia models, EriB remarkably prolonged the survival time or decreased the xenograft tumor size. Together, EriB might be a potential treatment for t(8;21) leukemia by targeting AML1-ETO oncoprotein and activating apoptosis pathways.  相似文献   

8.
9.
Wei H  Liu X  Xiong X  Wang Y  Rao Q  Wang M  Wang J 《FEBS letters》2008,582(15):2167-2172
AML1-ETO fusion protein is observed in approximately 12% of acute myeloid leukemia. In the present research, we found that AML1-ETO is able to inhibit Sp1 transactivity. We also found that this inhibition of Sp1 transactivity by AML1-ETO is achieved by interaction between Sp1 and RUNT domain of AML1. AML1b is able to abrogate the inhibition of AML1-ETO. Since Sp1 is involved in hematopoietic cell differentiation, we proposed that AML1-ETO promotes leukemogenesis by blocking cell differentiation through inhibition of Sp1 transactivity.  相似文献   

10.
Vas V  Wandhoff C  Dörr K  Niebel A  Geiger H 《PloS one》2012,7(2):e31523
The molecular and cellular mechanisms of the age-associated increase in the incidence of acute myeloid leukemia (AML) remain poorly understood. Multiple studies support that the bone marrow (BM) microenvironment has an important influence on leukemia progression. Given that the BM niche itself undergoes extensive functional changes during lifetime, we hypothesized that one mechanism for the age-associated increase in leukemia incidence might be that an aged niche promotes leukemia progression. The most frequent genetic alteration in AML is the t(8;21) translocation, resulting in the expression of the AML1-ETO fusion protein. Expression of the fusion protein in hematopoietic cells results in mice in a myeloproliferative disorder. Testing the role of the age of the niche on leukemia progression, we performed both transplantation and in vitro co-culture experiments. Aged animals transplanted with AML1-ETO positive HSCs presented with a significant increase in the frequency of AML-ETO positive early progenitor cells in BM as well as an increased immature myeloid cell load in blood compared to young recipients. These findings suggest that an aged BM microenvironment allows a relative better expansion of pre-leukemic stem and immature myeloid cells and thus imply that the aged microenvironment plays a role in the elevated incidence of age-associated leukemia.  相似文献   

11.
12.
13.
The t(8;21)(q22;q22) translocation, which fuses the ETO gene on human chromosome 8 with the AML1 gene on chromosome 21 (AML1-ETO), is one of the most frequent cytogenetic abnormalities associated with acute myelogenous leukemia (AML). It is seen in approximately 12 to 15% of AML cases and is present in about 40% of AML cases with a French-American-British classified M2 phenotype. We have generated a murine model of the t(8;21) translocation by retroviral expression of AML1-ETO in purified hematopoietic stem cells (HSC). Animals reconstituted with AML1-ETO-expressing cells recapitulate the hematopoietic developmental abnormalities seen in the bone marrow of human patients with the t(8;21) translocation. Primitive myeloblasts were increased to approximately 10% of bone marrow by 10 months posttransplant. Consistent with this observation was a 50-fold increase in myeloid colony-forming cells in vitro. Accumulation of late-stage metamyelocytes was also observed in bone marrow along with an increase in immature eosinophilic myelocytes that showed abnormal basophilic granulation. HSC numbers in the bone marrow of 10-month-posttransplant animals were 29-fold greater than in transplant-matched control mice, suggesting that AML1-ETO expression overrides the normal genetic control of HSC pool size. In summary, AMLI-ETO-expressing animals recapitulate many (and perhaps all) of the developmental abnormalities seen in human patients with the t(8;21) translocation, although the animals do not develop leukemia or disseminated disease in peripheral tissues like the liver or spleen. This suggests that the principal contribution of AML1-ETO to acute myeloid leukemia is the inhibition of multiple developmental pathways.  相似文献   

14.
15.
The detailed characterization of genetic and molecular aberrations in acute myeloid leukemia (AML) has substantially improved our understanding of the pathogenesis of this disease. With an incidence of up to 12% in all AML cases, the translocation t(8;21), forming the AML1-ETO fusion gene, is one of the most common genetic aberrations in AML. Experimental data have shown that AML1-ETO is not sufficient to induce leukemia by itself, but has to collaborate with other genetic alterations for leukemic transformation. These data are supported by observations in AML patients, who recurrently show activating mutations of the receptor tyrosine kinase FLT3 or c-KIT together with the AML1-ETO fusion gene. These findings might have clinical implications and provide a rationale to test RTK inhibitors in the treatment of patients with core binding factor AML and concurrent activating RTK mutations.  相似文献   

16.
17.
18.
AML1-ETO, a fusion protein generated by the chromosomal translocation t(8;21), is frequently associated with acute myeloid leukemia (AML). In addition to blocking differentiation, AML1-ETO is also shown to induce growth arrest in AML cells, which is unfavorable for leukemogenesis harboring the t(8;21) translocation. However, its precise mechanism is still unclear. Here we provide the first demonstration that the conditional expression of AML1-ETO by the ecdysone-inducible system dramatically increases the expression of connexin 43 (CX43), together with growth arrest at G1 phase in leukemic U937 cells. We also show that the CX43 induction inhibits the proliferation of U937 cells at G1 phase, while the suppression of CX43 expression by small interfering RNA (siRNA) effectively overcomes the growth-inhibitory effect of AML1 -ETO in leukemic cells. Furthermore, either AML1-ETO or CX43 induction elevates cell-cycle negative regulator P27(kip1) protein by inhibiting its degradation, which is antagonized by siRNA against CX43. Taken together, our data indicate that CX43 plays a role in AML1-ETO-induced growth arrest possibly through the accumulation of P27(kip1) protein. The potential mutation or/and epigenetic alterations of CX43 and its related gene(s) deserve to be explored in AML1-ETO-positive AML patients.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号